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A Quadratic Programming Approach for Coordinating Multi-AGV
Systems

Valerio Digani1, M. Ani Hsieh2, Lorenzo Sabattini1, and Cristian Secchi1

Abstract— This paper presents an optimization strategy to
coordinate multiple Autonomous Guided Vehicles (AGVs) on
ad-hoc pre-defined roadmaps used in logistic operations in
industrial applications. Specifically, the objective is to maximize
traffic throughput of AGVs navigating in an automated ware-
house by minimizing the time AGVs spend negotiating complex
traffic patterns to avoid collisions with other AGVs. In this
work, the coordination problem is posed as a Quadratic Pro-
gramming (QP) problem where the optimization is performed
in a centralized manner. The optimality of the coordination
strategy is established and the feasibility of the strategy is
validated in simulation for different scenarios and for real
industrial environments. The performance of the proposed
strategy is then compared with a decentralized coordination
strategy which relies on local negotiations for shared resources.
The results show that the proposed coordination strategy
successfully maximizes vehicle throughout and significantly
minimizes the time vehicles spend negotiating traffic under
different scenarios.

I. INTRODUCTION

Recent years have seen the increased popularity of au-
tomated warehouses and the coordination of a fleet of Au-
tonomous Guided Vehicles (AGVs) for increased production
efficiency and flexibility [1]. Multi-vehicle coordination has
been largely studied in existing literature (see, for instance,
the recent papers [2], [3] and references therein) and in
particular in the context of Autonomous Guided Vehicles [4].
However common problems, such as deadlock and collision
avoidance, arise naturally when managing and coordinating
a fleet of AGVs.

In general, a team of robots can be coordinated using either
centralized [5]–[7] or decentralized approaches [8]. While
centralized approaches have the advantage of providing
theoretically optimal solutions [9], they often scale poorly
as the fleet size increases and often come at a significant
computational cost. In contrast, decentralized strategies (see
[10]–[12] and references therein) are mostly concerned with
the scalability and complexity of coordinating large numbers
of autonomous vehicles operating in a common workspace.
Decentralized techniques are generally faster than centralized
ones, but they can fail in finding valid paths and thus result
in deadlocks [13]. For this reason, centralized approaches are
often preferred in many industrial applications despite being
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known to scale poorly with respect to the number of agents.
The reliance on centralized approaches is also further backed
by the ever decreasing cost of fast high-end computing and
the potential loss in revenue caused by deadlocks.

More recently, mixed strategies that exploit the benefits of
both centralized and decentralized coordination have been
proposed. For instance, in [14] a decentralized local co-
ordination is performed based on a centralized sharing of
information. In this work, the environment is divided into
several sectors in which a local and decentralized negotiation
scheme for AGVs is used to allocate shared resources (cross-
ing and segments of the road) to individual agents. Since the
structure of the roadmap affects the overall performance of
the coordination strategy, their interplay has to be considered.
In [15], an algorithm to generate a roadmap that matches
with the coordination policy discussed in [14] is presented. A
drawback of these previous approaches is the amount of time
spent locally coordinating the fleet, specifically the amount of
time vehicles spent negotiating to cross various intersections
in the workspace.

In this work, a new local coordination strategy that relies
on a centralized optimization approach is presented. The
proposed method considers the partitioning of an indoor
environment into several sectors. Within each sector, the
coordination strategy seeks to maximize the throughput of
AGVs through each sector by minimizing the number of
interactions between AGVs. The idea is to minimize the
amount of time vehicles spend negotiating complex traffic
patterns within each sector as they navigate in the workspace
while avoid collisions with one another. The contribution
of this paper lies in the formulation of the coordination
problem as a convex optimization problem applied to realistic
scenarios where roadmaps can be automatically generated in
the given workspace. In particular, the coordination problem
is posed as a quadratic program (QP) where the crossing
time for the vehicles, i.e., the time it takes for the vehicles
to enter and leave a given sector, is minimized with respect
to the vehicle velocities.

II. PROBLEM STATEMENT
The paper considers the coordination of a fleet of

agents/vehicles on a fixed roadmap. In particular the roadmap
is generated using the method proposed in [15]. Fig. 2 shows
an example of a roadmap in a real warehouse environment
and the partitioning of the workspace.

Definition 1 Sector A sector S is an area, or a region, of
the roadmap which can be distinguished from the other ones
based on topological, logistical and geometrical aspects.



Within a single sector, an intersection area is the bounded
region of a sector where the coordination problem occurs.
The sector partitioning affects the performance of the pro-
posed approach, but these considerations will be analyzed
in future works. Let us define the q-th sector as Sq which
contains Zq path, that is Sq = {π1, . . . , πZq}. The i-th
path within Sq is split into Mi entities called segments,
namely: πi = {πi1, · · · , πiMi

}. Each segment is assumed to
be unidirectional.

Each vehicle is modeled as 2D circle with a radius of
δ
2 . Let V(πih) be the portion of space occupied by a vehicle
moving along the segment πih, that is the trace of the vehicle
along that segment. A segment collides with another segment
when their traces are intersecting. An intersection area Aq
of Sq is then formally defined as:

Definition 2 Intersection Area Aq = {πlh | πl ∈ Sq, ∃j =
1, . . . ,Zq, j 6= l, and ∃r = 1, . . . ,Mj such that V(πlh) ∩
V(πjr) 6= 0}

An intersection area is then the set of the colliding segments
of different paths in the sector and, in general, each sector
contains at least one intersection area.

As explained in [14], coordination is only required within
each sector, and in particular within an intersection area, and
the number of interactions among the agents corresponds
to the number of local negotiations among them. A shared
resource, i.e., a road segment, is then allocated to the winner
of each negotiation round, while the losers of the negotiation
round must wait until the shared resource becomes free. It
is worth noting that the results of these negotiations are not
known a priori and that they depend on the path and the
priorities of each AGV. Thus, the system is not deterministic
and the traffic control and management is not trivial. In
particular, the negotiation processes affect the total time a
vehicle spends traversing a given sector. As such, planning
minimum time paths between sectors is challenging since
the actual delays generated by the negotiations are difficult
to account for.

The proposed methodology seeks to overcome this issue
by avoiding the negotiations entirely. This is achieved by
choosing the best speed for each AGV to traverse its path
that minimizes its total crossing time while avoiding conflicts
with other vehicles, i.e., collisions.

The problem can be formally stated as:

Problem 1 Multi AGV Coordination Given:
• a fleet of N AGVs,
• a roadmap partitioned in sectors, and
• the initial and final positions for all the AGVs on the

roadmap,
define a coordination strategy such that each AGV is able
to move from its initial position to its assigned final posi-
tion while minimizing the total crossing time and avoiding
conflicts with other AGVs within the same sector.

The following Assumptions are needed:
A1 No unforeseen events, such as the presence of dynamic

obstacles (manual forklift, people, etc.) are considered.

A2 An arbitrary velocity along a path vi is assigned to the
AGV i such that Vmin < vi < Vmax. Where Vmin and
Vmax are the same for all the vehicles.

A3 The velocity along a segment is constant.
A4 Each AGV has a different pair of initial and final

positions.
Since the coordination is only required within each sector,

hereafter a single sector scenario is used to describe the
proposed methodology. In fact, it is worth noting that the
coordination in each sector is independent with respect to
the other sectors. In other words, the Problem 1 can be split
among the sectors where it can be locally solved.

III. METHODOLOGY

The objective is to solve the Multi AGV Coordination
(Problem 1) to obtain a set of velocities that guarantee a safe
minimum distance between all agents. In general the problem
can be solved considering each sector independently. In this
section we show how the coordination problem within a
single sector can be formulated as a convex optimization
problem with feasible solutions. The coordination on a map
composed by several sectors is performed by means of a
dedicated process for each sector. Thus each process solves
the optimization problem whenever a new agent enters or
leaves the specific sector.

A. Objective Function

Considering N AGVs, the path of the i-th AGV in a sector
is composed of Mi segments of length dki , k = 1, . . . ,Mi.
Let us define di =

∑Mi

k=1 d
k
i as the length of the path of

the i-th AGV. The velocity on the k-th segment for the i-th
AGV is vki . Then the crossing time for the i-th AGV is

∆ti =

Mi∑
k=1

dki
vki
.

The total crossing time of a sector is then provided by the
maximum time taken to clear the intersection among all the
AGVs. It is formally given by:

∆T = max
i

∆ti = max
i

Mi∑
k=1

dki
vki

(1)

The objective is to minimize ∆T on a given sector. It is
worth noting that minimizing the total crossing time (the time
of the slowest AGV) leads to increasing the number of AGVs
in the same time window. Namely the throughput is maxi-
mized on a given time window (fixed time). Let us define
M̄ =

∑N
i=1Mi, then v = [v1

1 , · · · , v
M1
i , · · · , vMN

N ]T ∈
RM̄ is a vector containing all the vehicle velocities, then
Eq. (1) is non-linear with respect to the parameters v. We will
now show how the same behavior can be described by using
a linear function of v. Since a path is already assigned to each
vehicle, the distance to travel is constant for each vehicle.
Then the only parameters to be chosen in Eq. (1) are the
velocities vki . It is then possible to state that minimizing the
total crossing time is equivalent to maximizing the velocity



on a fixed distance, or equivalently to minimizing its nega-
tive. In particular the objective function can be formulated
as follows:

f(v) = −
N∑
i=1

Mi∑
k=1

vki . (2)

It is straightforward to show that this objective function is
both linear and convex with respect to the parameters v.

B. Constraints

The parameters v are lower and upper bounded due to
the properties of the vehicles (Assumption A2). The linear
constraints are formalized as:

Vmin < vi < Vmax, ∀i = 1, . . . ,M̄

Each AGV is centered at the point Pi = [xi, yi]
T . Colli-

sion avoidance is guaranteed by ensuring that the relative
distance, γi,j , between any two AGVs is grater than δ,
namely:

γi,j = ||Pi − Pj || =
√

(xi − xj)2 + (yi − yj)2 > δ. (3)

Eq. (3) describes the non-linear constraints for the pairwise
distances between AGVs. It is worth noting that the distance
has to be computed for each pair of AGVs, (Pi, Pj), along
their vehicle paths. This process is inefficient and increases
the complexity of the optimization.

Consider an intersection area Aq and N vehicles moving
on N different set of segments Kq1, . . . ,K

q
N , that is Kqi =

{πih ∈ Aq} is the set of segments in the case of vehicle
i. Then the sets of segments Kq1, . . . ,K

q
N are parameterized

by s1 ∈ [0, d1], · · · , sN ∈ [0, dN ], where si can be any
scalar parameter used to denote an AGV’s position along its
trajectory, namely along the set of segments.

Let Pi(si) : R+ → R2 be a function which maps the
curvilinear abscissa si to the Cartesian position Pi of the
vehicle on its path. Let ∆Xi,j be the portion of i-th path
where vehicle i collides with vehicle j on the i-th path, i.e.,
γi,j < δ. Here ∆Xi,j is a collision region for the i-th and
j-th AGVs and can be formally defined as:

∆Xi,j =
{
si | ∃sj such that ||Pi(si)− Pj(sj)|| ≤ δ

}
(4)

It is worth noting that the collision regions can be computed
totally off-line since they are based only on geometric
information. The computational complexity of Eq. (4) can
be formulated as O(M̄2).

Let Xmin
i,j and Xmax

i,j be the values of the curvilinear
abscissa si corresponding to the start and final point respec-
tively of the collision region ∆Xi,j . Let us introduce ωmini,j

and ωmaxi,j as the time that the vehicle i would take to reach
the position Pi(Xmin

i,j ) and Pi(Xmax
i,j ) respectively. Further-

more the projection of ∆Xi,j on the time axis provides the
set of collision time Ωi,j . Collision avoidance between the
i-th and j-th AGVs is then satisfied when the following
condition occurs:

Ωi,j ∩ Ωj,i = ∅. (5)

Fig. 1 pictorially depicts the described problem: with abuse
of notation the ordinate axis represents both the parameter
si and sj . The condition (5) implies that a set of points
between the two sets Ωi,j ,Ωj,i, denoted by the red and blue
line segments on the time axis in Fig. 1, exist in order to
avoid a conflict.
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Fig. 1: Coordination space in the case of two agents: the
lines represents the velocities of the AGVs.

This constraint can be reformulated in terms of the
midpoints and the total time defined by each set Ω∗,∗. In
particular the distance between two mid-points has to be
grater than the sum of the distances between the mid-point
and one extreme point of both the sets. We introduce the
following notation:

• αi,j = ωmaxi,j + ωmini,j

• βi,j = ωmaxi,j − ωmini,j

The condition described by Eq. (5) can then be formalized
as follows:

|αi,j
2
− αj,i

2
| > βi,j

2
+
βj,i
2

(6)

which simplifies to

|αi,j − αj,i| > βi,j + βj,i (7)

Once Eq. (7) is squared, the constraint becomes quadratic:

(αi,j − αj,i)2 > (βi,j + βj,i)
2. (8)

C. Quadratic Constraints Linear Programming

The coordination within a single sector is modeled as an
optimization problem using a linear objective function, and
a set of quadratic constraints with linear constraints on the
boundary. The optimization problem is given by:

minimize −
N∑
i=1

Mi∑
k=1

vki (9a)

subject to Vmin ≤ vi ≤ Vmax, ∀vi ∈ v (9b)

and v2
i eji + v2

j eij + vivjfij < 0, ∀i, j, i 6= j (9c)

where eij = cig−aij and fij = dij+bij are scalar constant
values. Then the expression can be more compactly written



in the following standard form [16].

minimize f(v) (10a)
subject to Av ≤ b (10b)

and 1/2vTHijv < 0 ∀i, j = 1, . . . ,M̄, with j > i
(10c)

where A ∈ R2M̄×M̄ and b ∈ R2M̄ encode velocity bounds
in Eq. (9b). The matrix Hij ∈ RM̄×M̄ represents the
inequality constraint in Eq. (9c) for the pair (i, j) and it
is defined such that the element (l, p) is:

Hij
l,p =


2eji if l = p = i
2eij if l = p = j
fij if (l = i and p = j) or (p = i and l = j)
0 otherwise

(11)

IV. ANALYSIS

First, some concepts from convex optimization theory are
introduced.

Lemma 1 [16, Section 4.2.2] Given a solution to the op-
timization problem, the solution is guaranteed to be optimal
if the problem is convex.

Lemma 2 [16, Section 3.1.4] A twice differentiable function
f is convex if and only if dom f is convex and its Hessian
is positive semi-definite.

Now we can show the optimality of the proposed coordi-
nation problem.

Proposition 1 If a solution exists to the optimization prob-
lem given by Eq. (9), the solution is optimal.

Proof: Given a solution it is sufficient to prove the
convexity of the problem. Let us define f(v) the objective
function in Eq. (9a), then dom f = {v ∈ R} is a convex
set. Thus the objective function is convex since it consists of
the sum of a collection of linear, and thus convex, functions.
The linear constraints given by Eq. (9b) are affine and thus
convex and essentially define a bounded convex set in the
solution space. Considering the constraint given by Eq. (10c),
the Hessian is ∇2(1/2vTHijv) = Hij , then since Hij � 0
the function is convex according to Lemma 2. Thus the
optimization problem is convex and any solution is optimal
according to Lemma 1.

While this work has not shown the existence of a feasi-
ble solution under all possible scenarios, empirical results
presented in the following sections strongly suggest the ex-
istence of solutions to the optimization problem under most
realistic conditions. Theoretical analysis of the conditions
which guarantee the existence of a solution is a direction of
future work.

V. SIMULATION RESULTS

The proposed optimized coordination is compared to the
coordination strategy first presented in [14] which relies on
local negotiations. Hereafter we refer to the current proposed

methodology as the Optimized Strategy, and to the other one
as Negotiated Strategy. A decoupled optimal priority scheme
[17] is applied to the Negotiated Strategy in order to obtain
a better comparison.
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Fig. 2: Real map used in the simulations
The proposed methodology is first validated by means

of simulations on different single intersections shown in
Fig. 3 and then on a realistic environment. In particular
the simulations are performed on realistic scenarios of real
industrial warehouses (see Fig. 2a), available thanks to the
close cooperation with industrial partners. A roadmap is built
on that environment using the algorithm described in [15].

A. Single Intersection
It is worth noting that the topological complexity of

the roadmaps is different in each scenario which depends
on the number of possible paths, the number of possible
interactions, and physical size of the environment. Repeated
tests have been conducted under the following conditions:
• 4 topology of intersection
• number of AGVs ∈ [2, 11],
• the simulation stops when the intersection area is

cleared,
• the priorities [14] for the Negotiated Strategy are opti-

mized each time,
• the same paths assigned to the AGVs are considered for

the comparison, and
• the paths are assigned randomly.

Ten simulation runs were performed for each configuration.
To compare, we consider the time needed for all AGVs

to clear the sector or the maximum of the crossing time
(tclearing). We also considered the worst waiting time
(twait), the average waiting time (t̄wait), and the compu-
tational time needed to obtain a solution (tcalc). The waiting
time is the time that the AGVs have to wait in the same
position, i.e., vi = 0, when yielding to other robots with
higher priorities at an intersection in the roadmap. The
worst waiting time is the maximum waiting time for all the
AGVs in the sector. The computational time is the actual
time to compute a solution to the centralized optimization
problem. The worst waiting time and the average waiting
time are computed for the Negotiated Strategy, while the
computational time is computed for the Optimized Strategy.

The simulations were performed in Matlab with the stan-
dard optimization solver. In order to simulate the Negotiated
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Fig. 3: Different intersections used during the simulations

Strategy in a decentralized way, the algorithm is executed
in a parallel manner by implementing one single dedicated
process per AGV. The results are summarized in Figures 4, 5,
and 6.
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B. Complete Scenario

The proposed method is also validated on real scenarios
where the roadmap is divided into several sectors. The simu-
lation are conducted under the same conditions and the same
assumptions of the previous section except for the number of
AGVs, that is: 3, 5, 10, 15. The main difference compared
to the single intersection simulation is that the coordination
of the fleet is based on the hierarchical control architecture
explained in [14]. The proposed method (Optimized Strategy)
is still compared to the Negotiated Strategy with respect to
the time needed for all AGVs to reach their final destination,
that is ttotal. Fig. 7 shows the trend of the ttotal with respect
the number of AGVs on both of the strategies.
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Fig. 6: The computational time for the optimized strategy is
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VI. DISCUSSION

For the single intersection scenario, the results show that
the average clearing time (or the maximum crossing time)
is always less using the Optimized Strategy rather than the
Negotiated Strategy and clearly shows that the proposed
methodology performs better than the previous one. Fig. 5
shows the relationship between the waiting time and the
time a vehicle is actually moving, i.e., vi > 0, in the
sector for the Negotiated Strategy. Overall, the time a vehicle
spends waiting or idling is considerable when the Negotiated
Strategy is used. In particular, the results show that the
average waiting time is almost 50% of the total time a
vehicle spends within the sector and the worst waiting time
is up to 90% of the total time. One can conclude that
under the Negotiated Strategy the time an AGV spends
at an intersection is mostly spent on waiting for its turn
to cross. It is important to note that by construction the
waiting time for each vehicle under the Optimized Strategy is
always null. Here, coordination is achieved by managing the
relative velocities of the agents to ensure collision avoidance
while constraining the velocities to be always higher than



zero. When considering the average per vehicle waiting time
resulting from the Negotiated Strategy, the computational
time of the Optimized Strategy is essentially insignificant (see
Fig. 6) despite being implemented in a centralized manner.
This claim is supported by the fact that the strategy is
designed to work with specific roadmaps and thus always
tuned to the worst case scenario (Fig. 3d). Furthermore, the
required computation burden still stays low when the number
of segments increases. The Optimized Strategy is concerned
only about the number of vehicles and the collision regions
are computed totally off-line. Fig. 7 shows a comparison
between the scalability of the Negotiated Strategy, which is
almost linear, and the Optimized Strategy. We note that in
the Optimized Strategy the maximum crossing time does not
linearly increase with the number of agents but rather its
trend is piecewise linear. This suggests that the Optimized
Strategy can potentially be further exploited when the sys-
tem is complex. This is further supported by the fact that
the waiting time for the Negotiated Strategy is two order
of magnitude higher than the computational time for the
Optimized Strategy. For the complete scenario, the results are
very similar to the previous simulation. In particular ttotal in
the Optimized Strategy is always less then in the Negotiated
Strategy. This is another prove to validate the proposed
method: also on a complete and real map the Optimized
Strategy works better in term of total time. It is worth
noting that the coordination and the performances within
a sector are, in general, independent of the other sectors.
Thus the complete behavior of the proposed methodology
on the full map is approximately a linear combination of the
local behavior within each sector. It is worth noting that an
increasing of the number of intersections does not correspond
to an increasing of the computation burden. Furthermore, as
shown in Fig. 7, the displacement obtained from the results
of the two strategies, that is the distance between the lines,
increases as the number of AGVs gets bigger. It is worth
noting that the more agents there are in the map, the higher
the difference between the total time of the two strategies. Of
course the complexity of the scenario affects the total time,
however the Optimized Strategy consistently performs better
in the presence of more agents.

VII. CONCLUSION

This paper presents an optimized coordination strategy that
minimizes the traversal time of a fleet of AGVs through
different sectors of an indoor environment for industrial
applications such as warehouse automation. The coordina-
tion problem is posed as an optimization problem where a
procedure was used to transform a non-linear and non-convex
optimization problem into an equivalent quadratic program.
Coordination is then achieved by solving the optimization
problem in a centralized fashion within each sector of the
warehouse. The method was compared to a decentralized
negotiated strategy developed in a previous work where the
coordination was carried out by assigning different priorities
to each AGV. Simulation results show that the proposed op-
timized strategy significantly outperforms the decentralized

negotiated strategy.
In conclusion, the proposed coordination strategy achieves

an optimal coordination among the AGVs negotiating a
complex traffic pattern in different sectors of an automated
warehouse. Optimality of the resulting strategy is guaranteed
by posing the coordination problem as a convex optimization
problem. One direction for future work is to determine the
conditions under which a feasible solution to the convex
problem will always exist. Another improvement aims at
validating this coordination strategy with real experiments
by using real robots.
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