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Abstract— This paper presents an estimation and control
algorithm for an aerial manipulator using a hexacopter with
a 2-DOF robotic arm. The unknown parameters of a payload
are estimated by an on-line estimator based on parametrization
of the aerial manipulator dynamics. With the estimated mass
information and the augmented passivity-based controller, the
aerial manipulator can fly with the unknown object. Simulation
for an aerial manipulator is performed to compare estimation
performance between the proposed control algorithm and con-
ventional adaptive sliding mode controller. Experimental results
show a successful flight of a custom-made aerial manipulator
while the unknown parameters related to an additional payload
were estimated satisfactorily.

I. INTRODUCTION

Mobile manipulation is a key to many applications of
robotics such as construction sites, production lines and
space environments. Among them, aerial manipulation is
receiving attention for aerial transportation or inspection of
hard-to-reach structures due to the superior mobility in three
dimensional Euclidean space [1].

Aerial manipulation can be divided into two categories
based on the connection mechanism to a payload. The first
approaches suspend a payload via a cable [2]. In [2], they
developed a control logic for equilibrium of the payload
at a specific desired pose using three aerial manipulators.
However, the possible pose of a payload is limited. The
second approaches are to grasp and move the object by
using a robotic arm [3]–[6]. In [3], a dynamic model was
derived by the Euler-Lagrangian formulation and cartesian
impedance controller was designed for aerial manipulators.
A tracking control law for the end effector was designed
and tested in simulation based on decoupled Lagrangian
dynamics [4]. In [5], an aerial manipulator was developed
for remote safety inspection of industrial plants. In [6], they
custom-made an aerial manipulator with a 2-DOF robotic
arm and designed integral backstepping controller. However,
these papers do not consider the effect of unknown payload.

Handling of uncertain objects has been previously investi-
gated for stationary manipulators or ground robots. [7]–[10].
In [7,8], they presented an adaptive controller for a ground
robotic manipulator to handle an unknown object. Control of
a constrained ground manipulator with parameter uncertainty
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Fig. 1: Aerial manipulator using a hexacopter with a 2-DOF robotic
arm.

was shown in [9]. They designed an adaptive controller for
trajectory and force tracking problems. The mass and inertia
properties of a simple mobile robot are estimated by an
adaptive estimator in [10].

Research for aerial manipulators to handle an unknown
object is still rare [11]–[13]. In [11], an adaptive sliding
mode controller for an aerial manipulator was designed for
coping with the parametric uncertainties. They demonstrated
picking up and delivering an object with custom-made aerial
manipulator. However, there was no estimation results and
analysis of safe operation points for an unknown object. In
[12], they proposed trajectory optimization and control for a
quadrotor with the suspended payload. For handling a load,
they used conventional adaptive control as same with [7],
but this method is weak to noise or disturbances because
the adaptation rule only based on control error. In [13],
they designed an estimator of external generalized forces
acting on aerial robots. This algorithm is applicable for aerial
manipulator, but the performance for moving an unknown
object has not been demonstrated by experiments.

There are researches on control of mechanical manipu-
lators or aerial vehicles including estimation of unknown
mass [14,15]. In [14], they estimated the physical properties
of a mechanical manipulator using least-squares method
based on sensing of joint torque. However, this conventional
estimation approach cannot be applied to small aerial ma-
nipulators, because the payload limitation does not allow
to equip the heavy torque sensors.In [15], they developed
a quadrotor with a gripper and used batch least-square
method for estimating unknown mass using control input and
acceleration data only. The estimation algorithm therein was
designed for a quadrotor in hover or near-hover condition,
but the dynamics will become more complicated for an aerial
manipulator with a robotic arm.

The contributions of this paper can be summarized as
follows: First, we design an on-line parameter estimator
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Fig. 2: Configuration of the coordinates for the combined system
consisting of a hexacopter and a 2-DOF arm.

for the aerial manipulator. The unknown properties of a
payload are estimated by the parameter estimator based on
parametrization of the combined system, which considers a
hexcopter and a robotic arm as a unified system. Unlike [15],
the estimator does not depend on the flight condition. Second,
an augmented passivity-based controller is designed to sta-
bilize the aerial manipulator with the estimated parameters.
Third, we apply this control algorithm to our custom-made
aerial manipulator as shown in Fig. 1 and show feasibility
of the proposed control algorithm for the aerial manipulator
in the simulation and experiment.

This paper is structured as follows: in section II, we de-
scribe the dynamics of an aerial manipulator. The parameter
estimator and controller are designed in section III. Section
V presents results from experiments in which the aerial
manipulator estimates the unknown parameters of a payload
on the flight. Section VI contains concluding remarks.

II. DYNAMICS OF AERIAL MANIPULATOR

This section presents the dynamics of aerial manipulator.
The more detailed kinematic relations and equations of
motion can be found in our previous research [11].

A. Dynamics for the Combined System

Fig. 2 shows coordinated frames for the dynamic model of
an aerial manipulator. OI , Ob, Oi represent the inertial frame,
the bodyframe of the hexacopter and the bodyframe of link i,
respectively. The subscript i = 1, 2 denotes the link number.
Using the position of center of mass of the hexacopter in the
inertial frame p = [x, y, z]T , Euler angles of the hexacopter
Φ = [φ, θ, ψ]T and joint angles of the manipulator η =
[η1, η2]T , the dynamic model can be described based on the
following system state,

q =
[
pT ΦT ηT

]T
. (1)

The equations of motion of the combined system with the
state q can be derived as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (2)

where τ ∈ R8×1 is the control input, M(q) ∈ R8×8 is the
inertia matrix, C(q, q̇) ∈ R8×8 is the Coriolis matrix, and
G(q) ∈ R8×1 is the gravity term. Here, two elements of τ ,
i.e. τ(1) and τ(2), are used to generate the desired roll φd

2, pm2,lm
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cl

Fig. 3: An additional payload is attached to the end-effector.
(m1,m2,l,m2,p : mass of link 1, link 2, additional payload,
respectively)

and pitch angle θd. They are computed by the following rule:[
θd
φd

]
=

1

τ(3)

[
cos(ψ) sin(ψ)
sin(ψ) − cos(ψ)

] [
τ(1)
τ(2)

]
. (3)

This relation is derived based on the small roll and pitch
angle assumption.

B. System Parametrization
When the end effector grasps a single object, the physical

properties of link 2 change. Total mass of second link, m2

is changed by additional payload m2,p and initial mass of
second link m2,l, i.e. m2 = m2,l + m2,p as shown in Fig.
3. Also, if the additional payload is treated as a point mass,
then the change of moment of inertia is easily computed by
the parallel axis theorem [16]:

I∗y,2 = Iy,2 +m2,pl
2
2, (4)

where I∗y,2 is the changed moment of inertia with respect to
rotational axis of second link and l2 is length of second link.

Since m2,l and other physical information about hexa-
copter and link 1 are already known values, therefore, the
equation of motion is parameterized with respect to the
unknown mass m2 and the length of center of mass at link
2, lc. Here, m2 is the total mass of link 2 including the
unknown payload. In this case, we can separate M , C and
G into the matrices with known parameters and unknown
parameters:

M = M1 +m2M2 +m3M3 +m4M4

C = C1 +m2C2 +m3C3 +m4C4

G = G1 +m2G2 +m3G3. (5)

Here M1, C1 and G1 are the matrices with known physical
parameters and the others are the matrices with unknown
parameters, such as unknown mass m2 and m3 = m2lc,
m4 = m2l

2
c . Using these matrices (5), the dynamic equations

(2) can be written as the following parameterized form:

M1q̈ + C1q̇ +G1 +m2(M2q̈ + C2q̇ +G2)

+m3(M3q̈ + C3q̇ +G3) +m4(M4q̈ + C4q̇) = τ (6)

For simplicity, we can rewrite (6) as

m2(M2q̈ + C2q̇ +G2) +m3(M3q̈ + C3q̇ +G3)

+m4(M4q̈ + C4q̇) = U(t), (7)

by introducing the the forcing term including control input
τ in (7):

U(t) := τ −M1q̈(t)− C1q̇(t)−G1. (8)
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Fig. 4: Proposed control structure for the quadrotor with robotic
arm.

Here, forcing term U(t) will be exploited in parameter
estimator, which will be explained more detail in the next
section.

III. ESTIMATOR AND CONTROLLER DESIGN

In this section, we design on-line parameter estimator and
the augmented passivity-based controller for the hexacopter
with the robotic arm. The total control structure is shown as
Fig. 4.

A. On-line Parameter Estimator for an Unknown Payload

In order to estimate the physical properties of an unknown
payload, a parameter estimation law for an aerial manipula-
tor is developed based on the parametrization of dynamic
equation (7). For a parameter estimator, we assumed that
m2, m3 and m4 are constant parameters to be identified on-
line. We also assumed that q, q̇ and q̈ are available with the
forcing term U(t) which makes q bounded. Note that the
second assumption can be relaxed by the control law. Based
on these assumptions, the state estimator equation appears
as

C∗ ˙̂q(t) +K∗q̂(t) + [m̂2(t)M2 + m̂3(t)M3 + m̂4(t)M4]q̈(t)

+ [m̂2(t)C2 + m̂3(t)C3 + m̂4(t)C4]q̇(t) + m̂2G2 + m̂3G3

= U(t) + C∗q̇(t) +K∗q(t), (9)

where C∗ and K∗ are user-defined positive definite gain ma-
trices. Here, m̂2, m̂3 and m̂4. are the estimated parameters.
Note that ˙̂q(0) 6= q̇(0) should be satisfied for estimation.

If we define the state error as

e(t) = q̂(t)− q(t), (10)

where q̂(t) is the estimated state. The parameter update rules
can be given as

˙̂m2(t) = γ1e
T (t)(M2q̈(t) + C2q̇(t) +G2)

˙̂m3(t) = γ2e
T (t)(M3q̈(t) + C3q̇(t) +G3)

˙̂m4(t) = γ3e
T (t)(M4q̈(t) + C4q̇(t)), (11)

where, the positive numbers γ1, γ2, γ3 are the learning rate
of parameter estimator.

Then, using (9) and (10), estimation error dynamics can
be written as:

C∗ė(t) +K∗e(t) + (m̃2M2 + m̃3M3 + m̃4M4)q̈

(m̃2C2 + m̃3C3 + m̃4C4)q̇ + m̃2G2 + m̃3G3 = 0. (12)

Proposition: The error dynamics (12) is asymptotically
stable.

Proof: In order to prove the convergence of the estima-
tion error dynamics (9), we define the following Lyapunov
candidate function:

V1 =
1

2
e(t)TC∗e(t) +

1

2γ1
m̃2

2(t) +
1

2γ2
m̃2

3(t) +
1

2γ3
m̃2

4(t).

(13)

The time derivative of V1 is given as:

V̇1 = eT (t)C∗ė(t) +
1

γ1
m̃2

˙̂m2 +
1

γ2
m̃3

˙̂m3 +
1

γ3
m̃4

˙̂m4

=− eT (t)K∗e(t)− eT (t)[m̃2(t)M2 + m̃3(t)M3

+ m̃4(t)M4]q̈(t)− eT (t)[m̃2(t)C2 + m̃3(t)C3

+ m̃4(t)C4]q̇(t)− eT (t)[m̃2(t)G2 + m̃3(t)G3]

+
1

γ1
m̃2(t) ˙̂m2(t) +

1

γ2
m̃3(t) ˙̂m3(t) +

1

γ3
m̃4(t) ˙̂m4(t)

=− eT (t)K∗e(t) + m̃2(t)[
˙̂m2(t)

γ1
− eT (t)(M2q̈(t) + C2q̇(t)

+G2)] + m̃3(t)[
˙̂m3(t)

γ2
− eT (t)(M3q̈(t) + C2q̇(t) +G3)]

+ m̃4(t)[
˙̂m4(t)

γ3
− eT (t)(M4q̈(t) + C4q̇(t))].

Using the fact that ˙̂m∗ = ˙̃m∗, the parameter estimator rule
(11) results in:

V̇1 = −e(t)TK∗e(t) ≤ −λmin(K∗) ‖ e(t) ‖2≤ 0, (14)

where λmin(K∗) denotes the smallest eigenvalue of the
matrix K∗. This proves the bounded of e, m̃2, m̃3, m̃4.
If q̈ is bounded, then ė is bounded by (12). Then, V̈1 =
−2eT (t)K∗ė(t) is also bounded, which guarantees that state
estimation error, e(t) goes to 0 as time goes infinity by
application of Barbalat’s lemma [17].

The proof of convergence when persistence of excitation
is assumed, i.e., (m̃2, m̃3, m̃4) → 0, follows from standard
results in [14]. The detailed proof is omitted due to length
limitation.

B. Augmented Passivity-based Controller Design

In this subsection, we design the controller for the aerial
manipulator. Applying the estimated parameters m̂2, m̂3 and
m̂4 to the controller, a augmented passivity-based control law
is designed with following state error as

ec = q − qd. (15)

Here, we assumed that the desired trajectory is bounded as
follows:

|qd|2 + |q̇d|2 + |q̈d|2 ≤ ρ, (16)

where ρ is a positive constant.
The augmented passivity-based control for robotic manip-

ulators using the estimated parameters can be written as the
following equation:

τ =M̂(q)q̈d + Ĉ(q)q̇d + Ĝ(q)− k(ėc + Λec) (17)



where k and Λ are diagonal gain matrices. M̂ , Ĉ and Ĝ
represent the estimation of each matrix by parameter update
rule (11), i.e. M̂ = M1(q) + m̂2M2(q) + m̂3M3(q̂) +
m̂4M4(q), Ĉ = C1(q) + m̂2C2(q) + m̂3C3(q̂) + m̂4C4(q)
and Ĝ = m̂2G2(q) + m̂3G3(q) +G1(q).

Before proving the stability, we define a regressor matrix,
Y ∈ R8×4 for simplicity and it appears as:

M̂ q̈d + Ĉq̇d + Ĝ = Y (q, q̇, q̇d, q̈d)ξ̂, (18)

where ξ = [m2,m3,m4, 1]T , ξ̂ is the estimation of ξ and

Y = [Y T
1 , Y

T
2 , Y

T
3 , Y

T
4 ], (19)

where Y1 = M2q̈d + C2q̇d +G2, Y2 = M3q̈d + C3q̇d +G3,
Y3 = M4q̈d + C4q̇d and Y4 = M1q̈d + C1q̇d +G1.

The closed-loop dynamics can be derived by substituting
the proposed control law (17) into (2) and using (19):

Mëc + (C + k)ėc + kΛec = Y (ξ̂ − ξ). (20)

With these equations, stability analysis can be performed as
the following, which shows the boundedness of error ec and
ėc.

Proof: We define the following Lyapunov candidate
function:

V2 =
1

2
ėTc Mėc +

1

2
eTc kΛec > 0. (21)

The time derivative of V2 can be expressed as:

V̇2 =ėTc Mëc +
1

2
ėTc Ṁ ėc + eTc kΛėc (22)

=
1

2
ėTc (Ṁ − 2C)ėc − ėTc kėc − ėTc kΛec

+ ėTc Y (q, q̈d)(ξ̂ − ξ) + eTc kΛėc

=− ėTc kėc + ėTc Y (q, q̇, q̇d, q̈d)(ξ̂ − ξ),

In the derivation, skew symmetricity of (Ṁ − 2C) is used
[18]. Although

∥∥∥ξ̂ − ξ∥∥∥ 6= 0, the term Y (q, q̇, q̇d, q̈d)(ξ̂ − ξ)
is bounded by the parameter estimator. In this case, if we
choose a gain k sufficiently large, we can show that V2
is ultimately bounded. However, if we have the parame-
ter convergence under the proposed estimator in (9), i.e.,∥∥∥ξ̂ − ξ∥∥∥ = 0, we can show that V̇2 ≤ 0. In this situation,
as same with (14), we can show asymptotic stability of the
proposed controller by application of Barbalats lemma [17].

IV. SIMULATION RESULTS

Precise estimation of parameters is important for handling
an unknown payload. Therefore, in this section, simulation
for an aerial manipulator is performed to compare estimation
performance between the proposed control algorithm and
conventional adaptive sliding mode controller.

A. Mass Estimation using Adaptive Sliding Mode Controller

An adaptive sliding mode controller for an aerial manipu-
lator is shown in [11]. For performance comparison with the
proposed method, we also implemented a simple estimation
algorithm described below, which is modified based on [15]
for an additional payload.

To design an adaptive sliding mode controller, we can
define the sliding surface s and virtual reference trajectory
qr as

s = q̇ − q̇r (23)
q̇r = q̇d − Λ(q − qd),

where Λ is a diagonal gain matrix.
The adaptive sliding mode controller appears as

τ = M̂ q̈r + Ĉq̇r + Ĝ+ ∆̂−K1s−K2sgn(s), (24)

where K1 and K2 are the diagonal gain matrices and ˙̂
∆ =

−[(q̇− q̇d) + Λ(q− qd)] is the adaptation term for cancelling
out the modelling error and disturbances. Also, M̂ , Ĉ and
Ĝ are the function of the states, i.e., q and the estimated
unknown mass m̂2.

We can extract the unknown mass information of a payload
using the adaptive sliding mode controller by the following
equation:

m̂ =
τ(3)

g + M̂3(q, m̂−
2 )q̈ + Ĉ3(q, q̇, m̂−

2 )q̇
(25)

m̂2 = m̂− (mb +m1),

where the subscript ∗3 is the third row of the matrix ∗, m̂−
2

are previously estimated mass and m is total mass of the arial
manipulator containing the unknown mass. Here mb and m1,
which are already known, are the mass of a hexacopter or
link 1, respectively.

B. Hexacopter with Robotic Arm Model

The parameters of a hexacopter with two-DOF robotic arm
under consideration are given in Table. I. Properties of the
Firefly hexacopter are from [19]. Here l is the length of link
i(i = 1, 2). The mass of a payload is set to be 0.4kg, i.e.,
m2 = 0.5 kg.

TABLE I: Firefly hexacopter with 2-DOF robotic arm model

Parameter Value Parameter Value
mb 1.0 kg Ixx 0.013 kgm2

Iyy 0.013 kgm2 Izz 0.021 kgm2

m1,m∗
2 0.1kg l1, l2 0.2m

* : initial value.

C. Simulation Results

Parameter estimation was simulated in time interval [0, 10]
with γ1 = 0.2, γ2 = 0.1, γ1 = 0.1, C∗ = 10 × I8×8,
K∗ = 20 × I8×8. Gains for the proposed control law are
set as k = diag[4.5, 4.5, 7.5, 8.0, 8.0, 8.0, 1.4, 1.4], Λ =
diag[1.0, 1.0, 5.0, 1.0, 1.0, 1.0, 0.2, 0.2].
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Fig. 5: Performance of the trajectory tracking.

For the estimation of unknown parameters, we set the
initial estimated state as ˙̂q(0) = 0.1×I8×8. We also set initial
value of unknown parameters as m̂2(0) = 0.1, m̂3(0) =
1.0× 10−3 and m̂4(0) = 1.0× 10−5. Additional payload is
set to be 0.4kg, i.e. m2 = 0.5 and lc = 0.16.

The desired trajectory that the aerial manipulator should
follow is set to be as

qd =
[1

2
cos(

π

5
t),−1

2
cos(

π

5
t), 0.7, φd, θd, 0,

−π
2

+
π

4
sin(

π

5
t),

π

8
sin(

π

5
t)
]T
, (26)

where φd and θd are specified by (3).
Fig. 5 shows the position tracking performance. The red

dashed line is the desired trajectory and the blue solid line
is the trajectory of the aerial manipulator using the proposed
control algorithm. Fig. 6 shows the estimator performance
and results of estimated parameters. The blue solid line is
the state of the aerial manipulator and the red dashed line is
the estimated state by the parameter estimator.

With the proposed control algorithm, the aerial manipu-
lator satisfactorily tracks the desired trajectory even when
there exists an unknown payload. The unknown parameters
m2, m3 and m4 are estimated precisely as shown in Fig.
6b. However, when using the adaptive sliding mode con-
troller (24) and (25), the performance of estimation became
worse than the proposed control law as shown in Fig. 6b.
This is mainly because the adaptive sliding mode control
algorithm can estimate the unknown mass only while the
parameter estimator estimate the whole unknown parameters,
m2,m3,m4.

V. EXPERIMENTAL RESULTS

In this section, we describe experimental results with a
custom-made aerial manipulator, which is composed of a
hexacopter and a 2-DOF robotic arm.

For facilitating easier implementation, we use the follow-
ing simplicity assumptions:

• Roll and pitch angles are small, i.e., |φ| � 1 and |θ| �
1.

• At link 1, center of mass is located at joint angle, i.e.
lc1 ≈ 0.
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Fig. 6: Estimation results during the flight shown in Fig. 5.
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Using these two assumption, the on-line parameter equation
(9) and the proposed controller (17) can be implemented
much simpler.

A. Experimental Setup

The hexacopter used in this paper is a Ascending Technlo-
gies Firefly hexacopter [20]. The robotic arm is customized
with Dynamixel servomotors. The total length of arm is
0.305 meter: l1 = 0.135 meter and l2 = 0.17 meter. The
total weight of robotic arm is about 0.220 kg before picking
up the payload.

The experimental setup is shown in Fig. 7. Vicon, an
indoor GPS system, gives the position informations with
100 Hz to the base computer. The desired and current states
of a hexacopter and the joint angles are transmitted to the
hexaxcopter with Xbee at 40 Hz. The parameter estimator
and augmented controller runs at 1 kHz in the onboard
processor of Firefly hexacopter. Arm control inputs are sent
by Bluetooh at 50 Hz.

B. Experimental Results

The proposed control algorithm using a parameter estima-
tor and controller is validated by an experiment. The flight
result is shown in Fig. 8

Fig. 8a compares state tracking performance between the
proposed controller and conventional non-adaptive controller.
The conventional controller means that the controller does
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Fig. 8: Experimental results of carrying on an unknown payload.

not have update rule for the unknown parameter in (17).
The red dashed lines show the desired trajectory based on
each controller, the blue solid lines represent states with the
proposed approach and the black dash-dot lines are states
with conventional approach. In Fig. 8a, the desired joint
angles are fixed at q1 = −5 degree and q2 = 10 degree,
respectively, (i.e. the arm is almost stretched to the side.)
From the entire trajectory histories, although a large torque
is applied due to this particular pose, the proposed controller
shows satisfactory tracking results. On the other hand, the
conventional approach cannot track the desired trajectory
because this controller cannot compensate the effect of the
unknown payload.

Fig. 8b shows estimator performance and parameter es-
timation results. The blue solid lines are real state of the
aerial manipulator and the red dashed lines show the result
by parameter estimator. The parameter estimator estimates
current trajectory of the aerial manipulator satisfactorily. The
parameter estimator shows good convergence to the true mass
of m2 at 0.238 kg (the additional payload is 0.120 kg for
the extra payload and the gripper) and lc about 0.09 meter.

A video clip of the experiments is posted on the
following URL: http://icsl.snu.ac.kr/hbeom/
Estimation_AMS.mp4.

VI. CONCLUSION

This paper presented a parameter estimation and control of
an aerial manipulator for handling an additional payload. The
unknown parameters of the payload were estimated and an
augmented passivity-based controller was designed to control
a hexacopter with a 2-DOF robotic arm. In the experimental
results, we showed a successful flight using a custom-
made aerial manipulator while the unknown parameters were
estimated satisfactorily. Our future works include adaptive
control of aerial manipulator for handling lumped uncertainty
except the unknown payload.
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