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Abstract— This work presents an on-going investigation of
the control of a pneumatic soft-robot actuator addressing
accurate patient positioning systems in maskless head and neck
cancer radiotherapy. We employ two RGB-D sensors in a sensor
fusion scheme to better estimate a patient’s head pitch motion.
A system identification prediction error model is used to obtain
a linear time invariant state space model. We then use the model
to design a linear quadratic Gaussian feedback controller to
manipulate the patient head position based on sensed head pitch
motion. Experiments demonstrate the success of our approach.

I. INTRODUCTION

This paper presents a continuation of our investigation of
an image-guided soft robot patient positioning system for
use in head and neck (H&N) cancer radiotherapy (RT). In
2014, over 1.6 million patients developed pharynx and oral
cavity cancers in the United States, which led to over 580,000
deaths [1]. Typical H&N cancer treatment involves intensity-
modulated radiotherapy (IMRT), which delivers high potent
dose to tumors while simultaneously minimizing dose to ad-
jacent critical organs such as spinal cord, parotids glands, and
optical nerves. Typically, a patient lies on a 6-DOF movable
treatment couch, and laser or image-guidance systems are
used to ensure the patient is in the proper position.

IMRT requires accurate patient positioning. An examina-
tion of patient displacement and beam angle misalignment
during IMRT showed errors as small as 3-mm caused 38%
decrease in minimum target dose or 41% increase in the
maximum spinal cord dose [2]. Image-guided radiotherapy
(IGRT) has improved IMRT accuracy while reducing set-up
times [3], [4], [5]. However, current IGRT practices focus
on using images acquired before treatment to confirm beam
placement [6]. The discomfort caused by head masks in
prolonged IMRT treatment can increase patients voluntary
and involuntary motion. Studies show that translational errors
caused by patient motion can be larger than 6mm, and rota-
tional errors can be as high as 2◦ [7]. Current motion-tracking
systems, such as Cyberknife and Novalis are not compatible
with conventional linear particle accelerators used at the
majority of cancer centers. Moreover, these two systems
are limited to assuming the patient’s body is rigid during
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motion tracking and compensation. Recently, a robotic real-
time surface image-guided positioning system was studied
for feasibility in frameless and maskless cranial stereotactic
radiosurgery [8]. While it achieved similar accuracy as the
existing clinical methods, the system may not be suitable to
IMRT due to the presence of mechanical and electrical parts
in the path of the radiation beam.

Soft robot systems are deformable polymer enclosures
with fluid-filled chambers that enable manipulation and loco-
motion tasks by a proportional control of the amount of fluid
in the chamber [9], [10]. Their customizable, deformable
nature and compliance make them suitable to biomedical
applications as opposed to rigid and stiff mechanical robot
components. They can also be made radiotransparent, which
is necessary in IMRT.

The long term goal of our work is to address the non-
rigid motion compensation during H&N RT. As we continue
our initial investigation, we control one degree of freedom,
raising or lowering of a generic patient’s head, lying in
a supine position, to a desired height above a table. The
current system consists of a single inflatable air bladder
(IAB), a mannequin head and a neck/torso motion simulator,
two different Kinect RGB-D cameras to measure patient
position, two current-controlled pneumatic valve actuators,
and a National Instruments myRIO microcontroller. In this
work, we extended and improve our previous work [11].
This paper contributes better vision tracking and localization
methods via filtering and fusion of the two RGB-D estimates.
We improve on the system identification of the soft-robot
system and now incorporate an optimal control network. The
result is a much improved motion control.

Section II of this paper briefly presents the design of the
soft robot system. Section III discusses the computer vision
algorithms to detect the patient’s face and fusion of measure-
ments from the RB-D images. Section IV presents results
of system identification for the soft-robot system. Section
V presents design of the linear quadratic Gaussian (LQG)
controller, and Section VI presents several experiments to
demonstrate the system.

II. SOFT ROBOT DESIGN OVERVIEW

The soft robot actuation mechanism combines an IAB
(19” x 12”) made of lightweight, durable and deformable
polyester and PVC, two current-controlled proportional
solenoid valves, and a pair of silicone rubber tubes (attached
to a T-port connector at the orifice of the IAB) in order to
convey air in/out of the IAB. A 1HP air compressor supplied
regulated air at 30 psi to the inlet actuating valve, while an
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Fig. 1: Noise floor of Kinect Xbox Sensor vs. Kinect v2
Sensor

interconnection of a 60W micro-diaphragm pump and a valve
removed air from the outlet terminal of the IAB. The RGB-
D sensors are mounted directly above the head for raw head
position and velocity measurements, while local Kalman
filters (KFs) provide two estimates of the head position and
velocity. The sensor estimates are aggregated using a track-
to-track KF-based sensor fusion algorithm. We apply the
fusion result in a new robust control law for the pneumatic
actuator valves, thereby regulating air pressure within the
IAB and moving the patient’s head as desired. The real-time
controller was deployed on a National Instruments myRIO
embedded system running LabVIEW 2015. The LabVIEW
algorithms were processed within a Windows 7 virtualbox
running on the Ubuntu host workstation.

We use a Kinect Xbox 360, and a Kinect for Windows
v2 sensor to estimate head position and velocity. The two
sensors use different electronic perception technologies to
determine distance of an object from the camera origin. They
therefore have different lateral and range resolutions as well
as different noise characteristics. Image processing for both
cameras is executed on a 22GB RAM mobile workstation
with Intel Core i7-4800MQ processor running 64-bit Ubuntu
Trusty on a Linux 4.04 kernel.

III. IMAGE-BASED PATIENT POSITION ESTIMATION

We perform recursive filter estimations of the RGB-D
measurements and improve position estimates by using an
additional sensor to better localize tracked features. We add
the Kinect v2 sensor (henceforth called the v2 sensor), based
on the time-of-flight (ToF) electronic perception principle. In
ToF, light pulses illuminate a scene, and depth is calculated
by determining the phase shift of the returned light signals.
The active infra-red reduces the dependence on ambient
lighting [12], and this sensor has a higher spatial depth reso-
lution of 512×424 pixels at 30Hz interactive rate, compared
to the Xbox’s 320 × 240 pixels [13]. To minimize the noise
due to the limited sensor resolution, the v2 has in-built noise
improvement capabilities [14].

The v2 provides a higher depth-map accuracy and lower
noise floor compared to Kinect for Xbox, as can be seen
from Fig. 1, where the v2 exhibits a noise auto-covariance
of 11.4707mm2 compared with 22.7057mm2 for the Xbox.

Fig. 2: Original colored image retrieved from the Kinect v2
Sensor.

Despite the improved performance of the v2, noise remains
an issue, as is the case for every electronic perception system.
To alleviate this, we employ a multisensor data fusion of
both Kinect sensors’ observations. We achieved this by local
Kalman Filter estimates of each sensor’s observations, and
we fuse the estimates via a variance-weighted multisensor
Kalman filter fusion scheme described later in this section.

A. Face Detection and eye-feature tracking

We approached face detection using Haar Cascade Clas-
sifiers (HCC) [15]. HCC’s are based on integral image
representation, which allow for features evaluation while
maintaining high detection rates. The features resemble Haar
basis functions. A classifier is formed by choosing a small
number of crucial features with AdaBoost, and a weighted
sum of individual classifiers is used to construct a strong
object detection classifier in a cascade manner. This increases
the detector’s speed by concentrating on areas within an
image with high probability of features of interest.

A drawback of HCC’s is the memory consumed on
computing devices when searching through image pixels
for specific regions of interest. Searching through a 640 ×
480 pixels gray-scale image for specific features caused a
90% reduction in the frame rates of either sensor, when the
algorithm is run on a CPU. To overcome this, both sensor’s
images were spatially down-sampled via linear interpolation
before HCCs were applied. Face detection was performed on
a single NVIDIA Quadro K1100M GPU. We retrieve each
detected face from the GPU, and then detect eyes within
detected faces using the same procedure.

To achieve robust detection, the minimum number of
neighbors in each candidate rectangle feature was determined
based on our experience. The search area within an image
was chosen to be within the range of (5 × 5) pixels and (20
× 20) pixels. This gave us more than 90% face detection rate
for both sensors. A similar approach was used for the eye
classifier. The final implementation achieved a frame rate of
15Hz for each sensor running independently on the Linux
host computer. Further improvement in frame rates is an
avenue for future work.



B. Local Kalman Filters

From Fig. 1, we see that both RGB-D sensors suffer
from notable associated noise, which is not suitable for
our control requirement. To refine the observation, local
Kalman Filter (KF) estimates for each sensor were computed
to determine state estimates x̂(i) that minimizes the mean-
squared error to the true state x(i), given a measurement
sequence z(1), · · · , z(j), that is

x̂(i|j) = arg min
x̂(i|j)∈Rn

E{(x(i)− x̂)(x(i)− x̂)|z(1), · · · , z(j)}

, E{x(i)|z(1), · · · , z(j)} , E{x(i)|Zj} (1)

where the obtained estimate is the expected value of the state
at time i given observations up to time j. The covariance of
the estimation error is given by

P(i|j) , E{(x(i)− x̂(i|j)(x(i)− x̂(i|j)T |Zj}. (2)

Assuming the model of the state is common to both
sensors, and denoting the distance from the v2 to the head
as d(k), we define x(k) = [d(k), ḋ(k)]T ∈ R2 as the state
vector of interest, and let ∆T be the time between steps k−1
and k. The model state update equations are given by

xk = Fkxk−1 + Bkuk + Gkwk (3)

where F(k) ∈ R2×2 is the state transition matrix given by

F =

[
1 ∆T
0 1

]
(4)

u(k) ∈ R2 is the control input, B(k) is the control input
matrix that maps inputs to system states, G(k) ∈ R2×2

process noise matrix, and w(k) ∈ R2 is a random variable
that models the state uncertainty. In the absence of inputs
Bkuk = 0, and the model becomes

xk = Fkxk−1 + Gkwk (5)

where wk is the effect of an unknown input and Gk applies
that effect to the state vector, xk. The process noise is
assumed unknown and is modeled as uncontrolled forces
causing an acceleration ak in the head position (ak is thus a
scalar random variable with normal distribution, zero mean
and standard deviation σa). We model this into (3) by setting
Gk to identity and set w(k) ∼ N (0,Q(k)) where the
covariance matrix Q(k) is set to a random walk sequence
defined by Wk = [∆T 2

2 ,∆T ]
T

. Therefore, we find that

Q = WWTσa
2 =

∆T 4

4

∆T 3

2
∆T 3

2
∆T 2

σa2. (6)

Denoting the head displacement at time k as measured by
the Xbox and v2 as z1(k) and z2(k) respectively, the sensors’
measurements were mapped to the v2 reference frame and
modeled as

zs = Hs(k)x(k) + vs(k) s = 1, 2 (7)

where Hs(k) =
[
1 0

]T
maps the system’s state space into

the observed space, and vs(k) ∈ R is a random variable
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Fig. 3: KF results for the Xbox observation

that models the sensor error. We define vs(k) as a normally
distributed random variable with zero mean and variance
σ2
rs. We assume the random sequences v1(k),v2(k), w(k)

are independent and uncorrelated in time.
At each time step, k, each local KF’s priori and posteriori

estimates are computed through the typical prediction and
update phases

Prediction Phase:

x̂k|k−1 = Fx̂k−1|k−1 + Bkuk
Pk|k−1 = FkPk−1|k−1FkT + Qk (8)

where x̂k|k−1 and Pk|k−1 are the state prediction vector and
the prediction covariance matrix respectively.

Update Phase:

Kk = Pk|k−1Hk
T [HkPk|k−1Hk

T + Rk]
−1

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1)

Pk|k = (I−KkHk)Pk|k−1 (9)

where Kk, x̂k|k, and Pk|k are respectively the KF gain,
posteriori state estimate and its state covariance matrix. In
implementing the KF of (8) and (9), the variance of the
process noise/signal noise of each local KF was informed
by our knowledge of the physics of both sensors (electronic
perception methods, range resolutions and examining each
sensor’s depth map to understand the data available to the
filter), engineering judgment, and kinematics of the process
model. We found these values sufficiently modeled the
underlying process dynamics

σa = 2000mm2; σr1
2 = 70mm2for the Xbox, and

σr2
2 = 60mm2 for the Kinect v2 sensor.

Figs. 3 and 4 show the local filter estimate results of the
observation from both the Kinect Xbox and v2 sensors post-
filtering. The noise floor becomes noticeably reduced by each
sensor after the KF filtering. The steady-state performance
of both sensors include a reduction in the variance of the
observation sequence by 80.81%, while the Kinect v2 shows
an improvement in noise rejection by almost 60% .

C. Data Fusion

Each local KF estimate was combined at a central fu-
sion site to obtain a track-to-track fused global estimate.
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Fig. 4: KF results of Kinect v2’s observation

To communicate each estimate and associated covariance
matrix, we create Unix FIFO special files (i.e. named pipes)
on the kernel file system, write the estimates and covariance
matrices to the pipes at each local site and retrieve the values
at the central site.

Named pipes are low-level file I/O systems that can be
shared by processes with different ancestry. During data
exchange through a FIFO, the kernel forwards all data
internally without having to write it to the file system. Since
they exist within the kernel and the file system is just an
entry serving as a reference point for the processes to access
the pipe with a file system name, there is practically no delay
in data communication.

Local tracks are generated at each sensor site according to
(8), resulting in two local state predictions from the Kalman
filters (3). At the central fusion site, we assume a state model
common to both sensors given by (9) and adopt a variance-
weighted average of each local track in the global track
fusion algorithm [16]

x̂F (k|k) = PF (k|k)

N∑
i=1

[
Ps−1(k|k)x̂s(k|k)

]
where PF (k|k) =

[
N∑
i=1

Ps−1(k|k)

]−1

. (10)

Fig. 5 shows the output of the fusion scheme compared
against the single Kalman filters during a head-raising mo-
tion. The fusion of the local tracks produces better estimates,
with improved signal to noise ratio. The fused estimate
assigns more weight to the less noisy signal from Kinect v2.
Through the implementation of the local tracks and a global
track KF estimator, we improved the accuracy of the effective
signal to be used in our control algorithm to no more than
a standard deviation of 0.75mm from the true position of an
object. The noise spikes in the fused tracks when the process
state estimates are yet to converge as noticeable in Fig. 5 can
be attributed to the noisy initialization of pixels in the sensors
before they attain their steady state values. On average, it
takes approximately 30 seconds for the pixel values in the
Kinect sensor to reach their final steady state values [17].
This can be avoided by running the fusion algorithm for at
least 2 minutes before the fused signal is used for any control

Fig. 5: Kalman filter Track-to-Track fusion of Kinect Xbox
and v2’s local tracks

purposes. The code for the multisensor fusion experiment is
available on the git repos [18] and [19].

IV. SOFT ROBOT SYSTEM IDENTIFICATION

We approach the modeling procedure with an identifica-
tion prediction error (PEM) approach, where we estimate a
mathematical model, G(t), based on the minimization of the
sum of squared errors between estimates of the head height,

ˆy(t), and true head height, y(t), from the fusion i.e.

G(t) = arg min
θ

VN (θ, ZN )

where VN (θ, ZN ) =

K∑
k=1

n∑
i=1

1

2
(ŷi(k)− yi(k))2. (11)

ZN = {u(1) · · ·u(N) y(1) · · · y(N)} is the vector of
past input and output (fused estimates) measurements over
a bounded interval [1, N ] and θ is the greedy vector of
parameters that approximate the model we seek to build.
(11) is a special case of the least squares criterion.

A. Model Structure

Following Ljung’s formulation in [20, §4.5], we pose the
identification problem as determining the “best model” from
a set of candidate model sets via an iterative approach that
parametrizes the noncountable model sets smoothly over an
area with the assumption that the underlying system is linear
time-invariant. Here, our model structure is a differentiable
mapping from a connected, compact subset DM of Rd to a
model set M∗, such that the gradients of the predictor func-
tions are stable. This procedure is included in the MATLAB
system identification toolbox, and since the method is well-
documented in [21] we omit details.

External disturbances and stochastic variables are modeled
as additive white noise sequence, e(k), based on lagged in-
puts and outputs, and our objective is to estimate a stochastic
state space model structure of the form

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + Du(k) + v(k) (12)



where the noise terms w(k) and v(k) compensate for the ef-
fect of disturbances beyond frequencies of interest to system
dynamics and make the model robust to model uncertainties.
Since u and y alone are measurable in our setup, the states
x(k) are estimated and (12) becomes a linear regression
problem, where all the unknown matrix entries are linear
combinations of the measured inputs and output variables.
This can be written as

Y (k) = ΘΦ(k) + E(k) (13)

where

Y (k) =

[
x(k + 1)
y(k)

]
, Θ =

[
A B
C D

]

Φ(k) =

[
x(k)
u(k)

]
and E(k) =

[
E(w(k))
E(v(k))

]
.

We assume the noise term is white in order to assure an
unbiased model. The parameter estimation problem is then
to estimate the A,B,C, and D matrices by the linear least
squares regression of (13) assuming no physical insight into
the system (i.e. a black box model). E(w(k)) and E(v(k))
are estimated as a sampled sum of squared errors of the
residuals.

B. Parameter Estimation

The input, u(k), and output signals, y(k), can be charac-
terized by a linear difference equation of the form

y(k) = −a1y(k − 1)− · · · − ana
y(k − na)

−b1u(k − 1)− · · · − bnb
u(k − nb)− e(k)

−c1e(k − 1)− cnc
e(k − nc) (14)

where e(k) describes the equation error as a moving average
of white noise, and we assume e(k) has a bias-variance term
λ. We can rearrange (14) using the vectors

ψ(k, θ) = [−y(k − 1) · · · − y(k − na) u(k − 1) · · ·
u(k − nb), e(k − 1, θ), · · · , e(k − nc, θ)]T

(15)

θ = [−a1, · · · ,−ana
,−b1, · · · ,−bnb

,−c1, · · · ,−cnc
]. (16)

The adjustable parameters of (15) are elements of θ. In our
prediction model, it is convenient to write (14) as a one-step-
ahead predictor of the form

ŷ(k) = G(q, θ)u(k) +H(q, θ)ê(k) (17)

with G(q, θ) =
B(q)

A(q)
, H(q, θ) =

C(q)

A(q)

which is a complete autoregressive moving average with
exogenous input (ARMAX) model. G(q, θ) represents the
transfer function from input to output predictions, and
H(q, θ) denotes the transfer function of prediction errors to

the output model, ŷ(k); q is the z-transform, z−1, while A(q),
B(q), and C(q) are polynomials defined as

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na ,

B(q) = b1q
−1 + · · ·+ bnb

qnb ,

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc (18)

[22]. The predictor turns out to be a linear filter of the form

ŷ(k|θ) = Wy(q, θ)y(k) +Wu(q, θ)u(k) (19)
and y(k) = G(q, θ)u(k) +H(q, θ)[y(k)− ŷ(k)] (20)

where H(q, θ) is the noise model and ŷ(k) above can be
regarded as the one-step ahead predictor. After rearranging
(19),we find that

Wy = 1−H−1(q, θ) and Wu(q, θ) = G(q, θ)H−1(q, θ)

such that the residual errors from (19) become

e(k) = [y(k)−G(q, θ)u(k)]H−1(q, θ). (21)

We can consider (21) as passing the prediction errors through
a linear filter that allows extra freedom in dealing with non-
momentary properties of the prediction errors. Since the
model is that of a linear system, (21) satisfies our objective
by approximating the prefilter with the choice of the noise
model in (13).

The estimation problem is to predict the estimates, ŷ(k|θ)
so that the errors, ε(t, θ) =‖ y(t)− ŷ(t|θ) ‖p are minimized
by the choice of an appropriate p-norm criterion function,
such as the mean squared error proposed in (11).

1) Input Signal Design: The input signal choice for a
system identification experiment will determine a system’s
operating point and model accuracy. Therefore, the input
should be rich enough to excite a system and force it to show
properties needed for the model’s purpose. For the model
to be informative across all the desired frequency range, a
periodic, persistently exciting uniform Gaussian White noise
(UGWN) signal with clipped amplitudes corresponding to
the bandwidth of the valves was designed offline, and its
frequency spectrum analyzed to ensure it had as small a
crest factor as possible (since the asymptotic properties of the
model will be mostly influenced by the spectrum rather than
the waveform’s time-series shape). Gaussian White Noise
signals (GWN) and Pseudo-Random Binary Signals (PRBS)
are well-known to achieve virtually any signal spectrum
without very narrow pass bands. Therefore, pseudo-random
uniform white noise sequences were generated using the
very-long cycle random number generator algorithm. Given
that the probability density function, f(x), of the uniformly
distributed uniform white noise is

f(x) =
1

2
A if x < |A| and

u(x) = 0 if x > |A| (22)

where A is the amplitude. The expected mean, µ, and the
expected standard deviation, σ of the sequence are [23]

µ = E(x) = 0, σ = [E{(x− µ)}]
1
2 =

A√
3
. (23)



Fig. 6: Time/Frequency-Domain Properties of the Input Sig-
nal

The spectrum of the resulting signal in Fig. 6 gives good
signal power, which nicely relates to the bandwidth of the
pneumatic valves and achieves virtually all signal spectrum
with little narrow pass bands.

We therefore use the signal of (22) to model the de-
sired asymptotic estimates, ŷ(t), of (17). We sampled y(t),
the fused measurement described in (III-C) well-above the
system’s Nyquist frequencyand acquired enough samples to
make ZN asymptotically approach θ̂N as N → ∞. The
data collection procedure closely follows that described in
our previous paper and we refer readers to [11, §IV.A] for a
more detailed treatment.

The collected data was separated in a 60:40% ratio for
training and testing purposes, respectively, to assure a train-
ing model that generalizes well.

2) State Space Realization: If we define

Ŷr(k) = [ŷ(k|k − 1), · · · , ŷ(k + r − 1)|k − 1]T

Ŷ = [Ŷr(1) · · · Ŷ (N)],

it follows that 1) as N → ∞, there are n-th order minimal
state space descriptions of the system if and only if the rank
of the matrix of prediction vectors, Ŷ , is equal to n for all
r ≥ n; and 2) the state vector of any minimal realization in
innovations can be chosen as linear combinations of Ŷr that
form a row basis for Ŷ , i.e.,

x(t) = LŶr(k)

with L being an n × pr matrix (p is the dimension of
y(k)) [20, §7.3]. The true prediction is given by (17) with
innovations e(j) written as a linear combination of past
input-output data. The predictor can thus be expressed as
a linear function of u(i), y(i), i ≤ k − 1. In practice, the
predictor is approximated so that it depends on a finite
amount past data such as s1 past outputs and s2 past inputs
of the form

ŷ(k|k − 1) = α1y(k − 1) + · · ·+ αs1y(k − s1) (24)
+ β1u(k − 1) + · · ·+ βs2u(k − s2).

Piping the identification data through the MATLAB func-
tion ‘ssest’ and testing various model orders based on the
ranking of singular values of the Hankel matrix of input-
output measurements [20], we obtained the results listed in

TABLE I: Model estimates

Data Type Expts MO1 MSE2 Fit (% ) FPE 3

Training i 2 0.001437 97.64 0.001438

ii 4 0.001454 97.62 0.00145584
iii 6 0.001333 97.72 0.001336
iv 8 0.001298 97.76 0.001298

Testing i 2 0.000963 98.47 0.000964

ii 4 0.0008574 98.56 0.008594
iii 6 0.000846 98.57 0.000849
iv 8 0.000843 98.57 0.000848

Table I on training and testing dataset. The MATLAB system
identification script is provided on a github repo [24] and
contains the dataset used for the experiment. The model set
above exhibit a high-fit of estimate to fed data with generally
good mean-square errors and final prediction errors for a
control experiment. With increasing model order starting
from 4, we see that the fits start reaching convergence, as
the mean-square errors and final prediction errors become
constant. In the frequency-domain, this is the equivalent to
having pole-zero cancellations for higher-order models. We
therefore conclude there is no useful properties a higher-
order model could predict beyond an order of 8. The second-
order model sufficiently approximates the system and is
not significantly outperformed by the higher order models
–which would contribute higher complexity to the control
design. We therefore pick the 2nd order state space model
(12) as

x(k + Ts) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + Du(k) + e(k) (25)

where Ts is the sampling period, e(k) is the modeled zero-
mean Gaussian white noise with non-zero variance,

A =

[
0 1

−0.9883 1.988

]
, B =

[
−3.03e− 07
−4.254e− 07

]
C =

[
1 0

]
, D = 0, and K =

[
0.9253 0.9604

]T
. (26)

The pair (A,B) is stabilizable and and the pair (A,C) is
detectable.

V. LQG CONTROL

We employ a LQG controller and estimator to minimize
the following cost function subject to the state equation (26)

J =

K∑
k=0

xT (k)Qx(k) +Ru(k)T u(k) + 2x(k)T N u(k)

(27)
where K is the terminal sampling instant, Q is a symmetric,
positive semi-definite matrix that weights the n-states of the
A matrix, N specifies a matrix of appropriate dimensions
that penalizes the cross-product between the input and state
vectors, while R is a symmetric, positive definite weighting

1Model Order
2Mean Squared Error (mm2).
3Akaike Final Prediction Error ([20, Secs 7.4 and 16.4]).
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matrix on the control vector u. The quadratic cost function
in (27) allows us to find an analytical solution (controller
sequence) to the minimization of J over the prediction
horizon, ny

∆u = arg min
∆u

J (28)

where ∆u is the future control sequence and the first element
in the sequence is used in the control law at every time
instant. We model additive white noise disturbances into
the discrete estimator’s states; therefore the optimization
problem becomes a stochastic optimization problem that
must be solved.

The separation theorem ensures that we can construct a
state estimator which asymptotically tracks the internal states
from observed outputs, y(k), using the algebraic Riccati
equation given as

ATPA-(ATPB+N)(R+BTPB)−1(BTPA+N)+Q. (29)

where P is an unknown n× n symmetric matrix and A, B,
Q, and R are known coefficient matrices as in (26) and (27).
We find an optimal control law by solving the minimization
of the LQ problem, (27) which we then feed into the states.

In practice, it is a good idea to start with an identity matrix,
Q, a zero penalty matrix, N , and tune R till one obtains
convergence by the state estimator. The following optimal
values were used after a heuristic search

Q =

[
1.0566 0

0 1.0566

]
, R =

[
0.058006

]
. (30)

We construct a full online estimator for the identified plant
as in Fig. 7, whereby the noise processes are assumed to be
independent, white, Gaussian, of zero mean and known co-
variances. The optimal controller gains, Kopt, are determined
from the equation

Kopt = R−1(BT P +NT ) (31)

[25] where P is the solution to the algebraic Riccati equation
(29) and E[w(k)w′(τ)] = R(k)δ(k − τ). Therefore, the
online optimal estimate, x̂(k + 1) of x(k) is

x̂(k + 1) = A(k)x̂(k) +Klqg [C(k)x̂(k)− y(k)] (32)

where x̂(k0) = E [x(k0)] The observer is equivalent to a
discrete stochastic Kalman filter that estimates the optimal
state x̂(k|k) as shown in Fig. 7. The estimator equations
are similar to equations (8) and (9) and the online, unbiased
estimate is

x̂(k + 1) = A(k)x̂(k)−Kobs[ŷ(k)− y(k)] +B(k)u(k)

ŷ(k) = C(k)x̂(k) (33)

=⇒
x̂(k + 1) = A(k)x̂(k)−Kobs[C(k)x̂(k)− y(k)]

+B(k)u(k).
(34)

Through heuristics, we found the following variances of the
online estimator to be useful:

Qe =

[
0.4511 0

0 0.4511

]
, Re =

[
0.01

]
VI. EXPERIMENTAL RESULTS AND DISCUSSION

The control network was implemented on an NI-myRIO
running LabVIEW 2015. We initialized the Kinect sensors
to allow for all pixels within the depth cameras to reach
steady state under ambient light. We performed multiple
experiments to evaluate the developed state space model of
IV-B and LQG controller of V. 1. The input variable is the
current that excites the valve, which in turn actuates the
bladder; the head moves in response to bladder actuation.
The fused estimate of the Kinect sensors are used to estimate
the real-time head pitch motion as described in III-C; this is
in turn used in a feedback to the LQG controller.

Fig. 8 shows the results from a constant reference trajec-
tory, which the head is meant to track. We notice a settling
time of approximately 24 seconds before we reach steady
state. The delay arises from our design requirements and
is not a drawback in clinical trajectory tracking where we
must ensure smooth head motion to desired target. It is also
seen that the controller exhibits relatively smooth tracking
within a 1.5 mm standard deviation over time after a relative
overshoot of 5mm in bottom graph of Fig. 8. The overshoot
can be explained by the estimator’s search for a steady state
region based on the time it takes for the pixel values of
the sensors to reach steady state. The controller tracks the
reference to within ±2mm.

However, we noticed an inconsistency at certain operating
ranges in the current LTI model. The applied current based
on fusion feedback occasionally reaches a steady state error,
as can be seen from Fig. 9. We conjecture this is due
to an unmodeled nonlinearity at the inlet valve that maps
input currents to system states. To better approximate the
nonlinearity from input to output, we will investigate using
a Hammerstein block-structured model that better approx-
imates the nonlinearity from inputs to states and states to
output of the system.

The fusion algorithm proved useful to cancel jitter in the
depth measurement of the sensor over our previous results,

1The LabVIEW identification and control codes are available on the git
repo [26].
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but it falls short of the 1mm accuracy in head and neck cancer
RT. Having established proof of concept in this investigation,
we will begin investigation of better head localization by
using sophisticated motion capture systems or laser scanners,
such as those actively employed in IGRT.

VII. SUMMARY

We have presented a continuation of or initial investigation
into a pneumatically-driven soft robot system for head and
neck radiotherapy. Measurements from two Kinect RGB-D
cameras are fused to refine the accuracy of observations.
System identification on the soft robot was combined with
LQG controller design to provide an optimal controller.
Experiments showed we could actuate the patient head within
2.5mm accuracy. Future work will investigate accurate multi-
axis positioning using better 3D sensor, control of multiple
IABs, and nonlinear modeling or model free-methods to
overcome limitations of the LTI model.
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