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Abstract— Carbon Fiber Reinforced Polymers (CFRPs) are
composites whose interesting properties, like high strength-to-
weight ratio and rigidity, are of interest in many industrial
fields. Many defects affecting their production process are due
to the wrong distribution of the thermosetting polymer in the
upper layers. In this work, they are effectively and efficiently
detected by automatically analyzing the thermographic images
obtained by Pulsed Phase Thermography (PPT) and comparing
them with a defect-free reference. The flash lamp and infrared
camera needed by PPT are mounted on an industrial robot so
that surfaces of CFRP automotive components, car side blades
in our case, can be inspected in a series of static tests. The
thermographic image analysis is based on local contrast adjust-
ment via UnSharp Masking (USM) and takes also advantage
of the high level of knowledge of the entire system provided by
the calibration procedures. This system could replace manual
inspection leading to a substantial increase in efficiency.

I. INTRODUCTION

Increasing use of Carbon Fiber Reinforced Polymers
(CFRPs) is required whenever high strength-to-weight ratio
and rigidity are necessary, as it happens in some application
fields like automotive, aerospace and civil engineering, sports
goods and military applications. Carbon fiber is made of
long strings of carbon atoms that can be woven together
to form sheets. Such sheets can be layered onto each other
and joined together by means of a glue layer, to be placed
between every couple of adjacent carbon sheets; the whole
structure is then filled with polymer to create CFRPs. Carbon
fiber is the reinforcement, which provides the strength, while
the thermosetting polymer, e.g. epoxy resin, is the matrix,
which binds the reinforcements together [11]. CFRPs can be
manufactured using a number of techniques, all of which
aim to combine the fiber and resin into a well-consolidated
product. Several types of defects can affect the production
process, including porosity, foreign bodies, incorrect fiber
volume fraction due to excess or insufficient resin and
bonding effects [16]. Defects can also occur in the placement
of the glue between consecutive carbon fiber sheets.

Detecting defects in CFRPs is one of the goals of the
European project Thermobot1, which aims at replacing man-
ual inspection in order to achieve better efficiency and
performance in the production phase. The research leading to
the results presented in this paper is part of this project, and
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Fig. 1. Complete experimental setup with robot, infrared camera, flash
lamp and CFRP.

aims at inspecting the glue layer that bonds together carbon
fiber sheets. Even though such layer is inside the part to be
inspected, thermography, in particular the technique named
Pulsed Phase Thermography (PPT) [12], [13] is capable of
revealing the glue disposition, thus enabling the inspection.

Three modules have been developed for the whole project:
thermographic inspection, robot path planning and thermal
image analysis. PPT enables the nondestructive testing and
evaluation (NDT&E) of CFRPs. The data acquisition setup
consists of a flash lamp, the Hensel EH Pro 6000 with
its power supply Tria 6000-S, and an infrared camera, the
ImageIR 8300 by InfraTec GmbH. The flash lamp is an
external source of energy which applies a short thermal
pulse inducing a temperature difference between areas with
different distribution of glue in the specimen under exam-
ination. The thermal changes on the surface are captured
by the infrared camera. The flash, whose power can be set,
overpowers the ambient light making the acquisition process
controllable. The flash lamp and infrared camera are mounted
on an industrial robot, the Stäubli TX90L with the CS8C
controller, in order to inspect parts larger than the field
of view of the camera. In particular, the surface of CFRP
components are inspected in a series of static tests from
a number of points of view such that the entire perimeter
of the part can be covered. Indeed, the perimeter is more
interesting than the rest of the part because the glue is
distributed along the edge. The system is depicted in Fig. 1;
the inspected component is a car side blade manufactured
by one of the partners of the project, Benteler-SGL. Images
are acquired for each point of view and then processed for
obtaining the PPT phase images. Their analysis for revealing
defective areas is the main focus of this paper. It is addressed
by taking advantage of the high level of knowledge of the
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entire system provided by the calibrations [6] and adapting
an image sharpening technique well-known in photography,
the UnSharp Masking (USM). Since the bonding cannot
be simulated, defects are revealed by comparing each PPT
phase image with the respective defect-free reference. The
imaging process is as controllable as the acquisition given
the repeatability of the workcell conditions. In summary, the
main contributions of this paper are:

• an automatic robotic system for the detection of defects
in the upper layers of CFRPs;

• a thermographic analysis of CFRPs based on PPT;
• the PPT phase image analysis exploiting USM and the

high level of knowledge and control of the real workcell;
• the defect detection by comparison with a fault-free

reference.
The detection of internal cracks cannot be performed since
the required amount of heat generated by the flash lamp
would be so high that it would damage the inspected object.

This paper is structured as follows. In Section II, the
starting points for the analysis and comparison of PPT phase
images are outlined by revising the state of the art. The core
of the visual inspection system that enables the detection
of defects is detailed in Section III. The results obtained
during the experiments are described in Section IV. Finally,
in Section V, the main conclusions are drawn and some final
remarks reported.

II. STATE OF THE ART
Many works deal with the applicability of infrared ther-

mography for NDT&E. Some of them compare multiple
thermography techniques [9], while others focus on one of
them, for example PPT [10]. In any case, these techniques
have been applied to various case studies, including detection
of defects in stainless steel and aluminium [1] or glue defi-
ciency in laminated wood [3] and for superficial defects in
multi-layered composites used in military applications [18].
Furthermore, infrared imaging in medicine has been around
since the early 1970s and its application is being investigated
for breast cancer [4], burn trauma, diabetes, vascular prob-
lems, and neurological problems [8]. In all quoted studies,
apart [4], the focus in on the thermography technique itself:
thermographic images are calculated and then inspected
manually. Instead, the focus of this work is on the automatic
defect detection, that is achieved by means of thermo-image
analysis and comparison to the reference. To address these
tasks, the OpenCV library [5], which includes comprehensive
set of both classic and state-of-the-art computer vision and
machine learning algorithms, is a good starting point. The
first goal is the detection of a region of interest in each
PPT phase image, knowing that only the comparison of
the glued areas (which appear darker), is of concern. The
second is the comparison between PPT phase image and
reference, which is restricted to the Regions Of Interest (ROI)
evaluated in the previous step. The methods to solve the
former problem will be simpler than those addressing similar
problems like background/foreground extraction [15], image
matting or saliency detection [7] and will not need user

Fig. 2. A PPT phase image (top-left) and its brightness histogram. There
are four main peaks denoting that Otsu’s binarization cannot be applied
because the image is not bimodal.

interaction. Indeed, the texture in the involved PPT phase
images is also simpler than in the images usually employed
for validating those techniques, for example outdoor pictures
of people with hair blown by the wind. The same holds for
the latter problem. Every PPT phase image will be compared
with a defect-free reference previously taken from the same
point of view, so that the comparison methods do not need
to cover rotations, translations or scalings.

III. METHODS

This section focuses on the description of the comparison
between two PPT phase images. They are gray-scale images,
like the one in the top-left corner of Fig. 2, in which darker
shades of gray denote the presence of glue. This process is
characterized by three main steps displayed from left to right
in Fig. 3:

1) foreground extraction from PPT phase images;
2) detection of adhesive bondings in CFRP;
3) pairwise comparison of adhesive bondings for differ-

ence detection.
The first two aim at restricting the comparison to a region
of interest with glue in order to minimize false positives and
false negatives. A simpler pixel-by-pixel comparison would
be unreliable because of the differences in the carbon fiber
texture.

A. Foreground Extraction from PPT Phase Images

Two complementary regions can be found in each image,
one corresponding to the CFRP part in the foreground and
the other to the background. As shown in the CFRP part
in Fig. 2, both regions might have non-uniform brightness
distribution because the glue might not be uniformly dis-
tributed on the surface and the distance of each point in
the background from the infrared camera might vary. Of
course, a way to binarize images and extract foreground
is of concern. As a consequence of non-uniform brightness
distribution in both regions, not only is simple thresholding
not accurate, but also no threshold can be automatically
calculated from image histograms, e.g. by means of the
Otsu’s binarization [14]. Indeed, images are not bimodal as
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Fig. 3. Flowchart illustrating the comparison process of two PPT phase images. This process is characterized by three main steps displayed from left
to right: foreground extraction from PPT phase images, detection of adhesive bondings in foregrounds and pairwise comparison of adhesive bondings for
difference detection.

demonstrated by counting the number of main peaks in the
brightness histogram shown in Fig. 2.

Viable alternatives are to be evaluated. One of them is the
knowledge-based approach [6] by means of the high level
of knowledge of the experimental setup and the backward
projection [2] of each image point onto the 3D polygon mesh
model of the CFRP part. The model, view and projection
transformation matrices, whose composition is the mapping
from the part space to the image space, are all well-known.
These pieces of information come from three preliminary
calibrations that respectively lead to the knowledge of the
camera parameters, the position of the camera with respect
to the robot, and the position of the robot with respect to
the part. In this way, the foreground extraction is performed
by evaluating for each image point the intersection between
the 3D model of the part and the ray passing through that
image point and the focal point. If the ray intersects the 3D
model, the image point falls on the part and belongs to the
foreground, otherwise it does not fall on the part and belongs
to the background. The backward projections of every image
point can be expensive, but masks are created only once and
for all once for each of the fixed positions.

As another option, if these matrices are not available,
the foreground can be extracted with minimal user interac-
tion running the GrabCut algorithm [15] freely available in
OpenCV. This algorithm starts with a user-specified bound-
ing box around the foreground region and some hints on
background and foreground pixels inside of it. Then it creates
the background/foreground segmentation. The system com-
bines hard segmentation by iterative graph-cut optimization
with border matting to deal with blur and mixed pixels on
object boundaries. Obviously, this latter approach, which
requires interaction with the user, is more tedious.

B. Detection of Adhesive Bondings in CFRP

Dark shades of gray denote the layer of glue. Nevertheless,
the definition of dark area is not straightforward and cannot
rely on simple thresholding: first of all, the chosen value
would not be the best for each image in the dataset, given the
non-homogeneity of the glue layer in the CFRP part; second,
illumination might not be uniform over the whole CFRP part.
These remarks about brightness values hold mostly when
comparing images taken from different points of view and
secondarily when comparing different regions of an image.
Hence, what is required for the detection of the glue layers is
an approach that takes into account brightness gradients: this
way, it is possible to detect dark regions compared to their
surroundings. For this kind of analysis, an approach based
on local contrast adjustment has been studied and developed.
This approach is performed in four steps:

1) noise filtering;
2) unsharp masking;
3) thresholding;
4) artifact filtering.

The core of the algorithm is the unsharp masking, which is
not applied standalone because it could enhance unwanted
details due to ISO noise or film grain, as in the blue box
in Fig. 4(a), and vertical banding noise, as in the red box
in Fig. 4(a). In addition, also artifacts like the carbon fiber
pattern itself, Fig. 4(b), could be strongly highlighted. This
can be made up for by adding two steps, a pre-processing
and a post-processing filtering.

The pre-processing is a soft median filter which proved
to eliminate vertical noise more effectively than a Gaussian
filter. An aperture size of 13 px is an appropriate trade-off
between noise removal and level of detail. The starting frame
is depicted in Fig. 5(a) and its blurred copy in Fig. 5(b).



(a) (b)
Fig. 4. Examples of noise: ISO noise or film grain in the blue box (a),
vertical banding noise in the red box (a) and carbon fiber pattern (b).

UnSharp Masking (USM) is an image sharpening tech-
nique well-known in photography. Let O be the input image,
in this case the softly blurred copy of the starting frame
obtained after the pre-processing step, and B its blurred
copy. The blur can be a 2D Gaussian blur with a certain
aperture size, the radius r. The method consists in calculating
an unsharp mask U , the difference between the original
image O and its blurred copy B as shown in Eq. 1, and an
high contrast version of the original image C, the sharpened
difference between the original image O and its blurred copy
B as shown in Eq. 2. The amount of overshoot, namely how
much contrast is added, can be set via the parameter a.

U = |O −B| (1)

C = a ∗O − a ∗B (2)

In Fig. 5, the intermediate images are reported: O (b), B (c),
U (d) and C (e). The unsharp mask U roughly points out
the contours, which are sharpened in the high contrast image
C. The sharpened image S is the sum of the original image
O and the high contrast image C, optionally masked with
the unsharp mask U by setting the threshold th, see Eq. 3.
Given a 2D point PU on the unsharp mask U , let IPU

be its
intensity of gray varying from 0 to 255:

S =

{
O if IPU

< th

O + C otherwise.
(3)

The parameter th is the minimum difference in pixel values
that indicates an edge to which some sharpen must be applied
to protect areas of smooth tonal transition from sharpening.
If it is set to 0, the unsharp mask U is not taken into
account. The sharpened image S is depicted in Fig. 6(a).
The choice of the three parameters, the radius r, the amount
a and the threshold th, is important. This technique can
increase either sharpness or local contrast. Indeed, they are
both forms of differences, respectively small-scale (high-
frequency) and large-scale (low-frequency), the latter of
which are of concern. They can be increased using high
radius and amount. Good values are 99 px for r and 25 for
a. The third parameter, the threshold th, is not as crucial as
the other two and can be set to 0.

Rather, the thresholding of S is of interest since only dark
regions are to be kept, see Fig. 6(b). A good value is 180.

(a) (b) (c)

(d) (e)

Fig. 5. Unsharp masking is based on the simple detection of contours
performed by subtracting blurriness B from the initial frame O. From left
to right: initial frame (a), initial frame after soft Gaussian blurring O (b), O
after heavy Gaussian blurring B (c), unsharp mask U (d) and high contrast
image C (e).

(a) (b) (c)

Fig. 6. Postprocessing after unsharp masking. From left to right: the
sharpened frame S obtained by unsharp masking (a), after thresholding (b)
and after the last post-processing step for removing artifacts characterized
by small contours (c).

The post-processing is a final check useful for removing
possible remaining artifacts characterized by small contours.
The function retrieves contours using the algorithm described
in [17], already implemented in OpenCV. The final result
looks like Fig. 6(c) and provides the region of interest for
the comparison in the next step.

C. Pairwise Comparison of Adhesive Bondings for Differ-
ence Detection

This step uses the masks built in the previous step in order
to restrict the comparison to a region of interest with glue
to minimize false positives and false negatives. Let A and
B be the two images to be compared and M the union of
the two masks obtained following the procedure explained
in the previous step. First of all, a Gaussian or median filter
is applied to obtain both C and D images. This blur should
be soft (e.g. Gaussian with aperture size 29 px) otherwise
differences in the shapes of the layers could be lost. Then,
images C and D are masked with M obtaining images E
and F , respectively; furthermore, a dissimilarity image is
obtained by subtracting E and F . Finally, only differences
in intensity greater than a threshold (e.g. 25, depending on
the desired sensitivity) are pointed out. Their areas are also
calculated: they are displayed in red in Fig. 7, in which areas
are also reported (in blue), expressed in number of pixels or
in 3D world coordinates.

Areas can be expressed in 3D world coordinates by means
of the knowledge-based approach as done for the back-



(a) (b)
Fig. 7. (a) Comparison of a frame (upper right) with its reference (upper
left) and their masks (bottom). (b) Zoom on defective areas, which are
displayed in red and labeled in blue with their area expressed in number of
pixels.

ground/foreground extraction. In this case, the four vertices
of each pixel belonging to the foreground are projected to the
3D model and the area of the projected pixel is approximated
by the area of a parallelogram in 3D world coordinates. Thus,
the area of the defective region can be calculated as the sum
of many parallelograms, each of which approximates the area
covered by a pixel.

IV. EXPERIMENTAL RESULTS

This section deals with the application of the methods
proposed in the previous section on a dataset provided by
one of the project partners, Trimek S.A.. It contains 85 PPT
phase images of 5 CFRP side blades from 17 points of view
which cover the entire perimeter of the part. The frequency
at which the PPT is evaluated depends on the acquisition
duration and needs to be fine enough to enable discrimination
of each signal of interest [13]. In our case, a good value
was found to be 0.04 Hz. One of the 5 CFRP side blades is
supposed not to have any defects and is taken as a reference
for the comparisons so that each image can be analyzed and
compared with the respective defect-free reference. In the
following, the results are discussed: first of all, some remarks
about the segmentation of the glue layer; second, the results
of the 68 comparisons.

The detection of adhesive bondings in the extracted fore-
ground must face with many types of dark regions with
respect to the surrounding and light-dark transitions. There
are some examples of dark regions of different brightness,
shape and size labeled with the letters A and B in Fig.
8(a) and transients with different brightness, shape, size and
sharpness labeled with the letters A, B, C and D in Fig. 9(a).
As shown in Fig. 8(b) and 9(b), the proposed method can
successfully detect several combinations: i) large or tapered
dark regions, ii) dark regions and brightness transitions
along the contours of the part, iii) sharp transitions due to
local dishomogeneities in the glue layer. If contrast were
adjusted globally, many details, which can be captured by
the proposed local method, would instead be lost. Fig. 10
provides the comparison of the two methods: the first image
(a) is the starting PPT phase image, the second (b) its global
adjustment and the third (c) the mask obtained by USM.

To evaluate the performance of the whole system, the
number of False Positives (FPs) and False Negatives (FNs)
has been measured. Let A and B be the two images being

(a) (b)
Fig. 8. (a) Example of frame with darks regions of different brightness,
shape and size labeled by the letters A and B. (b) Corresponding mask:
different kind of dark regions are detected.

(a) (b)
Fig. 9. (a) Example of frame with transients of different brightness, shape,
size and sharpness labeled by the letters A, B, C and D. (b) Corresponding
mask: different kind of transitions are detected.

compared, M the union of the two masks denoting the glue
layers and D the detected defective areas: FPs may be caused
by the noise or the carbon fibre pattern, both of which may
differ in A and B. In addition, if the segmentation is not
selective, M is large and areas without glue are compared
potentially leading to FPs. Conversely, FNs occur if M does
not completely cover the regions with glue. If those areas
were different, they would not be revealed. In addition, given
the experimental setup, the proposed method strongly relies
on the assumption that the two parts are aligned. If this
condition is not met in practice, there could be FPs or FNs.
Two metrics are proposed here: |M |, which is the number
of false positive or false negative pixels normalized by the
number of pixels in M , and |D|, the same applied to D. The
average values over the 68 comparisons and the worst/highest
are reported in Table I. The best/lowest percentages are zero.
Regarding false positives, the algorithm proves to work well
with the exception of some ambiguous situations as that
shown in Fig. 11, in which the reference frame (a), the
second frame (b) and the output frame (c) are reported. In
few comparisons, it can be hard to tell whether the ground
truth or the algorithm is wrong. The region labeled with

(a) (b) (c)
Fig. 10. Local differences, captured by local contrast adjustment, may be
lost by adjusting contrast only globally: the first image (a) is the starting
PPT phase image, the second (b) its global adjustment and the third (c) the
mask obtained by unsharp masking.



TABLE I
SYSTEM PERFORMANCE IN TERMS OF FALSE POSITIVES (FPS) AND

FALSE NEGATIVES (FNS). THE NUMBER OF FPS AND FNS IS

NORMALIZED BY THE NUMBER OF PIXELS IN THE UNION OF THE TWO

MASKS |M | OR IN THE DETECTED DEFECTIVE AREAS |D|. THE

AVERAGE PERCENTAGES OVER THE 68 COMPARISONS ARE REPORTED IN

THE FIRST ROW, HIGHEST/WORST PERCENTAGES IN THE SECOND.

FP/|M | FP/|D| FN/|M | FN/|D|
0.026 0.108 0.004 0.036
0.210 0.659 0.060 0.585

(a) (b) (c)
Fig. 11. Example of FPs: (a) reference PPT phase image: region A is dark
(b) second frame (c) result of difference detection.

letter A in Fig. 11(a) is classified as defective but the ground
truth does not consider that region as part of the glue layer
even if it might be considered darker with respect to the
surroundings. That region is quite large and causes high
scores with both metrics. False negatives are instead very
rare given that the segmentation phase works well and the
algorithm robustly takes into account the union of the two
masks. In Fig. 12, another comparison is reported.

The proposed method is very efficient in terms of com-
puting time. The bottleneck is the post-processing, which
finds small contours by border following and eliminate the
respective small artifacts from the mask. On a common
laptop with Intel Quad Core i5-3337U CPU @ 1.80 GHz,
8 GB of RAM and Windows 8.1, the average required time
per image is 0.94 s, which is below the time required for the
acquisition of the next PPT phase image, approximately 30 s.

V. CONCLUSIONS

This paper presented an autonomous robotic system for
thermographic detection of defective areas in the superficial
bonding layers of CFRPs taking a step forward compared to
ongoing research. Indeed, previous work focused on the ther-
mographic process, instead of the automatic thermo-image
analysis. The proposed system uses a NDT&E technique
named PPT, whose acquisition setup consists of a flash lamp
and an infrared camera. The main point is the automatic
thermo-image analysis, in particular the pairwise comparison
of the acquired PPT phase images by means of automatic
image processing techniques. It is performed in two steps:
the segmentation of the adhesive bondings, which defines a
region of interest, and the comparison of the pair of PPT
phase images. The segmentation is based on local contrast
adjustment via unsharp masking and is capable of dealing
with ISO or vertical banding noise and artifacts due to the
typical pattern of CFRPs, thanks to pre and post-processing

(a) (b) (c)
Fig. 12. Example of comparison: (a) reference PPT phase image (b) second
frame (c) result of difference detection.

phases. Both steps take advantage from the high level of
knowledge of the experimental setup. Many tests have been
performed on PPT phase images taken from a number of
points of view such that the entire perimeter of five CFRP
side blades is covered. The proposed method has proven to
be effective and efficient.
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