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Transition Removal for Compositional Supervisor Synthesis

Sahar Mohajerani Robi Malik Martin Fabian

Abstract— This paper investigates under which conditions
transitions can be removed from an automaton while pre-
serving important synthesis properties. The work is part of
a framework for compositional synthesis of least restrictive
controllable and nonblocking supervisors for modular discrete
event systems. The method for transition removal complements
previous results, which are largely focused on state merging.
Issues concerning transition removal in synthesis are discussed,
and redirection maps are introduced to enable a supervisor to
process an event, even though the corresponding transition
is no longer present in the model. Based on the results,
different techniques are proposed to remove controllable and
uncontrollable transitions, and an example shows the potential
of the method for practical problems.

I. INTRODUCTION

Supervisory control theory [1] provides a general frame-

work to compute least restrictive strategies to control a given

plant such that its behaviour satisfies a given specification.

Synthesis for systems with a large number of components

is impeded by an inherent complexity problem known as

state-space explosion. A lot of research has been devoted

to overcome the state-space explosion problem, and also

to find more comprehensible supervisors [1]–[3]. Compo-

sitional methods seek to avoid large state spaces using

abstraction, and have been used in verification [4], [5] and

synthesis [3], [6], [7]. In a system with a large number

of components, it is often possible to simplify individual

components before composing them with the rest of the

system, achieving significant performance improvements.

Several ways to simplify components have been investigated

in recent years.

Natural projection is a standard and effective way to com-

pute abstractions, although strong restrictions need to be im-

posed to ensure the preservation of synthesis results [8], [9].

Observation equivalence [10] and conflict equivalence [11]

are well-known abstraction methods for nonblocking verifi-

cation [5], but for synthesis these abstractions can only be

applied in combination with unobservable events [12], [13],

which limits their applicability.

Recently, frameworks for compositional synthesis based

on abstractions of nondeterministic automata have been

proposed [3], [6], [7], in some cases showing substantial

reduction of the number of states encountered during synthe-

sis. This paper seeks to enhance these methods by providing

means to remove transitions. This is important, because for
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large systems, the number of transitions may exceed the

number of states by several orders of magnitude.

Compositional verification often uses observation equiv-

alence for abstraction, which allows for transition removal

using the transitive reduction [14], but observation equiv-

alence does not necessarily preserve synthesis results [6].

Supervision equivalence [3] allows for transition removal,

but relies on additional state labels that make some desirable

abstractions impossible. The methods [6], [7] avoid event

hiding that may cause problems in synthesis abstraction, but

these approaches make it difficult to remove transitions.

This paper proposes some concrete means to identify

transitions that are redundant for the purpose of synthesis.

These methods are based on observation equivalence [10],

but are more restrictive because of the need to preserve

synthesis results. It is also shown how to restore the removed

transitions to enable a synthesised supervisor to make control

decisions based on a model with removed transitions.

This paper is organised as follows. After the preliminaries

in Sect. II, a framework to support transition removal in

compositional synthesis is presented in Sect. III. In Sect. IV,

a sufficient condition for transition-removing abstraction is

described, and in Sect. V, concrete methods to remove

transitions are given. Finally, Sect. VI demonstrates transition

removal using a practical example, and Sect. VII adds some

concluding remarks. Formal correctness proofs are omitted

for lack of space in this paper and can be found in [15].

II. PRELIMINARIES

A. Events and Languages

The behaviour of discrete event systems is described using

events and languages. Events represent incidents that cause

transitions from one state to another and are taken from a

finite alphabet Σ. For the purpose of supervisory control, this

alphabet is partitioned into the set Σc of controllable events

and the set Σu of uncontrollable events. Controllable events

can be disabled by a supervisor, while uncontrollable events

occur spontaneously, and are prefixed by an exclamation

mark (!) in this paper. The special termination event ω ∈ Σc

denotes completion of a task, and does not appear anywhere

else but to mark such completions.

Σ∗ is the set of all finite traces of events from Σ, including

the empty trace ε. A subset L ⊆ Σ∗ is called a language.

The concatenation of two traces s, t ∈ Σ∗ is written as st.
A trace s ∈ Σ∗ is a prefix of t ∈ Σ∗, written s ⊑ t, if

t = su for some u ∈ Σ∗. For Ω ⊆ Σ, the natural projection

PΩ : Σ∗ → Ω∗ is the operation that removes from traces

s ∈ Σ∗ all events not in Ω.



B. Finite-State Automata

Discrete event systems are typically modelled as deter-

ministic automata, but nondeterministic automata may be

obtained as intermediate results from abstraction.

Definition 1: A (nondeterministic) finite-state automaton

is a tuple G = 〈Σ, Q,→, Q◦〉, where Σ is a finite set of

events, Q is a finite set of states, → ⊆ Q × Σ × Q is the

state transition relation, and Q◦ ∈ Q is the set of initial

states.

The transition relation is written in infix notation x
σ
→ y,

and is extended to traces in Σ∗ by letting x
ε
→ x for all

x ∈ Q, and x
sσ
→ z if x

s
→ y and y

σ
→ z for some y ∈ Q.

Furthermore, x
s
→ means x

s
→ y for some y ∈ Q, and x → y

means x
s
→ y for some s ∈ Σ∗. For an alphabet Ω ⊆ Σ,

the notation x
Ω
→ y means x

σ
→ y for some σ ∈ Ω, and

G
s
→ x means q◦

s
→ x for some q◦ ∈ Q◦. The language of

automaton G is L(G) = { s ∈ Σ∗ | G
s
→}. Finally, G is

deterministic, if |Q◦| ≤ 1, and x
σ
→ y1 and x

σ
→ y2 always

implies y1 = y2.

A special requirement is that states reached by the termi-

nation event ω do not have any outgoing transitions, i.e., if

x
ω
→ y then there does not exist σ ∈ Σ such that y

σ
→. This

ensures that the termination event, if it occurs, is always the

final event of any trace. The traditional set of marked states

is Qω = {x ∈ Q | x
ω
→} in this notation. For graphical

simplicity, states in Qω are shown shaded in the figures of

this paper instead of explicitly showing ω-transitions.

When multiple automata are brought together to interact,

lock-step synchronisation in the style of [16] is used.

Definition 2: Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 and G2 = 〈Σ2,

Q2,→2, Q
◦
2〉 be two automata. The synchronous composition

of G1 and G2 is

G1 ‖ G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2〉 (1)

where

(x, y)
σ
→ (x′, y′) if σ ∈ Σ1 ∩ Σ2, x

σ
→1 x′, y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ Σ1 \ Σ2, x

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ Σ2 \ Σ1, y

σ
→2 y′ .

C. Supervisory Control Theory

Given plant and specification automata, supervisory con-

trol theory [1] provides a method to synthesise a supervisor

that restricts the behaviour of the plant such that the spec-

ification is always fulfilled. Two common requirements for

this supervisor are controllability and nonblocking.

Definition 3: Specification K = 〈Σ, QK ,→K , Q◦
K〉 is

controllable with respect to plant G = 〈Σ, QG,→G, Q◦
G〉

if, for every trace s ∈ Σ∗, every state x ∈ QK , and every

uncontrollable event υ ∈ Σu such that K
s
→ x and G

sυ
→, it

holds that x
υ
→K .

Definition 4: An automaton G = 〈Σ, Q,→, Q◦〉 is non-

blocking if, for every state x ∈ Q and every trace s ∈
(Σ \ {ω})∗ such that Q◦ s

→ x, there exists a trace t ∈ Σ∗

such that x
tω
→. Two automata G1 and G2 are nonconflicting

if G1 ‖ G2 is nonblocking.

For a plant G and specification K, it is shown in [1] that

there exists a least restrictive controllable sublanguage

supCG(L(K)) ⊆ L(K) (2)

such that supCG(L(K)) is controllable with respect to G
and nonblocking, and this language can be computed using a

fixpoint iteration. This result can be reformulated in automata

form, using an iteration on the state set. The synthesis result

for an automaton G is obtained by restricting G to a maximal

set of controllable and nonblocking states.

Definition 5: The restriction of G = 〈Σ, Q,→, Q◦〉 to

X ⊆ Q is G|X = 〈Σ, Q,→|X , Q◦ ∩ X〉 where →|X =
{ (x, σ, y) ∈ → | x, y ∈ X }.

Definition 6: [17] Let G = 〈Σ, Q,→, Q◦〉 be an automa-

ton. The synthesis step operator ΘG : 2Q → 2Q for G is

defined by ΘG(X) = Θcont
G (X) ∩ Θnonb

G (X), where

Θcont
G (X) = {x ∈ X | x

Σu→ y implies y ∈ X } ; (3)

Θnonb
G (X) = {x ∈ X | x

tω
→|X for some t ∈ Σ∗ } . (4)

Theorem 1: [17] Let G = 〈Σ, Q,→, Q◦〉. The synthesis

step operator ΘG has a greatest fixpoint gfpΘG = Θ̂G ⊆
Q. If the state set Q is finite, then the sequence X0 = Q,

Xi+1 = ΘG(Xi) reaches this fixpoint in a finite number of

steps, i.e., Θ̂G = Xn for some n ≥ 0.

Definition 7: The synthesis result for G = 〈Σ, Q,→, Q◦〉
is supCN (G) = G|Θ̂G

.

Theorem 2: Let G = 〈Σ, Q,→, Q◦〉 be a deterministic

automaton. supCN (G) is the least restrictive subautomaton

of G that is controllable with respect to G and nonblocking.

The synthesis operator supCN performs synthesis for a

plant automaton G. A simple transformation [3] exists to

transform problems that also involve specifications into the

plant-only control problems considered in this paper.

The result of synthesis is an automaton supCN (G) or

a language L(supCN (G)), which describes the behaviour

of a controlled system. In practice this is implemented as

a supervisor that decides which controllable events are to

be enabled or disabled in a given state. In this paper, a

supervisor is a map

S : Σ∗ → {0, 1} . (5)

If S(sσ) = 0 for some s ∈ Σ∗ and σ ∈ Σc then the

supervisor disables the controllable event σ after observing

trace s, otherwise it enables σ. This results in the following

closed-loop behaviour L(S/G) of the plant G under the

control of supervisor S:

L(S/G) = { s ∈ L(G) | S(s) = 1 } . (6)

A supervisor can be constructed naturally from a language

L ⊆ Σ∗, by letting SL(s) = 1 if and only if s ∈ L. For such

a supervisor to be feasible, L must be controllable [1].
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Fig. 1. Example of transition removal.

III. COMPOSITIONAL SYNTHESIS

Many supervisory control problems can be presented as

a set of interacting components. Then the synthesis prob-

lem consists of finding the least restrictive controllable and

nonblocking supervisor for a set of plants,

G = {G1, G2, . . . , Gn} . (7)

Compositional synthesis exploits the modularity of such sys-

tems and avoids building the complete synchronous product.

Individual components Gi are simplified and replaced by

smaller abstractions Hi. Synchronous composition is com-

puted step by step, abstracting again the intermediate results.

Eventually the abstractions result in a single automaton H ,

the abstract description of the system (7). Once found, H is

used instead of the original system to calculate a synthesis

result that leads to a solution for the original synthesis

problem (7).

Individual components Gi typically contain events that do

not appear in any other component Gj with j 6= i. These

events are called local events. In the following, the set of

local events is denoted by Υ, and Ω = Σ \ Υ denotes the

non-local or shared events. Local events are helpful to find

abstractions and are parenthesised in the figures.

This paper focuses on abstractions that remove transitions

from an automaton. This leads to a problem, because it is no

longer obvious how to construct a supervisor from such an

abstraction. After removal of transitions it is not clear how

a supervisor can enact control over the events labelling the

removed transitions.

Example 1: Consider automata G and T in Fig. 1 with

Σu = Υ = {!γ}. Automaton H is obtained by removing

q0
α
→ q2. Although H is an appropriate abstraction of G,

as explained below in Example 2, the supervisor SH =
supCN (H ‖ T ) disables event α in the initial state, and

therefore is not a least restrictive supervisor for G ‖ T .

To solve this problem, the models (7) are augmented by

a redirection map that contains the information needed to

finally implement a supervisor.

Definition 8: A synthesis pair is a pair (G;D), where

• G = {G1, G2, . . . , Gn} is a set of uncontrolled plant

automata;

• D : Σ∗ → Σ∗ is a prefix-preserving redirection map,

i.e., a map such that s ⊑ t implies D(s) ⊑ D(t).
The compositional synthesis algorithm manipulates syn-

thesis pairs. Each pair represents a partially solved synthesis

problem, consisting of the plant model G to be controlled

and the redirection map D, which maps each input trace s
accepted by the original plant before all abstractions, to a

trace accepted by the current abstracted plant G. A solution

to the abstracted synthesis problem G can be interpreted as

a supervisor for the original plant by taking the redirection

map into account.

Definition 9: For every synthesis pair (G;D), define the

represented supervisor map S(G;D) : Σ∗ → {0, 1} as follows:

S(G;D)(s) =

{

1, if D(s) ∈ L(supCN (G));

0, otherwise.
(8)

Compositional synthesis starts by converting a control

problem such as (7) into a synthesis pair (G0; id) where

G0 = {G1, G2, . . . , Gn} and id : Σ∗ → Σ∗ is the identity

map, i.e, id(s) = s for all s ∈ Σ∗. This initial synthesis pair

is repeatedly abstracted such that the supervisor obtained

from the abstraction remains a solution for the original

problem. To ensure this property, each new synthesis pair

needs to be synthesis equivalent to the previous pair.

Definition 10: Two synthesis pairs (G1;D1) and (G2;D2)
are called synthesis equivalent with respect to plant G,

written (G2;D2) ≃synth,G (G1;D1), if L(S(G1;D1)/G) =
L(S(G2;D2)/G). Furthermore, (G1;D1) and (G2;D2) are

synthesis equivalent, written (G2;D2) ≃synth (G1;D1), if

(G2;D2) ≃synth,G (G1;D1) for every automaton G.

Compositional synthesis terminates once G = {H} con-

sists of a single automaton representing the abstracted system

description. The following result, proved in [15], confirms

that the closed-loop behaviour obtained in the end is equal

to a solution for the original synthesis problem.

Proposition 3: Let G0 = {G1, . . . , Gn} be a set of

automata, and let (Gk;Dk) be a synthesis pair such that

(G0; id) ≃synth,G0
(Gk;Dk). Then

L(S(Gk;Dk)/G0) = L(supCN (G0)) . (9)

IV. TRANSITION-WISE SYNTHESIS EQUIVALENCE

Several methods are known to abstract synthesis pairs such

that the number of states is reduced [3], [6]. The abstractions

are performed by manipulating the states and transitions of

individual automata, such that synthesis equivalence is pre-

served. To allow for transition removal, state-wise synthesis

abstraction, which is a special case of a definition from [6],

is augmented by a transition-based concept in Def. 12.

Definition 11: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ,
Q,→H , Q◦〉 be two automata. H is a state-wise synthesis

abstraction of G with respect to Υ ⊆ Σ, if it holds for all

automata T with ΣT ∩ Υ = ∅ that Θ̂G‖T ⊆ Θ̂H‖T .

Definition 12: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ, Q,
→H , Q◦〉 be two automata. H is a transition-wise synthesis

abstraction of G with respect to Υ ⊆ Σ if for every transition

x
σ
→G y there exist t, u ∈ Υ∗ such that:

(i) x
tPΩ(σ)u
−→H y;

(ii) for all automata T such that ΣT ∩ Υ = ∅ and all

transitions (x, xT )
σ
→|Θ̂G‖T

(y, yT ) of supCN (G ‖ T )

it holds that (x, xT )
tPΩ(σ)u
−→|Θ̂H‖T

(y, yT ).

Definition 13: Two automata G and H are state-wise (or

transition-wise) synthesis equivalent with respect to Υ, if G
is a state-wise (or transition-wise) synthesis abstraction of H



with respect to Υ and H is a state-wise (or transition-wise)

synthesis abstraction of G with respect to Υ.

To preserve transition-wise synthesis equivalence after

removal of a transition, Def. 12 requires the existence of a so-

called redirection path that links the source and target states

of the removed transition. A redirection path for transition

x
σ
→ y with respect to Υ is a path x

tPΩ(σ)u
−→ y such that t, u ∈

Υ∗. Using these paths, the redirection map is constructed to

replace the removed transitions by the matching redirection

paths. This enables the supervisor to make control decisions

about the removed transitions.

Example 2: Consider again the automata in Fig. 1. Tran-

sition q0
α
→ q2 can be removed from G, producing the state-

wise and transition-wise synthesis equivalent automaton H .

From this abstraction, a redirection map D : Σ∗ → Σ∗ is

constructed where D(αs) = !γαs for all s ∈ Σ∗ and

D(s) = s for all s such that α is not a prefix of s.

If G in Fig. 1 is placed in a larger system, say G =
{G,T}, then the synthesis pair (G; id) is synthesis equivalent

to (H;D) where H = {H,T}. Although the supervisor

SH = supCN (H ‖ T ) obtained for H cannot directly be

used to control the original plant G, this becomes possible in

combination with the redirection map D. As D(α) = !γα ∈
L(supCN (H ‖T )), the supervisor computed for (H,D) will

enable the controllable event α in the initial state, in the same

way as a supervisor computed for the original system G.

The following result confirms that a redirection map as

shown in Example 2 can be constructed in all cases where

transition removal applied to a component results in a state-

wise and transition-wise synthesis equivalent abstraction.

Theorem 4: [15] Let G = {G1, . . . , Gn} and H = {H1,
G2, . . . , Gn} such that G1 and H1 are state-wise and transi-

tion-wise synthesis equivalent with respect to Υ ⊆ Σ1 such

that Υ ∩ Σ2 = · · · = Υ ∩ Σn = ∅ and →H1
⊆ →G1

.

Then there exists a redirection map D1 : Σ∗ → Σ∗ such that

(G;D) ≃synth (H;D1 ◦ D).

V. TRANSITION REMOVAL ABSTRACTION

According to Theorem 4, synthesis results are preserved

if transition removal in a component results in a state-wise

and transition-wise synthesis equivalent abstraction. This

section proposes some concrete methods to construct such

abstractions, based on the idea of observation equivalence.

A. Observation Equivalence

Observation equivalence or weak bisimilarity is a well-

known general abstraction method for nondeterministic au-

tomata [10]. It can be implemented by simple algorithms, and

its application in compositional verification can substantially

reduce the state space [5]. Observation equivalence is tested

based on the transitive closure of the local event transi-

tions [18]. The number of transitions can be substantially

reduced by considering only the transitive reduction. More

precisely, a transition x
σ
→ y is observation equivalence

redundant and can be removed [14] if the automaton contains

a matching redirection path.

G q1

q3 !υ

!υ
(β)

H q1

q3 !υ
(β)

T
!υ

Fig. 2. H is observation equivalent to G, but not a synthesis abstraction.

Definition 14: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ, Q,
→H , Q◦〉 be two automata with Σ = Ω ∪̇ Υ and →H ⊆
→G. Automaton H is a result of observation equivalence

redundant transition removal from G with respect to Υ, if

for all transitions x
σ
→G y there exist t, u ∈ Υ∗ such that

x
tPΩ(σ)u
−→H y.

Observation equivalence redundant transitions can be re-

moved while preserving observation equivalence, which in

turn ensures preservation of most temporal logic proper-

ties [10], [14]. Unfortunately, this does not include synthesis

equivalence [6].

Example 3: Consider automata G, H , and T in Fig. 2.

The uncontrollable transition q1
!υ
→ q3 is observation equiv-

alence redundant with respect to Υ = {β}. Removing it

produces H . In G and H , the uncontrollable event !υ leads

to the blocking state q3. With H , blocking can be prevented

by disabling β, leaving only the initial state. But with G,

the uncontrollable transition q1
!υ
→ q3 produces an empty

synthesis result. The test T demonstrates that G and H are

not state-wise synthesis equivalent since G is not a state-wise

synthesis abstraction of H .

This counterexample shows that in general synthesis

equivalence is not preserved by removing observation equiv-

alence redundant transitions, so extra restrictions need to be

imposed.

B. Uncontrollable Redundant Transitions

In Example 3, if the local event β was uncontrollable,

then the resultant abstraction H would be a transition-wise

synthesis abstraction of G. This suggests to interpret an

uncontrollable transition as redundant if the local transitions

used in the redirection path are also uncontrollable.

Definition 15: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ, Q,
→H , Q◦〉 be two automata with Σ = Ω ∪̇ Υ and →H ⊆
→G. Automaton H is a result of uncontrollable redundant

transition removal from G with respect to Υ, if the following

conditions hold for all transitions x
σ
→G y.

(i) If σ ∈ Σc then x
σ
→H y.

(ii) If σ ∈ Σu then there exist t, u ∈ (Υ ∩ Σu)∗ such that

x
tPΩ(σ)u
−→H y.

The transitions present in →G but not in →H in Def. 15

are called uncontrollable redundant transitions. These transi-

tions can be removed while producing a synthesis equivalent

abstraction.

Theorem 5: [15] Let H = 〈Σ, Q,→H , Q◦〉 be a result

of uncontrollable redundant transition removal from G =
〈Σ, Q,→G, Q◦〉 with respect to Υ ⊆ Σ. Then G and H
are state-wise and transition-wise synthesis equivalent with

respect to Υ.
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Fig. 3. Different redirection paths after the event of a removed transition.
The transitions to be removed are marked by double-line strike-through.

C. Controllable Redundant Transitions

For uncontrollable events, an uncontrollable redirection

path guarantees transition-wise synthesis equivalence. For

controllable events, all events on a redirection path except for

the event of the removed transition should be uncontrollable.

However, the following counterexample reveals that one

more condition is needed to guarantee a correct abstraction.

Example 4: Consider automaton G1 in Fig. 3 where Σu =
Υ = {!µ, !υ}. Transition q0

α
→ q3 is observation equivalence

redundant because q0
!µα!µ
−→ q3. Let H1 be the result of

removing the transition q0
α
→ q3. In both G1 and H1, the

controllable transition q1
α
→ q2 must be disabled to avert

blocking via the uncontrollable event !υ. Removing this

transition makes q3 unreachable in supCN (H1‖T ), but it re-

mains reachable in supCN (G1‖T ). The test T demonstrates

that G1 and H1 are not transition-wise synthesis equivalent

as G1 is not a transition-wise synthesis abstraction of H1.

Example 4 shows that there is a problem with uncontrol-

lable local events after the event of a removed transition on

a redirection path. The problem disappears if there are no

further events after the removed event, as in automaton G2 in

Fig. 3. This leads to the idea of controllable prefix-redundant

transition removal, which can be shown to imply both state-

wise and transition-wise synthesis abstraction.

Definition 16: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ, Q,
→H , Q◦〉 be two automata with Σ = Ω∪̇Υ and →H ⊆ →G.

Automaton H is a result of controllable prefix-redundant

transition removal from G with respect to Υ, if the following

conditions hold for all transitions x
σ
→G y.

(i) If σ ∈ Σu then x
σ
→H y.

(ii) If σ ∈ Σc then there exists t ∈ (Υ ∩ Σu)∗ such that

x
tPΩ(σ)
−→H y.

Controllable prefix-redundant transition removal only al-

lows for local events before the event of a removed transition.

Local events after this event can also be considered by adding

additional requirements.

Example 5: As shown in Example 4, removal of the

transition q0
α
→ q3 in G1 in Fig. 3 does not ensure synthesis

abstraction because of the uncontrollable !υ-transition in

state q2. Automaton G3 also has the observation equivalence

redundant transition q0
α
→ q3 and an !υ-transition enabled

after α on the redirection path q0
!µα!µ
−→ q3. Yet, in this case,

the !υ-transition does not lead to a blocking state, and the

removal of q0
α
→ q3 results in a state-wise and transition-wise

synthesis equivalent automaton.

Automata G1 and G3 in Fig. 3 differ in the target state

of q2
!υ
→. This suggests to allow uncontrollable events in the

second part of a redirection provided that they are local and

lead to a target state on the redirection path.

Definition 17: Let G = 〈Σ, Q,→, Q◦〉 be an automaton

and Υ ⊆ Σ. A path

x0
σ1→ x1

σ2→ · · ·
σk→ xk (10)

is a weakly controllable Υ-path if σ1, . . . , σk ∈ Υ and for

all uncontrollable transitions xl
υ
→ y with 0 ≤ l < k and

υ ∈ Σu it holds that υ ∈ Υ and y = xj for some 0 ≤ j ≤ k.

A weakly controllable path consists of only local transi-

tions, and furthermore all uncontrollable transitions enabled

along this path must use local events and lead to states

along the path. Imposing this condition on the redirection

path gives the condition for a controllable suffix-redundant

transition, which is sufficient for synthesis equivalence.

Definition 18: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ, Q,
→H , Q◦〉 be two automata with Σ = Ω ∪̇ Υ and →H ⊆
→G. Automaton H is a result of controllable suffix-redun-

dant transition removal from G with respect to Υ, if the

following conditions hold for all transitions x
σ
→G y.

(i) If σ ∈ Σu then x
σ
→H y.

(ii) If σ ∈ Σc then there exists u ∈ Υ∗ such that x
PΩ(σ)
−→ H

z
u
→H y, and z

u
→G y is a weakly controllable Υ-path.

Both controllable prefix-redundant and suffix-redundant

transition removal preserve synthesis equivalence. These

conditions can be combined to allow sequences of local

events before and after a removed transition.

Definition 19: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ, Q,
→H , Q◦〉 be two automata with Σ = Ω∪̇Υ and →H ⊆ →G.

Automaton H is a result of controllable redundant transition

removal from G with respect to Υ, if the following conditions

hold for all transitions x
σ
→G y.

(i) If σ ∈ Σu then x
σ
→H y.

(ii) If σ ∈ Σc then there exist t ∈ (Υ ∩ Σu)∗ and u ∈ Υ∗

such that x
tPΩ(σ)
−→H z

u
→H y, and z

u
→G y is a weakly

controllable Υ-path.

Theorem 6: [15] Let H = 〈Σ, Q,→H , Q◦〉 be a result of

controllable redundant transition removal from G = 〈Σ, Q,
→G, Q◦〉 with respect to Υ ⊆ Σ. Then G and H are state-

wise and transition-wise synthesis equivalent with respect

to Υ.

VI. EXAMPLE

In this section, the proposed synthesis procedure is applied

to a manufacturing system. The model consists of four

machines M1, M2, M3, and M4, linked by two buffers B1

and B2. Workpieces are first processed by M1 (s1) and then

placed into B1 (!f1), then they go to M2 (s2) and are placed

into B2 (!f2). From B2, the workpieces either go to M3 for

final processing (s3) or to M4 (s4) for additional processing.

However, M4 has a fault that occasionally sends a workpiece

back to B1 (!re). At any time, M1 and B1 can be reset by

the controllable event rs. Fig. 4 shows the system layout and

the automata model. Events !f1, !f2, !f3, !f4 and !re are

uncontrollable, all other events are controllable.
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Fig. 4. Manufacturing system example.
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Fig. 5. Some subsystems of the manufacturing example. The transitions
to be removed are marked by double-line strike-through.

Compositional synthesis starts with the pair (G0; id) where

G0 = {M1,M2,M3,M4, B1, B2}. The first step is to calcu-

late the composition B1 ‖M1 shown in Fig. 5. Now !f1, rs,

and s1 are local events, which makes q0
rs
→ q0 and q2

rs
→

q0 controllable prefix-redundant transitions with redirection

paths q0
ε
→ q0 and q2

!f1

→ q3
rs
→ q0 respectively. Removal

of these transitions results in H1. The modified synthesis

pair is (G1;D1) where G1 = {H1,M2,M3,M4, B2} and D1

redirects q2
rs
→ q0 and q0

rs
→ q0 via q2

!f1

→ q3
rs
→ q0 and

q0
ε
→ q0, respectively.

Next, B2 ‖ M3 is computed, shown in Fig. 5. This

makes !f3 and s3 local events, and q3
!f2

→ ⊥ becomes

an uncontrollable redundant transition with redirection path

q3
!f3

→ q1
!f2

→ ⊥. The new synthesis pair is (G2;D2 ◦ D1)

where G2 = {H1,M2,M4,H2} and D2 redirects q3
!f2

→ ⊥

via q3
!f3

→ q1
!f2

→ ⊥.

The final synthesis step to compute supCN (G2) explores

the state space of G2 which has 100 states and 290 transitions.

This is in contrast to standard monolithic synthesis, which

explores the same state space using 340 transitions. Both the

final monolithic and compositional supervisor have 26 states.

However, the compositional supervisor has 63 transitions,

while the monolithic supervisor has 81 transitions.

These improvements have been achieved by removing just

three transitions from the model. More savings are likely

in larger contexts, particularly in combination with state-

removing abstraction rules.

VII. CONCLUSIONS

It has been shown under which conditions transitions can

be removed from an automaton while preserving composi-

tional synthesis results. Different techniques to remove con-

trollable and uncontrollable transitions have been presented,

and a practical example has demonstrated how the number of

transitions is reduced. The methods proposed in this paper

are not intended to be used in isolation, but they will be

combined with other synthesis-preserving abstraction meth-

ods. In the future, the authors plan to develop a framework

for compositional synthesis that combines abstractions that

remove states [3], [6] and transitions, as well as renaming [7]

to remove nondeterminism.
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