Risk-aware Path Planning Using Hirerachical
Constrained Markov Decision Processes

Seyedshams Feyzabadi and Stefano Carpin

Abstract— Next generation industrial plants will feature mo-
bile robots (e.g., autonomous forklifts) moving side by side with
humans. In these scenarios, robots must not only maximize
efficiency, but must also mitigate risks. In this paper we study
the problem of risk-aware path planning, i.e., the problem
of computing shortest paths in stochastic environments while
ensuring that average risk is bounded. Our method is based
on the framework of constrained Markov Decision Processes
(CMDP). To counterbalance the intrinsic computational com-
plexity of CMDPs, we propose a hierarchical method that is
suboptimal but obtains significant speedups. Simulation results
in factory-like environments illustrate how the hierarchical
method compares with the non hierarchical one.

I. INTRODUCTION

Motion planning is a fundamental problem for robots
moving in a variety of environments, including industrial
and manufacturing plants where robots and humans work
side by side. Due to the intrinsic computational complexity
of motion planning [5], a significant fraction of research has
aimed just at determining whether a path exists, without
attempting to optimize additional criteria. Recently, meth-
ods aiming at computing paths optimizing a given cost
function have been developed, e.g., RRT* [14]. A typical
cost function is path length, or energy consumption, but in
practical scenarios there is typically more than one objective.
Starting from a generic definition of risk, our objective is
to compute paths that simultaneously try to minimize one
objective function (e.g., path length) and contain one or more
additional measures (e.g., risks). One possible approach is
to combine these multiple metrics into a single objective
function and then apply one of the existing algorithms, like
RRT*. However, combining together heterogeneous quanti-
ties like path length and risks hinges on the introduction of
conversion factors that are not necessarily straightforward
to determine. In situations like these it is more intuitive to
optimize with respect to one objective function (say path
length), while imposing constraints on the others. Consider-
ing the inevitable disturbances affecting robot actions, this
standpoint directly leads to the formalism of Constrained
Markov Decision Processes (CMDP). While this topic is
well studied and understood, its natural limitation is found in

S. Feyzabadi and S. Carpin are with the School of Engineering,
University of California, Merced, CA, USA.

This work is supported by the National Institute of Standards and
Technology under cooperative agreement 70NANB12H143. Any opinions,
findings, and conclusions or recommendations expressed in these materials
are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the funding agencies of the
U.S. Government.

its computational complexity because even relatively simple
problem instances can generate linear programs with tens of
thousands of variables. For this reason, this method is not
appealing when recomputation may be frequently needed. In
this paper we experimentally explore the use of a hierarchical
CMDP model to tackle this problem. As in many related
hierarchical approaches, in order to gain in computational
efficiency it will be necessary to accept solutions that will be
in general suboptimal. The speedup however is remarkable
and allows to frequent updates of the computed path.

Our method is parametric with respect to the definition
of one or more risk functions defined as a function of the
environment and the action taken by the robot. For example,
if the robot is at a given location and is facing an obstacle,
moving towards the obstacle itself may result in a collision.
This specific combination of location and action can then
be associated with a risk value assessing the potential for a
detrimental outcome of the state/action pair (i.e., a collision).
On the contrary, if starting from the same location the robot
backs away from the obstacle, the associated risk would
be lower. Similarly, if the robot is operating in a wide
open area, the collision risk associated with basic maneuvers
can be considered negligible. These examples motivate our
assumption that risk is a function of state and action.

The remaining of the paper is organized as follows. In
Section II we discuss related work. Section III summarizes
basic facts in the area of MDPs and CMDPs. The hierarchical
algorithm is presented in section IV. Simulations evidencing
strengths and weaknesses of the proposed method are dis-
cussed in section V, whereas conclusions and directions for
future work are presented in section VI

II. RELATED WORK

Robot motion planning has been extensively studied in the
last decades and related literature is vast [6], [15]. In motion
planning it has been customary to assume that the state
(configuration) of the robot is known. Due to the inherent
complexity of the problem, most efforts have been directed
towards the development of algorithms capable of efficiently
determining if a solution exists, whereas research where
risk is taken into account has been much more limited. A
recent paper by Sukhatme and collaborators [8] considers
the problem of risk-aware motion planning for autonomous
underwater vehicles. Two algorithms are presented. The
first considers minimizing the expected risk of a plan and
performs an graph search over a weighted graph where edges
are labeled with expected risk. The second algorithm uses
Markov Decision Processes to account for uncertainty in

the motion model. Other works in the area of risk aware
motion planning and hazard avoidance include [10] and and
[16] where classic informed search techniques and genetic
algorithms are used.

Literature in the area of hierarchical MDPs is rich too.
One of the seminal approaches was presented in [17] where
a hierarchical decomposition was proposed with the objective
of studying a decision making problem at different time
scales. Hierarchical methods have often been proposed with
the objective of computing solutions to small subproblems
that could be then reused as building blocks for solutions
to larger problems. Hauskrecht et al., instead, embrace a
standpoint similar to ours, i.e., they pursue a hierarchical
approach with the objective of compressing the state space
and then decreasing the time spent to compute a solution
[13]. Other solutions were proposed in [3], [7], [12].

Constrained Markov Decision Processes have been used
in numerous engineering domains [2], but their application
in the area of robotics and automation is limited [9]. To
the best of our knowledge, the use of hierarchical methods
based on CMDPs for risk aware path planning appears to be
an unexplored area, and in general hierarchical CMDPs have
not been extensively investigated.

III. CONSTRAINED MARKOV DECISION PROCESSES

In this section we briefly summarize basic results and
notation regarding Constrained Markov Decision Processes.

A. Total Cost Markov Decision Processes

Markov Decision Processes (MDPs) are used to solve
decision making problems where the state is observable and
the outcome of actions is stochastic [4]. We consider the
simplest case of finite MDPs evolving in discrete time. A
finite, stationary MDP is defined by a quadruple X, U, P, c:

o X is a finite state space with n elements. The state at
time t is indicated by the random variable X;.

e U is a collection of n finite sets, one for each state in
X. U(x) is the set of actions that can be applied in state
x. A, is the action taken at time t¢.

e P is the transition probability function. We define
Py, = P(Xi11 = y|X; = x, Ay = a) as the probability
that the state transitions from x to y when action a is
taken. This probability is assumed to be stationary.

e c: X xU — Ry is a cost function. ¢(z, a) is the cost
incurred when applying action a while in state z.

A policy 7 is a rule defining the action to be taken at time
t. Given the stochastic nature of state transitions, for a given
initial state xg, a policy 7 induces a discrete time stochastic
process ¢ = (X;, A;), where X, is the random variable for
the state at time t and A; is the random variable for the
action at time ¢. Through the function ¢, different costs can
be associated to every realization of the stochastic process
¢. Common choices include 1) finite horizon total cost; 2)
infinite horizon discounted cost; 3) infinite horizon average
cost; and 4) infinite horizon total cost. For the applications
considered in this paper, infinite horizon total cost are the
most relevant, so in the following we exclusively limit our

discussion to this case. For the definition of total cost, it
is necessary to assume that the MDP is transient and make
some assumptions about the costs, otherwise the total cost
defined in the following may not exist. An MDP is transient
if the state space X can be partitioned into two sets X’ and
M such that for every policy 7:

1) >, P™(X;=z) < oo for every x € X';

2) Pp, =0 foreachz € M and y € X',
where P™(X; = z) is the probability that X; = x when
following policy 7. We assume c(x,a) = 0 for each z €
M, a € U(z). Under these conditions the total cost of 7 is

c(7r) = Z EWC(Xt, At)

where E is the expectation induced by the policy 7. Note
that, because we assumed that the MDP is transient, the
above cost is well defined and is finite. For a given transient
MDP, the optimal policy is therefore defined as follows:

7% = arg min ¢(m).
™

Total cost MDPs are relevant for engineering applications be-
cause they model systems where the time taken to complete
a given task (modeled by the event X; € X) is not known
upfront, but is known to be finite. This is in contrast to the
case of finite horizon total cost, where one has to assume the
completion time is known beforehand, and infinite horizon
discounted cost, where one assumes the process evolves
indefinitely. In a path planning scenario, one is interested
in designing motion policies ensuring the goal location is
reached in finite time, but due to the stochasticity in the
motion model the precise time cannot be anticipated. Then,
infinite horizon total cost is the most appropriate model.

It is well known that for MDPs there always exists an
optimal, stationary, deterministic, Markov policy. Therefore
the optimal policy can be described by a function 7 : X — U
mapping states into action. 7 is deterministic because it
associates just one action to every state, it is stationary
because it does not depend on time, and it is Markov because
it depends only on the current state and not on the previous
history. Note also that the policy depends on the partition
X', M, but is independent from the initial state Xy. Various
methods have been proposed to compute optimal policies,
including formulations based on linear programming, and
iterative algorithms like value iteration and policy iteration.
From a practical point of view, policy iteration and value
iteration are the algorithms of choice when solving MDPs.

B. Total Cost Constrained Markov Decision Processes

Total costs Constrained Markov Decision Processes
(CMDP) extend the MDP model by including additional
costs subject to constraints. A CMPD is defined by
X,U,P,c,d;, D; where X, U, P,c are defined as for the
MDP case and

e di : X xU — Ry, 1 < < k are k additional cost
functions. d;(x,a) is the ith additional cost incurred
when applying action a in state z.

e D; > 0 are k positive constants to constrain the
additional costs induced by the functions d; and defined
in the following.

Despite the similarity between the definition of MDP and
CMDP some notable differences exist (the reader is referred
to [1] for a comprehensive discussion). The two main ones
are the following. First, the optimal policy (irrespectively of
the cost model), may in general require randomization (as
opposed to the deterministic case for MDPs). Second, the
optimal policy is not independent from the initial state and
it in general depends on the mass distribution defining the
initial state. The initial mass distribution will be indicated
by the function S(z) = P(Xo = z). A transient total
cost CMDP is defined like the transient MDP, but the first
condition is substituted by the following

Y Pi(Xp =) < oo
t

where PZ(X; = z) indicates the probability that state X;
is when following policy 7 and under the assumption
that the initial state X, is distributed according to (5. In
order to define the total cost, we furthermore need to assume
di(x,a) = 0 for each x,a and each d;. Total costs can then
be defined as follows (note the dependency on both the policy
7 and the initial distribution)

C(Tl', 6) = Z Eﬂ',ﬂC(Xta At)

di(m, B) = Z Ew.ﬂC(Xt, Ay).

Solving a CMDP means determining the optimal policy
for the following constrained optimization problem:

Optimization problem CMDPOPT
7" = arg min ¢(m, 8)
S.t. dz(ﬂ',ﬂ) S Di, 1 S 1 S k.

Another major difference between MDPs and CMDPs is
found in the solving algorithms. CMDPs cannot be solved us-
ing iterative algorithms like value iteration or policy iteration.
Instead, the method of choice is solving a linear program
defined as follows. Let K = {(z,a),z € X',;a € U(x)}
and let p(x,a) be |K| optimization variables associated to
each element in /. A fundamental theorem in the theory of
CMDPs (see [1]) establishes that the optimization problem
CMDPOPT has a solution if and only if the following linear
program is feasible:

min } plz,a)c(,a) (1)

(z,a)eK
s.t Z plxz,a)d;(z,a) < D; 1<i<k
(z,a)eK
> p(y,a)(8:(y) — Py,) = Blx) Vo € X'
(y,a)EK

p(x,a) >0 Y(z,a) € K.

Moreover, the optimal solution to the linear program
induces an optimal stationary policy for the CMDP. The
optimal policy is defined as

p(z,a)

_ ARG X acU@), @)
ZaeA(x) p(x7a’) ()

™ (z,a) =
where 7*(x, a) is the probability of taking action a when
in state x. The policy can be arbitrarily defined when
> acA(z) P(x,a) = 0. Note that this policy is stationary and
Markov (depends only on = and not on past history), but it is
not deterministic, as evident from its definition. We conclude
this short recap on CMDPs remarking that the constraint on
d; are satisfied in expectation, i.e., not every realization of (
will satisfy the constraint, but the constraint will be satisfied
in expectation.

C. Connection to risk aware path planning

As discussed in Section II, MDPs have been used for risk
aware motion planning in the past and recently, e.g., in [8].
However, relying only on MDPs is limiting for the following
reasons. First, in practical applications one is often interested
in performance measures combining multiple criteria, like
e.g., finding the shortest path subject to a bound on the
risk, or, alternatively, finding the path with the lowest risk
subject to a bound on the length. These practically relevant
objectives cannot be accommodated using MDPs only, but
can be naturally formulated as CMDPs problems. Moreover,
the CMDP framework allows to consider an arbitrary number
of additional constraints. One can then for example seek the
shortest path subject to different bounds to different types of
risk. In addition, both ¢ and d; are defined as functions of
state and action. This allows to model risks that are function
of the state only, or of the state and action. For example, in an
industrial scenario where autonomous forklifts move around
in an environment shared with humans, one can associate
higher risk to areas where human presence is frequent. In this
case, risk would be a function of the state only, assuming that
the state includes the location of the forklift. On the other
hand, one could also define risk functions that are function
of both state and action. For example, one could define a risk
function d; depending on both components of (z, a). For the
same state x, such function could assign a high risk to an
action moving the robot towards an obstacle, and a lower
risk to a different action moving away from the obstacle. In
this way one can manage problems similar to the region of
inevitable collision [11].

IV. PLANNING WITH HIERARCHICAL CMDPSs

One of the well known limitations of MDPs and CMDPs
relies on their computational complexity. CMDPs, in par-
ticular, require the solution of linear program whose size
may quickly become unmanageable (see section V for some
numbers). For this reason, hierarchical approaches can be a
viable alternative, as long as there is a clear understanding
that this will lead to suboptimal solutions. Hierarchical
methods in the area of MDPs have been practiced in the

past mainly with the objective of determining policies that
can be reused, see e.g., [13]. We instead pursue hierarchical
solutions with the objective of reducing the computational
time. In particular, we are interested in reducing the compu-
tational effort with the eventual objective of enabling reactive
replanning when changes in the environment are detected by
the robot. Changes may for example concern a rearrangement
of the obstacles on the floor plan, or a person moving from
one area to another, with the consequent necessity to update
the associated risk.

Our approach is based on the idea of aggregate states (see
[4], Vol 1, pg. 321), an idea that has been proposed for
MDPs, but needs to be adapted for CMDPs. In the following
we make the assumption that the action set U (z) is identical
for all states. This is consistent with the application scenario
we present in the following and can also be imposed in the
general case.Without lack of generality, in the interest of
simplicity we furthermore assume that 5(z) = 1 for just one
state and is O for all other states, and we assume there is
just one goal state. These two states will be indicated as S
(start) and G (goal).

The general idea is as follows. We start from a given
CMDP with a large state space and build a hierarchical
version through state aggregation. The aggregate CMDP
is then solved and a policy over the aggregate states is
determined. In order to map the high level policy back into
actions that can be executed in the original CMDP, a smaller
CMDP is solved for each aggregate state traversed by the
high level policy. Since action execution is stochastic, one
cannot anticipate the precise sequence of aggregate states that
will be traversed when the policy is followed. Therefore the
solution of the smaller CMDPs is interleaved with execution,
because the precise sequence of traversed aggregate states
cannot be predicted upfront (see Figure 1).

Aggregate CMDP Aggregate Policy

/S = /o> 7
Solve Z
99 I CMDP) =/=> /2
G = /Ga
Solve CMDP
State Aggregation inside aggregate
states
=77 777
ST b
Z
77 7
7
,.'/,
£ 770G

Initial CMDP Initial CMDP

Fig. 1: Large CMDPs can be solved through aggregation.
Note that for CMDPs both the start and the goal state (S
and G in the figure) need to be specified, as opposed to the
MDP case where an optimal policy is specific by the goal
state only.

In the following, quantities with the subscript A refer
to the aggregate CMDP. First, to define the state space
X4 of the aggregate CMDP we partition the state space
X into a set of m aggregate states Ay, As,..., A,,. Each
aggregate state represents a set of states in the original

CMDP. The problem of how to split X into X 4 is a long
standing issue. A rule of thumb is to group together states
with similar costs, when this is possible. In our application,
targeting path planning in planar environments this calls to
grouping together states that are nearby in a metric sense.
Indeed, nearby states have usually comparable distances
to the goal location. Moreover, it is reasonable to assume
that risks have a local dependency on the state, so nearby
states (or state/action pairs) have comparable risks. The
problem of how to partition X using different criteria is left
for future investigation. Two quantities called aggregation
and disaggregation probabilities are defined to represent the
aggregation. The aggregation probability w;; = 1 if x; € At
and O otherwise. The disaggregation probability is gs; = Al A I
if ; € A, and 0 otherwise. These definitions correspond to
the so-called hard assignment, i.e., every state in the original
CMDP is assigned to one and only one aggregate state. Soft
assignments are possible too, with states possibly belonging
to multiple aggregate states, but this extension is left to future
investigation. The start and goal states S, G in the original
CMDP obviously induce start and goal states S4 and G4 in
the aggregate CMDP because S and G belong to one and
only aggregate state.

Next, it is necessary to define the action set, transition
probabilities, and the costs c4 and d; 4 for the aggregate
CMDP. Since we assumed all states in the original CMDP
had the same action set U, it follows that we can assume
all states in the aggregate CMDP also have the same action
set, and this is also U. Every action executed in a certain
aggregate state A; has an intended effect in terms of state
transition (e.g., this can be the state with towards which
there is the highest transition probability). The function
NextState(A;, u), used in the implementation of algorithm 1
returns such state. Moreover, we define the frontier between
macrostate A; and A,, as the set of states in A,, that can be
reached in one transition from one state in A;. Transition
probabilities between state A; and A; in the aggregate
CMDP are then defined as follows:

FnPIDIRN0

zeA JEAL

Pa_a,(u

Similar definitions can be given for the costs:

(As7u Z xh
|AS| 1€EAS

di A(As, u) = |A | > di(wi,u
1€A;

Algorithm 1 presents an algorithmic sketch of the idea
we described. The algorithm starts creating and solving
the aggregate CMDP (line 2 and 3). Then, it extracts the
optimal policy for the aggregate CMDP and starts to follow
it (while loop). Inside the loop, the CMDPs for the aggregate
states are solved on demand, i.e., the CMDP for an aggregate
state A; is created and solved only when the state enters the
corresponding aggregate state. Note also that, because of the

Data: CMDP = (X, U, P, ¢,d;, D;, S,G)
Build CMDP (X 4,U4, Py, ¢q, di,a,Dia,Sa, Ga);
Solve aggregate CMDP (Opt probl. 1);
Extract optimal aggregate policy 7% (Eq. 2);
T+ S
while = # G do
Determine state A; for which w,; = 1;
if A, = Ag then
| GoalSet «+ {G}
end
10 else
11 u < 7 (Ae);
12 A,, + NextState(A;, u);
13 GoalSet + Frontier(A;, A,)
14 end
15 71, <SolveLocal CMDP(x, GoalSet);
16 repeat
17 Follow policy 7y, and update x
18 until = reaches GoalSet or exits Ay;
19 end

Algorithm 1: Algorithmic Sketch

o 0 N AN R W N -

unpredictability in the motion of the robot, it is possible
that when the robot tries moving from macro state A; to
A; it instead reaches a different macro state A, (think for
example to the case of a robot moving along the boundary
of two macro states). This event does not create a problem.
A policy over the macro states is preliminarily computed,
so even if the state deviates from the intended trajectory the
corresponding high-level policy is always available. Next,
CMDPs for the macro states are solved on the fly, so an
unpredicted transition into a different macro state can be
dealt with by the algorithm. Note also that the algorithm
does not solve CMDPs for the macro states not visited during
the main while loop. The interleaved planning and execution
strategy is essential to limit the computational cost.

V. EXPERIMENTAL EVALUATION
A. Setup

In this section we present some experiments outlining the
advantages and limitations of the hierarchical decomposition.
Figure 2 shows the floorplans of tho factories retrieved from
the web, with white pixels encoding free space and black
pixels indicating obstacles. The same picture shows two
corresponding risk maps. For sake of simplicity and ease
of visualization, we assumed that risk is a function of the
state only, and risk is defined as distance from the closest
obstacle. We consider just one type of risk, but, as evident
from the discussion in sections III and IV, more than one
risk can be included. Both maps are divided into equally
sized cells. The first maps consist of 78 x 272 cells, whereas
the second one include 111 x 270 cells. We assume that the
robot fits inside one of the cells, and furthermore assume
4-connectivity, i.e., from every cell the robot can move
up, down, left, right, assuming the neighboring cell is not

occupied by an obstacle. These numbers define the number
of variables in the linear program given in Eq. 1 and shows
why a hierarchical approach is necessary. For Factory 1 the
linear program has 54542 variables, whereas for Factory 2
it has 114862 variables. Evidently, the time needed to setup
and solve these large optimization problems prevents rapid
replanning when needed, thus showing the necessity to go
for a hierarchical approach. Risk is here defined as the sum
of the risks accrued throughout the path, i.e., it is the sum
of the risks of the traversed cells.

The stochastic motion model is defined as follows. When
the robot executes action u from state x trying to reach state y
(say moving up on the grid), it succeeds with probability 0.8
and fails with probability 0.2. When it fails, it may remain in
x or move to any of the free cells adjacent to = and different
from y (all with equal probability).

B. Numerical evaluation

We contrast the performance of the hierarchical approach
with the non hierarchical one. In particular, we compare the
time spent to compute a solution, the average path length
and the average risk. In order to compare the time spent to
compute a solution, for the non hierarchical approach we
consider the time spent solving the linear program given in
Eq. 1. For the hierarchical method we give the sum of the
time spent solving all instances of linear programs Eq. 1 (see
Algorithm 1). In both cases the linear program is solved
using Matlab’s builtin command to solve linear programs
(Linprog — in particular we use the interior-point method).
We compare the time spent solving instances of the linear
program because this is where most of the time is spent,
and the remaining time (e.g., setting up the matrices for
the linear program) strongly depends on the characteristics
of the used programming language (Matlab, in this case).
Moreover, with respect to timing, emphasis should be given
to the ratios between hierarchical and non-hierarchical, and
not to the absolute values. For each environment we consider
five different couples of start/goal points and we test both
the hierarchical and non-hierarchical methods on the same
problem instances. For the case Factory 1, the hierarchical
CMDP is obtained splitting the original grid into a coarser
6 x 8 grid with , whereas Factory 2 was divided into a 9 x 10
grid.

In both cases we use two different methods. In the first
approach, the aim is to minimize risk while satisfying a
constraint on path length. For these two particular maps,
the minimum distance between the chosen start/goal point
pairs is the Manhattan distance. We set the constraint on path
length to be 40 % higher than the Manhattan distance. In the
second approach we minimize path length while keeping a
constraint on risk. This dual setup shows the flexibility of
the CMDP approach. In certain situations it may be simpler
to estimate and then bound one cost (e.g., path length) and
optimize for the other (e.g., risk), whereas in other scenarios
the roles of the costs may swap. Figure 3 shows two sample
paths produced by these two approaches. The first picture
shows the solution obtained while trying to minimize path

-
Looo [| |

Em— - — T
I i e —— I N ..

(a) Factory 1 map

Bl r

'
Hs ap ama H

1
|

*

r
r
I'—||-
f—

-1r -
e
N R

(c) Factory 2 map

(b) Factory 1 risk map

(d) Factory 2 risk map

Fig. 2: The two test environment used for experimental evaluation. The left subfigures show the structure of the environment,
whereas the right subfigures show the associated risk maps (warmer colors indicate riskier states).

length. The second instead shows a path to minimize risk.
Table I and II show the performance of the non-hierarchical
methods for the five test cases in the two environments
(“MC” stands for “Minimizing Cost, Having a Bound on
Risk”. “MR” stands for “Minimizing Risk, Having a Bound
on Cost”) whereas table III and IV show the performance
of the hierarchical methods for the five test cases in the
two environments. Statistics for path length and risk are
computed on the basis of 100 repeated trials.

This preliminary round of simulations, although limited,
allows to draw some interesting insights. Comparing tables
I with III and II with IV the advantage (and limitations) of
the hierarchical approach emerges. The speedup, in terms of
computational time, is large and varies from a factor of 15
to a factor of 500. When comparing path length between the
hierarchical and the non-hierarchical solution, no substantial
loss is observed. The situation less favorable when the risk
metric is considered. While for the first environment results
are satisfactory, the the second environment a noticeable
performance deterioration is observed in six out of ten cases.
We believe that this problem happens due to an improper
splitting of the environment into macro-cells. Macro-cells
need to have similar characteristics, otherwise choosing a
high level path is not effective enough to help reduce risk
on low level path. We guess creating macro-cells made of
cells having similar risk values will improve this part of the
algorithm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the problem of risk
aware path planning. Risk aware path planning is a relevant
problem when robots and humans operate in the same envi-
ronment, for example in the envisioned next generation pro-
duction plants, where numerous autonomous moving robots
will share the same working environments with humans.
Our tenet is that in this domain the use of Constrained
Markov Decision Process offers an interesting, yet under
explored tool to combine together multiple objectives, e.g.,
paths that are short and at the same time meet constraints

(a) Minimizing Cost while having a Bound on Risk

(b) Minimizing Risk while having a Bound on Cost

Fig. 3: Two sample paths from the upper left corner to the
lower right corner in the Factory 1 environment: Figure (a)
shows the result of minimizing the path length while the
bounding risk. Figure (b) shows the result of an attempt to
minimize risk while bounding path length.

on the acceptable risk. In order to counter the inherent com-
plexity of CMDPs, we have studied a hierarchical method
that produces suboptimal solutions, but exhibits a notable
speedup while maintaining a comparable performance. There
exist numerous areas for future work in this domain. First,
we will study whether it is possible to derive analytic,
informative bounds to anticipate the loss of performance in
the hierarchical approach. While this problem is in general
hard, our objective is to focus on specific instances of the
problem (e.g., similar to those presented in Section V) to

Test Case Time(s) Avg. Length Std Length Avg. Risk Std Risk
MC MR MC MR MC | MR MC MR MC | MR
Case 1 532 | 13473 | 4139 | 446.6 | 17.0 | 242 | 1682.8 | 1326.6 | 94.7 | 77.2
Case 2 753 | 1226.8 | 104.0 | 1144 | 10.6 | 11.9 | 416.0 311.3 | 709 | 339
Case 3 72.0 58.3 1049 | 1142 | 8.8 10.6 | 486.4 351.0 | 435 | 35.1
Case 4 85.7 67.5 3723 | 388.4 | 17.7 | 19.5 | 14622 | 12829 | 81.2 | 749
Case 5 49.5 | 1351.3 | 142.7 | 176.8 | 10.5 | 154 | 558.2 436.2 | 57.7 | 51.0

TABLE I: Performance of the non-hierarchical method on Factory 1.

Test Case Time(s) Avg. Length Std Length Avg. Risk Std Risk
MC MR MC MR MC | MR MC MR MC MR
Case 1 307.0 | 258.8 | 487.1 | 508.7 | 22.6 | 24.2 | 22949 | 1760.3 | 362.5 | 129.4
Case 2 350.1 | 13432 | 3619 | 4147 | 17.5 | 23.6 | 1513.4 | 1132.1 | 176.0 | 105.2
Case 3 237.7 | 3899 | 156.7 | 1644 | 129 | 140 | 685.6 4852 | 1456 | 67.7
Case 4 303.0 | 1957 | 172.8 | 180.9 | 16.4 | 144 | 273.9 230.6 49.5 339
Case 5 283.4 | 369.2 | 2642 | 2855 | 12.6 | 158 | 14064 | 959.6 | 210.1 | 99.3

TABLE II: Performance of the non-hierarchical method on Factory 2.

Test Case Time(s) Avg. Length Std Length Avg. Risk Std Risk
MC | MR MC MR MC | MR MC MR MC MR
Case 1 39 | 125 | 4444 | 4454 | 18.1 | 22.4 | 21349 | 18195 | 96.6 | 1123
Case 2 2.0 2.6 108.7 | 1135 | 9.9 11.2 | 465.0 405.6 | 71.8 | 60.7
Case 3 3.1 5.1 1233 | 1345 | 11.3 | 14.1 560.9 505.1 539 | 588
Case 4 7.9 7.1 395.2 | 3899 | 206 | 17.3 | 1630.5 | 1435.8 | 91.8 | 91.6
Case 5 2.3 2.5 147.6 | 1503 | 143 | 11.7 | 595.4 548.1 | 779 | 49.0

TABLE III: Performance of the hierarchical method on Factory 1.

Test Case Time(s) Avg. Length Std Length Avg. Risk Std Risk
MC | MR MC MR MC | MR MC MR MC MR
Case 1 82 | 122 | 495.6 | 508.3 | 21.2 | 243 | 6561.4 | 2908.1 | 581.2 | 283.4
Case 2 79 10.4 | 369.8 | 387.6 | 17.5 | 20.9 | 4606.8 | 1893.6 | 428.8 | 228.04
Case 3 9.9 7.7 165.0 | 167.4 | 12.8 | 14.6 | 901.7 1139.7 | 135.0 | 233.7
Case 4 6.6 8.1 1745 | 186.7 | 11.3 | 17.2 | 495.1 274.4 58.6 444
Case 5 105 | 11.5 | 2714 | 292.6 | 12.5 | 17.2 | 1969.9 | 14454 | 156.8 132.3

TABLE IV: Performance of the hierarchical method on Factory 2.

exploit the inherent structure of the problem to derive a
bound. Another area for future investigation is to determine
how to map in a principled way risk bounds between the flat
and the hierarchical CMDPs. Moreover, we are exploring
different methods to cluster states to mitigate some of the
problems emerged in the simulated runs. In the long term,
our goal is to test this framework on a real robotic platform.

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[8]

REFERENCES

E. Altman. Constrained Markov decision processes with total cost
criteria: Occupation measures and primal LP. Mathematical methods
of operations research, 43:45-72, 1996.

E. Altman. Constrained Markov Decision Processes.
modeling. Chapman & Hall/CRC, 1999.

J.L. Barry, L.P. Kaelbling, and T. Lozano-Pérez. Deth*: Approximate
hierarchical solution of large markov decision processes. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2011.

D. P. Bertsekas. Dynamic Programming & Optimal Control, volume
1 and 2. Athena Scientific, 2005.

J. Canny. The Complexity of Robot Motion Planning. MIT Press,
1988.

H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E.
Kavraki, and S. Thrun. Principles of robot motion. MIT Press, 2005.
P. Dai, M.D.S. Weld, and J. Goldsmith. Topological value iteration
algorithms. Journal of Artificial Intelligence Research, 42:181-209,
2011.

A. A. de Menezes Pereira, J. Binney, G. A. Hollinger, and G S.
Sukhatme. Risk-aware path planning for autonomous underwater
vehicles using predictive ocean models. Journal of Field Robotics,
30(5):741-762, Oct 2013.

Stochastic

[9

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

] X. Ding, A. Pinto, and A. Surana. Strategic Planning under Un-
certainties via Constrained Markov Decision Processes. In IEEE
International Conference on Robotics and Automation, pages 4568—
4575. IEEE, 2013.

L. De Filippis, G. Guglieri, and F. Quagliotti. A minimum risk
approach for path planning on UAVs. Journal of Intelligent Robotic
Systems, 61(203-219), 2011.

T. Fraichard and H. Asama. Inevitable collision states — a step towards
safer robots? Advanced Robotics, 18(10):875-884, 2004.

C. Guestrin and G. Gordon. Distributed planning in hierarchical
factored mdps. In Proceedings of the Eighteenth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI-02), pages
197-206, 2002.

M. Hauskrecht, N. Meuleau, L.P. Kaelbling, T. Dean, and C. Boutilier.
Hierarchical solution of Markov decision processes using macro-
actions. In Proceedings of the Fourteenth Conference Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI-98), pages 220—
229, 1998.

S. Karaman and E. Frazzoli.
mal motion planning.
30(7):846-894, 2011.
S.M. LaValle. Planning algorithms. Cambridge academic press, 2006.
A.R. Soltani, H. Tawfik, J.Y. Goulermas, and T. Fernando. Path
planning in construction sites: performance evaluation of the Dijskstra,
A*, and GA search algorithms. Advanced engineering informatics,
16:291-303, 2002.

R.S. Sutton. TD models: modeling the world at a mixture of time
scales. In Proceedings of the International Conference on Machine
Learning, pages 531-539, 1995.

Sampling-based algorithms for opti-
International Journal of Robotic Research,

