
Learning to Locomote: Action Sequences and Switching Boundaries

Rowland O’Flaherty and Magnus Egerstedt

Abstract— This paper presents a hybrid control strategy
for learning the switching boundaries between primitive con-
trollers that maximize the translational movements of complex
locomoting systems. Through this abstraction, the algorithm
learns an optimal action for each boundary condition instead
of one for each discretized state and action of the system, as is
typically in the case of machine learning. This hybridification
of the problem mitigates the “curse of dimensionality”. The
effectiveness of the learning algorithm is demonstrated on both
a simulated system and on a physical robotic system. In both
cases, the algorithm is able to learn the hybrid control strategy
that maximizes the forward translational movement of the
system without the need for human involvement.

I. INTRODUCTION

When the control design task is prohibitive due to the
complexities of the specifications and the systems them-
selves, machine learning provides a possible way forward.
In fact, learning as a means to produce control strategies
has been used on a number of complex systems, such as
helicopters [1], humanoid robots [2] [3], robotic arms [4],
biological systems [5], and wind turbines [6]. Despite the
success associated with these particular applications, a hurdle
that almost all learning algorithms face is the “curse of
dimensionality”; coined by Richard Bellman in the 1950s.
This is the exponential increase of information that must be
learned as the number of possible states and actions in the
system increases.

In this paper, we present a model-free learning algorithm
that overcomes this complexity issue by a particular choice
of discretization. The algorithm uses boundary conditions
coupled with sets of primitive control laws to create motions
for the locomotion of complex robotic systems. In particular,
the proposed algorithm learns actions based on boundary
states instead of the actual system states, which greatly
reduces the amount of learning that must take place.

This paper uses reinforcement learning, which can be
problematic in high-dimensional continuous state-action sys-
tems, as observed in [8]. This scalability problem derives
from the fact that, in general, reinforcement learning is
attempting to learn the best action to take for each state of the
system (a state-action pair) based on a given reward function.
In order to facilitate such a formulation, the state-space and
action-space must be discretized, partitioned, or parameter-
ized in some way. Unfortunately, the number of possible
state-action pairs grows exponentially with the growth of
both the state-space and the action-space dimensions.

R. O’Flaherty and M. Egerstedt are with the Department of Electri-
cal and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA. The work by M. Egerstedt was supported by the
DARPA M3 program. rowland.oflaherty@ece.gatech.edu
magnus.egerstedt@ece.gatech.edu

Previous work has been done to try to mitigate this
problem of feasibly performing a task in high dimensional
spaces. For example Kuo et al. [9] discuss different sampling
techniques that can be used for numerical integration in high
dimensional spaces. We cope with the problem in a similar
fashion as Kuo et al. and many other researchers; and that is
by sampling the space in an intelligent way. Other methods
include using neural approximators [10], clustering [11], or
function approximation [12]. Our technique differs in that it
hones in on the most important states (switching boundaries
of the hybrid system) of the state space and only worries
about those while ignoring the rest.

In fact, our proposed method to ameliorate this scalability
problem is inspired by nature. It has been shown that animals
and insects use a small set of motor primitives to construct
and control movements [13]–[16]. Moreover, the transitions
between motor primitives do not occur everywhere in the
state space and we interpret this in terms of boundaries on
which transitions may take place. This suggests that the
action-space can be reduced to a finite space where the
dimension is equal to the cardinality of the primitive con-
trol set. In addition, the state-space used for reinforcement
learning can also be reduced to a finite set of boundaries.
Therefore, the reinforcement learning algorithm will only
need to learn boundary-controller pairs instead of state-
action pairs. The real strength with this approach is that
for highly complex systems—particularly those where it is
infeasible to formulate an accurate model of the system
dynamics due to imprecise manufacturing, unknown material
properties, or complex physical interactions (e.g friction and
fluid dynamics)—control for locomotion may still be learned
in a computationally feasible manner.

The main contributions of this paper are (i) the intro-
duction of a hybrid system methodology and reinforcement
learning algorithm to learn control actions based on boundary
conditions to mitigate the “curse of dimensionality”, and
(ii) the demonstration of the algorithm on both a simulated
system and on a real robot shown in Figure 1.

II. SYSTEM OVERVIEW

This paper introduces a learning algorithm for the locomo-
tion of complex robotic systems. The form of the system that
our learning algorithm is applicable to is outlined in detail
below, but in general it is a continuous time system with
the objective of moving in some direction. The algorithm
described in this paper learns the appropriate sequence of
control laws and the switching protocol that produces a
motion that moves the system the “best”, relative to a cost
function. The switching between the control actions occurs

Fig. 1. Physical robotic system used to test the learning algorithm.

at discrete time instants when the state of the system reaches
the learned boundary conditions.

In our proposed learning algorithm, the switching between
primitive controllers creates a dynamical system that has both
continuous time and discrete time dynamics, thus making it
a hybrid system. Before we describe this hybrid system, let
us begin with the dynamics and constraints of the system.

A. System Dynamics

The system dynamics under consideration in this paper
can be written as

ẋ = f(x, u) =

{
ẋI = fI(xI , u)
ẋE = fE(xE , xI),

(1)

where the system state, x ∈ Rn, is composed of two parts:
an internal state xI ∈ RnI and an external state xE ∈ RnE .
Thus, x := [xI , xE]T and n = nI+nE . The internal state, xI ,
describes the configuration of the system in reference to itself
(e.g. actuator positions, joint angles, component velocities,
etc.). The external state, xE , describes the configuration of
the system in reference to the outside world (e.g. location
and velocity of the system in some global reference frame).

For the purpose of this paper, we assume that the in-
ternal state is rectangularly bounded.1 Let these bounds be
described by xImin ∈ RnI and xImax ∈ RnI , where

xImin(j) ≤ xI(j) ≤ xImax(j), ∀j ∈ {1, . . . , nI}.

The external state is allowed to be unbounded. The input to
the system is given by u ∈ Rm. For this class of systems,
the input affects the internal state through fI(xI , u) while it
only indirectly affects the external state through the coupling
with xI .

B. Primitive Controllers and Decision Conditions

We assume that the primitive controllers have been de-
signed such that they affect the internal state of the system
and will always move the internal state until it hits a
boundary2. In other words, the closed-loop system does not
have any equilibrium points in the internal state space. If we
let ξ index the controller selection, the primitive controllers
are defined as κξ(xI) : RnI → Rm, which determine the

1This bound can be generalized to any polytopic boundary.
2The assumption is valid because this equates to the low level motor

controllers that are usually built into the hardware of a robotic system.

input, u = κξ(xI). We let the set of all primitive controllers
be given by E := {1, . . . , k} (with ξ ∈ E), where k is
the number of different primitive controllers. Let us define
the system dynamics while a particular controller is being
applied as fξ(x) := f(x, κξ).

Decisions are made on what control law to use when the
internal state of the system intersects a decision boundary.
These decision boundaries are represented by nI −1 dimen-
sional hyperplanes in RnI . Each hyperplane pi is parameter-
ized by two variables oi ∈ RnI and di ∈ RnI , where oi and
di describe the origin and unit normal direction, respectively,
of the ith hyperplane. Therefore, the hyperplanes are defined
as pi := {xI | (xI − oi)Tdi = 0}. The set of all hyperplanes
is P = {p1, . . . , pη}, where η is the total number of
hyperplanes. The boundary that was last intersected by xI
is encoded with the boundary state variable β ∈ B, where
B := {0, 1, . . . , η}. Initially, when the internal state has not
yet intersected a boundary β = 0.

In order to ensure that the system can indeed learn how to
locomote, we need to impose some constraints on the set of
controllers and boundaries. In particular, we need to be able
to guarantee that a control law is always applicable. This
means the system can always move away from a boundary
once the boundary has been encountered. Also, we want
to ensure the system will always eventually encounter a
boundary.

To establish this guarantee, we first assume that the
hyperplanes intersect to form a convex polytope. To describe
this constraint more formally, let

D̄ :=
{
xI

∣∣∣ (xI − oi)Tdi < 0 ∀i ∈ {1, . . . , η}
}
. (2)

The set D̄ is the set of all points inside the polytope
formed by the intersection of the hyperplanes in P . Thus,
the constraint is that D̄ must be convex. This constraint also
gives a minimum to the number of hyperplanes needed, i.e.,
ηmin = nI + 1.

The set of primitive controllers move the internal state
of the system around in the polytope defined by D̄. A set is
valid if for each point along all of the hyperplanes in P there
is at least one control action that can move the state away
from hyperplanes and back into D̄. Thus, we assume that the
boundary conditions and control laws have been designed
such that

∀i ∈ {1, . . . , η}, ∃j ∈ E s.t. dT
i fj(x) < 0 ∀x ∈ pi. (3)

We also impose a non-transversality condition on the
primitive controllers and the decision boundaries. This con-
dition restricts the internal state to not move along the
decision boundaries. Two important effects are caused by this
condition. The first is that the internal state can not return
to the same boundary without first encountering another
boundary and the second is that the internal state can not
stay in the interior of D̄ forever.

Verification of these effects can be seen by looking at the
trajectories of the primitive controllers when initialized at
different points along the boundaries. By continuity, these

trajectories can never cross each other and, therefore, if a
controller brings a state back to the same boundary then
there must be a stationary, singular point on that boundary.
This would violate the non-transversality condition in (3),
thus the primitive controllers will never bring the internal
state back to a boundary that is has just encountered. The
second effect is verified by a similar reasoning as the first.
For the internal state to stay in the interior of the boundaries
forever with the same primitive controller there must be a
point along its trajectory that is tangential to the hyperplanes
that make up the boundaries. Again, this violates the non-
transversality condition in (3); and as result, the internal state
will always eventually encounter a decision boundary.

In addition, in order to keep the notation simple it is
assumed that the internal state will not encounter more
than one decision boundary at a time. This assumption
is reasonable because, for all but contrived systems, it is
improbable for the internal state to intersect more than one
hyperplane due to the non-transversality condition, which
prevents the potentially, non-pathological sliding along a
boundary from happening.

C. Hybrid Formulation
Following the notation in [17], our hybrid system is

composed of four parts: (i) the flow map, which describes
the continuous time evolution of the system; (ii) the flow
set, which determines when the flow map takes place; (iii)
the jump map, which describes the discrete time updates
to the system; and (iv) the jump set, which determines
when the jump map takes place. The interpretation is that
the system flows during the continuous time evolution and
jumps at the discrete time updates. With this we combine
all the system information into a generalized state variable
q := [x, β, ξ]T ∈ Q, where Q = Rn × B × E .

The flow set is defined with the bounds on xI ,

C = {q ∈ Q | xImini ≤ qi ≤ xImaxi, i ∈ {1, . . . , nI}} .
(4)

The jump set is thought as the complement to D̄,

D :=
{
q ∈ Q

∣∣∣ [InI×nI 0nI×(nE+2)]q /∈ D̄
}
. (5)

In words, (5) states that the jump set is the set of q’s
where the first nI components of q are not elements of
D̄. An illustration of an example internal state-space with
boundaries, flow set, and jump set can be seen in Figure 2.

Before defining the flow map and jump map for the system
two other functions must first be introduced. The first is the
boundary map b(xI) : RnI → B, which maps the internal
state to a boundary state. Second, there is the controller
selector map e(β) : B → E , which selects which controller
to use given a boundary state. The controller selector map
for a given boundary must satisfy the condition in (3).

With the above functions the flow map and jump map of
the hybrid system can be written as

fH(q, u) =
[
f(x, u), 0, 0

]T
(6)

gH(q) =
[
x, b(xI), e(b(xI))

]T
(7)

p3

C

D

p1

p2

κ1

xI

κ2
κ3

κ4

d1

o1

o3

d2

d3

xImin1

xImin2

xImax2

xImax1

o2

Fig. 2. Illustration of the internal state xI ∈ R2 being controlled into
a limit cycle with controllers κ1, . . . , κ4 and with the location of the
decision boundaries defined by the parameters oi and di. The flow set C
is the interior of the green box and the jump set D is the exterior of the
red triangle. The interior of the red triangle must be convex.

respectively. Thus, fH(q, u) : C × Rm → Q and gH(q) :
D → Q. Finally, the hybrid system is defined as

H :

{
q̇ = fH(q, u) q ∈ C
q+ ∈ gH(q) q ∈ D

. (8)

D. Reward Function

Learning only makes sense if there is something to learn.
To this end, we need to associate a reward function and value
function to the system, which is usually determined trivially
by what is desirable (e.g. if forward progress is desirable then
distance forward is the reward). We let the reward function
be R(xE , u) : RnE ×Rm → R and the corresponding value
function becomes

V (xE , u) =

∫ t0+tπ

t0

R(xE , u)dt, (9)

where t0 is the initial time and tπ is length of time that is
being optimized over.

Given the above definitions, the objective is to maximize
the value function, V (xE , u), without explicit knowledge of
the system dynamics, f(x, u), and the controllers, κi(xI , τ),
by learning the controller selector map, e(β), and the set
of boundaries, P . Two things to note are (i) the primitive
controllers depend on xI and not on xE and (ii) that the
reward and value functions depend on xE and not xI , which
is why we refer to this as a locomoting problem.

III. LEARNING ALGORITHM

Learning the controller actions and the decision boundaries
are the main focus of this section and we primarily use
reinforcement learning to this end. This type of learning is
often done as an online process, which adds the additional
caveat that the agent must decide when it has sufficiently
learned the environment and start utilizing its knowledge.
This is known as “exploratation vs. exploitation” [18].

Reinforcement learning is usually modeled as a Markov
Decision Process (MDP) [7] with four components: S, A,

P , and R. S is the set of states for the agent and the
environment. A is the set of actions or decisions that agent
can take. P is a function that defines the probabilities of
transitioning from the current state to the next state given a
certain action. R is the function that determines the reward
that is received after choosing a action from a given state.

With reinforcement learning the agent is attempting to
learn an optimal policy, π, for the MDP, which is a de-
scription of how the agent chooses the actions to perform
given a certain state. To do this the agents often learns the
value function, which in turn will produce a policy. The value
function, V , gives the maximum reward that can be earned
from a given state.

For the system framework presented in Section II the
learning algorithm components are S = B, A = E , R =
R(xE , u), and P is not explicitly used.

A. Learning Controller Actions

A type of reinforcement learning known as Q-learning
was one of the most important breakthroughs in the field of
reinforcement learning [7]. Q-learning is an iterative update
algorithm for the value-action function, Q; hence the name.
The value-action function is a variant of the value function,
which gives the maximum reward that can be earned from a
given state after performing a given action. A model that
maps from actions to states is not needed for either the
learning or the action selection in Q-learning. For this reason,
Q-learning is called a model-free method. This learning
algorithm is guaranteed to converge to the optimal, Q∗, if
all state-action pairs continue to be updated. Q-learning is
used to learn controller actions given decision boundaries
for the hybrid system defined in (8).

Q-learning is a remarkably simple algorithm. The update
is as follows:

Q(st, at)← Q(st, at)+

α
(
Rt + γmax

a
Q(st+1, a)−Q(st, at)

)
, (10)

where st is the boundary state (β) and at is the primitive
controller (ξ) at time t. In (10), α is known as the learning
rate and γ is known as the discount factor. A smaller α means
old information will be trusted more than new information.
And a smaller γ means instantaneous rewards are more
important than future rewards. From (10) a policy, π, is
generated from Q in a “greedy” manner. In other words,
the action that is selected for a given state is the one that
maximizes the Q value for that state.

B. Learning Decision Boundaries

A different approach is used to find the optimal decision
boundary locations. A gradient ascent algorithm is used to
iteratively move the boundaries to the optimal locations. The
boundaries are moved proportional to the positive of the
gradient of the value function with respect to the boundary
locations, ∂V

∂pi
. This proportion (or step size) is set by the

parameter c.
To estimate the gradient, each time the internal state xI

reaches one of the boundaries in P the position of that

Algorithm 1 Learning To Locomote Algorithm
x← 0 {Initialize state to all zeros}
Q← 0 {Initialize Q to all zeros}
while xI is not a stable limit cycle do

if variance on Q(β, ξ) > vth then
ξ ← rand(E) {Pick random action to use}

else
ξ ← argmax(Q(β, :)) {Pick maximizing action}

end if
x ← simulate(x) {Simulate the system forward until
boundary is encountered}
β ← b(x) {Update the boundary state}
Q← update(Q, q) {Update Q with (10)}
pi ← c ∂R∂pi {Update boundary locations}

end while
for each β ∈ B do
e(β)← argmax(Q(β, :))

end for

boundary is randomly changed by some small amount, ∆p.
The change in the reward function, ∆R, is calculated over
this change in the boundary position. The ratio of ∆R to
∆p is used as an approximation for the gradient ∂V

∂pi
. The

boundaries are moved by the amount equal to c∆R
∆p . This

results in the boundaries moving in a “greedy” direction; in
other words, a direction that maximizes the short term reward
not necessarily the long term value.

C. Exploration vs. Exploitation

Deciding when the agents have learned sufficient informa-
tion and deciding when to begin executing the learned policy
is a current area of research in reinforcement learning. Know-
ing that Q-learning is the learning process helps determine
the transition from exploration to exploitation. In Q-learning
the Q values will converge to the optimal value if the state-
action pairs continue to be updated. Thus, the variance in
the Q values will converge to zero. The variance in the
Q values is used to determine when the learning algorithm
should explore or exploit.

Exploitation takes place when the maximum variance in
the last σ2

n updates of Q for a particular state, s, is below a
threshold of σ2

th. Otherwise exploration is performed. This
variance for a state is denoted as σ2(s). During exploration
actions are picked randomly with a distribution that is
proportional to σ2(s). If a state-action pair in Q has not
been updated more that σ2

n times the variance is set to a
large number, σ2

inf . This method assures that exploitation
will not take place until each state-action pair has been tried
σ2
n times and that the variance on the estimated Q values for

each state-action pair is below σ2
th.

IV. EXAMPLES

The efficacy of the learning algorithm from Section III is
demonstrate on two systems in this section. One system is a
simulated system and one is a real robotic system.

A. Example Simulated System

We demonstrate the ability of our learning algorithm
on the nonholonomic integrator [20] known as “Brockett’s
system” [21]. Brockett’s system is an ideal example system
to test and demonstrate the learning algorithm outlined in
Section III because it is one of the simplest systems that fits
the model defined in Section II. In addition, due to the so-
called topological obstruction there is no continuous control
law to stabilize Brockett’s system [21]. The dynamics of
Brockett’s system are

f(x) = [u1, u2, xI1u2 − xI2u1]T, (11)

where u ∈ R2, xI ∈ R2, and xE ∈ R. Brockett’s system is
a surprisingly rich system given its innocuous appearance.

For this system, we define the primitive controllers such
that they move the internal state, xI , with unit magnitude.
The direction for each controller is random and is drawn
from eight uniform random distributions. The domain of
these distributions are each equal to one-eighth partitions of
the unit circle, which guarantees that the condition in (3) is
satisfied. We use 32 controllers and set the bounds on xI as
xImin = [−1,−1]T and xImax = [1, 1]T.

Lastly, we select four boundaries (η = 4) for the learning
algorithm. The directions of the boundaries are fixed to d1 =
0, d2 = π/2, d3 = π and d4 = 3π/2. The origin’s of the
boundaries, oi, are chosen randomly such the constraint that
D̄ is convex is satisfied.

From (11) it is seen that for this example system m =
2, nI = 2, nE = 1, n = 3, η = 4, and Q is a 4 × 32
matrix. The reward function is defined as R(xE , u) = dxE

dt .
The parameters used for the learning algorithm were found
empirically and are as follows: α = 0.75, γ = 0.25, c = 0.1,
σ2
n = 3, σ2

th = 0.0252, and σ2
inf = 102. To simulate the

system the algorithm shown in Algorithm 1 is executed in
Matlab.

Using this learning algorithm we were able to learn the
optimal control sequence and boundary locations given the
setup described above. Results of the learning algorithm are
shown in Figure 3. It is known that the optimal continuous
controller for Brockett’s system is sinusoidal of the form[

u1(t)
u2(t)

]
=

[
cos(λt) − sin(λt)
sin(λt) cos(λt)

] [
u1(0)
u2(0)

]
, (12)

where λ and u(0) can be solved for given initial and desired
final states of the system [21]. We compared the external
state value after running both the optimal control law in
(12) and the control law learned with our learning algo-
rithm. After running 100 trials the average value computed
from (9) for the learned controller is 90.3%(±3.8%) of
the value computed using optimal controller. If we use 64
primitive controllers and 8 boundaries the average increases
to 96.1%(±2.7%). The results of an experiment using the
learning algorithm (described in Section III) on the Brock-
ett’s system are shown in Figure 3.

In the experiment shown in Figure 3 the states are all
initialized to zero. It can be seen that during the first portion
of this experiment (time 0 to 220) the learning algorithm

−1

0

1
Internal States

x I1
 &

 x
I2

xI1
xI2

−1
0
1

R
(x

E,u
)

0
100
200

x E

External State and Reward Value

xE
R(xE,u)

0
20
40

ξ

Control State and Boundary State

1
5
9 β

ξ
β

0 100 200 300 400 500
10−4

10−3

10−2

Time

Max Variance in Q Values

m
ax

(σ
2 (s

))

max(σ2(s))
σ2

th

Fig. 3. These plots show the results of running the learning algorithm on
Brockett’s system. Top: plot of the internal state components, xI1 (dark blue
line) and xI2 (light green line), verses time. The internal state constraints
are also shown (black dashed lines). Second: plot of the external state and
reward, xE (dark orange line) and R(xE , u) (light blue line), respectively,
verses time. Third: plot of the control state and boundary state, ξ (dark
pink line) and β (light yellow line), respectively, verses time. Bottom: plot
of the maximum variance in the Q values for a given state, max(σ2(s))
(dark purple line), verses time. The variance threshold for deciding between
exploration and exploitation is also shown (solid black line). In all the plots
it is shown when the learning algorithm is exploring or exploiting with the
dark red and light green marks, respectively. The boundary locations are
implicitly shown in the top plot by the envelope of the internal states

is only exploring. During exploration the control state is
random and the boundaries locations are moving but not
in a consistent direction. In addition, the external state and
reward value have an average output of zero. The first time
exploitation takes place is when the time equals 220, which
can be seen in the bottom plot because max(σ2(s)) falls
below σ2

th. Exploration and exploitation trade off for the
middle portion of the experiment (time 220 to 420). In
the last portion of the experiment only exploitation takes
place (time 420 to 600). The control state and boundary
state settle into a repeating pattern and the value of xE
quickly increases. Note that even after the time when only
exploitation is taking place (time of 420) the boundaries are
still moving. The boundaries are moving towards positions
that give maximum reward. The boundaries settle at the
limits of xI and the average reward value stops increasing.

B. Physical Robotic System

In addition to running our learning algorithm on a simu-
lated system, we tested the algorithm on a physical robotic
system. A photograph of this robot is shown in Figure 1.
This robot consists of a body and two moveable appendages.
Each appendage has only one rotational degree of freedom,
which limits the robot to moving along a straight line. The
objective of the robot is to move as far along that line as
possible. The robot must “scoot” because it is impossible for
the appendages to lose contact with the ground. Locomotion
is only possible with differences in frictional forces from

Fig. 4. (Top) The first plot shows the physical robot learning to move
forward. The forward progress is shown (dark blue line with plus sign
markers) as well as when the robot is exploring (dark red line) and exploiting
(light green line). (Bottom) The second plot shows the robots movements
after learning how to move both forward (blue line with plus sign marks)
and backwards (purple line with circle marks).

the two appendages and the ground. This complexity makes
conceptualizing the necessary sequence of movements for
forward progress difficult and not intuitive.

Instead of attempting to design the sequence of actuations
for the robot, it learns them with our learning algorithm. The
internal state, xI , are the positions of its two appendages and
the external state, xE , is the distance from the origin. The
primitive controllers are all possible combinations of moving
the appendages up, down, and not at all. However, the case
when both are not moving is not included as a primitive
controller. This makes eight possibilities, therefore k = 8.
The boundaries are the same as in the simulated example
(Section IV-A), thus η = 4.

Using the learning algorithm presented in Section III,
the robot is able to learn the necessary movements to
move forward and backward. After running the learning
algorithm several times, we observe that the robot learns
to move forward at approximately 1 cm/s and backwards at
approximates 0.25 cm/s. Plots of the robot’s movements are
shown in Figure 4 3.

V. CONCLUSION

This paper introduced a new algorithm to learn how
to switch between primitive controllers to maximize an
objective function for a particular type of hybrid system.
The controllers act directly on what is referred to as the
internal state, xI , and the objective function is based only
on what is referred to as the external state, xE . Switching
of controllers occurs at boundary conditions, which reside
only in xI ’s state-space. Learning which controller to use at
each boundary is achieved with Q-learning and the boundary

3A movie of the robot learning can be viewed at
http://gritslab.gatech.edu/home/2012/11/learning-to-locomote/.

locations are learned through gradient ascent. The capacity of
this learning algorithm is demonstrated on both a simulated
system and on a real robot. By learning boundary-action pairs
this algorithm mitigates the “curse of dimensionality”.

REFERENCES

[1] J. A. Bagnell and J. Schneider, “Autonomous helicopter control using
reinforcement learning policy search methods,” in Proceedings of
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1615–1620, 2001.

[2] N. Kohl and P. Stone, “Policy gradient reinforcement learning for
fast quadrupedal locomotion,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), pp. 2619–2624,
2004.

[3] T. Hester, M. Quinlan, and P. Stone, “Generalized model learning
for reinforcement learning on a humanoid robot,” in Proceedings of
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2369–2374, IEEE, 2010.

[4] F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L. Righetti, and
S. Schaal, “Learning motion primitive goals for robust manipulation,”
in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 325–331, IEEE, 2011.

[5] S. Sastry and L. Crawford, “Learning Controllers for Complex Behav-
ioral Systems,” tech. rep., University of California at Berkeley, 1996.

[6] J. Z. Kolter, Z. Jackowski, and R. Tedrake, “Design, analysis and learn-
ing control of a fully actuated micro wind turbine,” in Proceedings of
the 2012 American Control Conference (ACC), June 2012.

[7] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning, The MIT Press, the
mit press ed., Mar. 1998.

[8] E. Theodorou, J. Buchli, and S. Schaal, “A Generalized Path Inte-
gral Control Approach to Reinforcement Learning,” The Journal of
Machine Learning Research, vol. 11, pp. 3137–3181, Mar. 2010.

[9] F. Kuo and I. Sloan, “Lifting the curse of dimensionality,” Notices of
the AMS, vol. 52, no. 11, pp. 1320–1328, 2005.

[10] R. Zoppoli, M. Sanguineti, and T. Parisini, “Can we cope with the
curse of dimensionality in optimal control by using neural approxi-
mators?,” in Proceedings of the 40th IEEE Conference on Decision
and Control, pp. 3540–3545, IEEE, 2001.

[11] A. Hinneburg and D. Keim, “Optimal grid-clustering: Towards break-
ing the curse of dimensionality in high-dimensional clustering,” in
Proceedings of 25th International Conference on Very Large Data
Bases, VLDB, pp. 506–517, 1999.

[12] W. McEneaney, “Curse-of-dimensionality free method for Bellman
PDEs with Hamiltonian written as maximum of quadratic forms,” in
Proceedings of the 44th IEEE Conference on Decision and Control,
and the European Control Conference (CDC-ECC)., pp. 42–47, IEEE,
2005.

[13] F. Mussa-Ivaldi, S. Giszter, and E. Bizzi, “Linear combinations of
primitives in vertebrate motor control,” Proceedings of the National
Academy of Sciences, vol. 91, no. 16, p. 7534, 1994.

[14] R. Beer, R. Quinn, H. Chiel, and R. Ritzmann, “Biologically inspired
approaches to robotics: What can we learn from insects?,” Communi-
cations of the ACM, vol. 40, no. 3, pp. 30–38, 1997.

[15] K. Thoroughman and R. Shadmehr, “Learning of action through
adaptive combination of motor primitives,” Nature, vol. 407, no. 6805,
p. 742, 2000.

[16] J. Kober and J. Peters, “Imitation and Reinforcement Learning,”
Robotics & Automation Magazine, IEEE, vol. 17, no. 2, pp. 55–62,
2010.

[17] R. Goebel, R. Sanfelice, and A. Teel, “Hybrid dynamical systems,”
IEEE Control Systems Magazine, vol. 29, pp. 28–93, Apr. 2009.

[18] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A
survey,” CoRR, vol. cs.AI/9605103, 1996.

[19] S. Thrun, “Efficient Exploration in Reinforcement Learning,” tech.
rep., School of Computer Science Carnegie Mellon University, Pitts-
burgh, Pennsylvania, Jan. 1992.

[20] R. Brockett, “Asymptotic Stability and Feedback Stabilization,” Dif-
ferential Geometric Control Theory, pp. 181–191, 1983.

[21] S. Sastry, Nonlinear systems. analysis, stability, and control, Springer
Verlag, June 1999.

