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Abstract

Despite technological advances in the industry of systems development, testing is

still the most commonly used verification method to ensure reliability. Model-based testing

(MBT) techniques are principally employed for the purpose of generating test cases from

specification models. Contributing to this branch of research an MBT strategy for creating

test cases from controlled natural language (CNL) requirements was created, called NATural

Language Requirements to TEST Cases (NAT2TEST). The NAT2TEST strategy deals with

data-flow reactive systems, a class of embedded systems whose the main feature is to have the

inputs and outputs always available as signals. However, there is a demand from the industry to

to apply the strategy in the context of hybrid systems. These systems are a fusion of continuous

dynamical and discrete dynamical systems, that is, they combine dynamical characteristics

from both continuous and discrete worlds. Hybrid systems have received much attention in the

last years. The main contribution of this work is to extend the NAT2TEST strategy to deal with

hybrid systems. Using the new proposed approach, it is possible to write the requirements of a

hybrid system, whose semantics is characterised based on the case grammar theory. Then, a

formal representation of the system is built considering a model of hybrid data-flow reactive

systems. Finally, to analyse the system behaviour via simulation, a modelling environment

for simulation of hybrid systems was used, called Acumen. Thereby, a specification model

in Acumen is generated and simulated in this environment. The characteristics of the new

approach are exemplified using two examples, one belonging to the electronic field, the DC-DC

Boost Converter (BC), and the other belonging to the automotive domain, the Adaptive Cruise

Control (ACC).

Keywords: Hybrid systems. Model-based testing. Controlled natural language. Case grammar.

Data-flow reactive system. Simulation



Resumo

Apesar dos avanços tecnológicos na indústria de desenvolvimento de sistemas, testes

ainda é o método de verificação mais comumente usado para garantir confiabilidade. Técnicas

de testes baseadas em modelo (MBT) são empregadas principalmente com a finalidade de

geração de casos de testes a patir de modelos da especificação do sistema. Contribuindo para

este ramo de pesquisa, foi criada uma estratégia MBT para a criação de casos de teste a partir

de uma linguagem natural controlada (CNL), chamada de NAT2TEST. A estratégia NAT2TEST

lida com sistemas reativos de fluxo de dados (DFRS), uma classe de sistemas embarcados

cuja principal característica é a de terem as entradas e saídas sempre disponíveis como sinais.

No entanto, há uma demanda oriunda da indústria para a utilização da estratégia no contexto

de sistemas híbridos. Estes sistemas são uma fusão entre comportamentos dinâmicos e

discretos, isto é, que combinam características dinâmicas de ambos os mundos, contínuo

e discreto. Os sistemas híbridos têm recebido muita atenção nos últimos anos. A principal

contribuição deste trabalho é estender a estratégia NAT2TEST para lidar com sistemas híbridos.

Utilizando a abordagem proposta, é possível escrever os requisitos de um sistema híbrido,

cuja semântica é caracterizada através da teoria de gramática de casos. Em seguida, uma

representação formal do sistema é construída considerando um modelo DFRS para sistemas

híbridos. Finalmente, para analisar o comportamento do sistema, por meio de simulação, um

ambiente de modelagem e simulação de sistemas híbridos foi usado, chamado Acumen. Com

isso, a estratégia proposta gera um modelo da especificação em Acumen e esse modelo é

simulado no ambiente. As características da nova abordagem foram exemplificadas usando

dois exemplos, um pertencente ao o campo eletrônico, o DC-DC Boost Converter (BC), e a

outra pertencente ao domínio automobilístico, o Adaptive Cruise Control (ACC).

Palavras-chave: Sistemas híbridos. Testes baseados em modelos. Requisitos. Linguagem

natural Controlada. Gramática de casos. Sistemas reativos de fluxo de dados. Simulação.
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1
Introduction

The competitiveness of the market together with the need for software reliability led

to the creation of automatic techniques as alternatives to the traditional approach of manual

testing, especially, because the most common verification method in the industry is still testing.

In this context, model-based testing was devised (MODEL-BASED TESTING IN PRACTICE,

1999).

This strategy involves developing and using a specification model to generate tests. This

model encodes the intended behaviour of an implementation, known as, System Under Test

(SUT). Test generation can be especially effective for systems that are vulnerable to changes

because it suffices to modify the specification model and then rapidly regenerate an updated

test suite (MODEL-BASED TESTING FOR THE SECOND GENERATION OF INTEGRATED

MODULAR AVIONICS, 2011). Examples of systems testing using MBT include avionics

(MODEL-BASED TESTING FOR THE SECOND GENERATION OF INTEGRATED MODULAR

AVIONICS, 2011), automotive (ZANDER-NOWICKA, 2008), control, medical, military, and

manufacturing systems (MODEL BASED TESTING USING SOFTWARE ARCHITECTURE,

2010).

It is important to consider that the model can be written in several modelling languages

and, thus, different techniques can be adopted to generate test cases. For instance, one

might derive execution traces from the specification model, and then use these traces to gen-

erate test cases for the SUT: a sequence of input and expected output actions (ZANDER;

SCHIEFERDECKER; MOSTERMAN, 2011). The NATural Language Requirements to TEST

Cases (NAT2TEST) strategy, for example, take as input textual requirements and translates

them into an internal representation model named Data-Flow Reactive System (DFRS). This

model is translated to a target formalism, like, for example, Software Cost Reduction (SCR) (AU-

TOMATIC GENERATION OF TEST VECTORS FOR SCR-STYLE SPECIFICATIONS, 1997),

Intermediate Model Representation (IMR) (AUTOMATED TESTING WITH RT-TESTER - THEO-

RETICAL ISSUES DRIVEN BY PRACTICAL NEEDS, 2000), Petri nets (MURATA, 1989) or the

CSP process algebra (BROOKES; HOARE; ROSCOE, 1984), in order to generate test cases

CARVALHO (2016).
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According to UTTING; PRETSCHNER; LEGEARD (2012), Model-Based Testing (MBT)

can be described by the process shown in Figure 1.1. Using the system requirements or even

the system specification documents the specification model is constructed. During the model

creation, its level of abstraction is related to the purpose of testing, because sometimes this

model is called the test model. Having a more abstract model of the real system implies that

the model is potentially easier to check, modify and maintain than the SUT. This abstraction

is useful when validating the model, otherwise, verifying the model would be so costly as

to validate the SUT. However, it is desirable that the model is accurate enough to generate

concrete test cases, with actions, input parameters and expected results, as well as other

information required to run the generated tests. Due to the commonly large number of test

cases that can be generated from a specification model, selection criteria are necessary to

guide the generation process. A test script is an executable code responsible for performing

a test case, abstracts the output of the SUT, and then produces the test verdict. Usually, the

environment is capable of adapting the abstract test data to the concrete SUT interface.

Figure 1.1: An overview of the model-based testing process

Despite all the benefits that MBT provides, there are also some negative points for their

adoption. Among them, these models are not always available at the beginning of the project,

and there may be some resistance to create them due to unfamiliarity with the associated

syntax and semantics. As an alternative to solve this problem, CARVALHO (2016) proposes

a strategy called NAT2TEST that can use Natural Language Processing (NLP) techniques to

obtain the required models from natural-language specifications.

NAT2TEST is an entirely automatic strategy for test case generation from natural

language requirements. The approach focuses on reactive systems (CARVALHO, 2016). The

tests are generated from a Data-Flow Reactive System (DFRS): a class of embedded systems
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whose inputs and outputs are always available as signals. Figure 1.2, presented originally by

CARVALHO (2016), shows the phases of this approach. The three initial phases are fixed: (1)

syntactic analysis, (2) semantic analysis, and (3) DFRS generation; the other phases are related

to the chosen formalism to generate test cases, for instance, SCR (HEITMEYER; BHARADWAJ,

2000), IMR (PELESKA; VOROBEV; LAPSCHIES; ZAHLTEN, 2011), Communicating Sequential

Processes (CSP) (CARVALHO, 2016), among others.

Figure 1.2: Phases of the NAT2TEST strategy

However, the strategy does not support hybrid systems, which is a class of systems

that are widely used by the industry and is gaining popularity in the scientific community. In

reality, for several years great effort has been devoted to the study of testing hybrid systems

in particular, within the context of MBT MODEL-BASED TESTING AND MONITORING FOR

HYBRID EMBEDDED SYSTEMS (2004).

Without even realising it, hybrid systems cross our way several times a day: an automatic

teller machine, a car’s anti-lock braking system, a video-recorder and a washing machine are

examples thereof (HYBRID DYNAMICAL SYSTEMS, 1989). In general, hybrid systems are

those that consist of “a logical discrete-event decision-making controller system interacting

with a continuous-time process” (SAVKIN; EVANS, 1998). This kind of system has attracted

considerable attention in recent years. Along with their importance the need for reliability also

arises (LARSEN; STEFFEN; WEISE, 1997).

1.1 Research question and contributions

Taking into account all the discussion presented so far, the central research question of

this work is: how to extend the NAT2TEST strategy to deal with hybrid systems?

The proposed extension NATural Language Requirements to TEST Cases for hybrid

systems (h-NAT2TEST) must be conservative, so that the NAT2TEST strategy shall still be
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employed for dealing with non-hybrid systems. As illustrated in Figure 1.3, the extension

proposed here impacts all fixed stages of the original NAT2TEST strategy.

Our first concern is to extend the Controlled Natural Language to capture requirements

of dynamic systems, particularly, differential equations. An extended version of DFRS is

proposed as an internal formal model to represent such requirements.

Unlike the original NAT2TEST strategy, however, the main purpose here is to generate

a target model with the purpose of simulation. To achieve this, a DFRS is translated to an

Acumen TAHA; DURACZ; ZENG; ATKINSON et al. (2015) model and the environment presented

in TAHA (2012) is used for performing simulation.

Figure 1.3: Phases of the hybrid NAT2TEST strategy

In summary, this work presents the following contributions:

� An extension of the Controlled Natural Language to allow expressing requirements

of dynamic systems;

� An extension of the DFRS model to allow the internal and formal representation of

such requirements;

� a systematic translation from requirements to the extended notion of DFRS;

� a translation from DFRS to Acumen;

� use of an Acumen environment to perform simulation; and

� two examples to illustrate the overall approach, from requirements definition to

simulation.

Test case generation for hybrid systems is out of the scope of this work; it is one of the suggested

topics for future work.
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1.2 Thesis structure

This thesis is organised as follow:

Chapter 2 Discusses foundation concepts that are used in this research. First, the original

NAT2TEST strategy is briefly presented. Afterwards, a definition of hybrid systems

is presented, along with how they are modelled. Finally, is shown a brief discussion

of simulation and how Acumen project fits in this context.

Chapter 3 Explains how the NAT2TEST strategy was extended, showing the parts that have

been affected and the resulting impact. In addition, a running example is presented

to illustrate the contributions of this work. Finally, it presents the formalism (Acu-

men) and the tool chosen to support the proposed extension and how models are

simulated in this tool.

Chapter 4 Describes in details two case studies to illustrate the application of the h-NAT2TEST

strategy. The first one is a DC-DC Boost Converter (BC), the running example, and

the second is an Adaptive Cruise Control (ACC).

Chapter 5 Presents related work, our conclusions and discusses future work.
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2
Problem background

This chapter introduces some of the main basic concepts that served as the foundation

for this research. Particularly, the components of the original NAT2TEST strategy are presented,

as well as how they are linked to generate test cases from natural language requirements. Soon

after, it is introduced the concept of hybrid systems and how to represent them.

2.1 The NAT2TEST strategy

NAT2TEST is an entirely automatic strategy for test case generation from natural

language requirements. This strategy aims at reactive systems, whose behaviour can be

described through actions that should be taken when certain conditions are met. An important

feature of the approach is the possibility of generating test cases for systems with discrete or

continuous temporal properties (CARVALHO, 2016).

The rest of this section is devoted to a brief description of the three first phases of the

NAT2TEST strategy. These are the phases that are adapted when dealing with hybrid systems

and, thus, this explanation is required to understand the extension proposed in this work. For

more comprehensive explanation of the original NAT2TEST strategy, we refer to CARVALHO

(2016).

2.1.1 Syntactic and semantic analysis

For an automatic processing of requirements and generation of test cases, the re-

quirements must be written according to a specific grammar, namely the SysReq-CNL. The

System Requirements Controlled Natural Language (SysReq-CNL) is a Controlled Natural

Language (CNL) grammar that consists of a subset of the English language. It has been

created in order to turn the writing of system specifications more standardized and reliable,

facilitating the conversion to a formal notation. In addition, this grammar was designed to handle

requirements of data-flow reactive systems. These systems are part of a class of embedded

systems where inputs and outputs are always available as signals.
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The lexicon entries are classified into lexical categories to simplify the grammar, for

example, it uses determiners, nouns, adjectives and so on. The complete grammar expressed

in the Extended Backus-Naur Form (EBNF) notation, is shown in the Table 2.1. An important

feature to highlight is that the lexicon is domain dependent which means that the instantiation of

the categories must be manually created considering the current system domain. Nevertheless,

a small set of a lexicon is initialised by default.

The grammar start symbol is Requirement, which consists of a ConditionalClause and

an ActionClause. Therefore, the requirements have the form of action statements guarded by

conditions. A ConditionalClause begins with a conjunction, and then its structure is similar to a

Conjunctive Normal Form (CNF) – conjunction of disjunctions. The conjunctions are delimited

by a COMMA and the AND keyword, whereas the disjunctions are delimited by the OR keyword.

The elementary condition (Condition) comprises a NounPhrase (one or more nouns eventually

preceded by a determiner and adjectives) and a VerbPhraseCondition, which begins with a

VerbCondition (the verb “to be” or any other in the present or past tense). A VerbCondition

is followed by an optional NOT, which negates the meaning of the next term, an optional

ComparativeTerm and a VerbComplement.

An ActionClause begins with a NounPhrase followed by a VerbPhraseAction, which is

rewritten as SHALL followed by at least one VerbAction and one VerbComplement. If more

than one VerbAction and VerbComplement is used, then it is necessary to add a COLON after

the SHALL keyword and use the COMMA to delimit the elements. A VerbComplement is an

optional VariableState (a NounPhrase, an adjective, an adverb or a number) followed by zero or

more PrepositionalPhrase, which consists of a preposition and a VariableState.

Although imposing writing structure, this grammar is general enough to allow the user

to write sentences in several application domains. A simple example of how a requirement may

be written, in SysReq-CNL, is shown below.

� When the input1 becomes greater than or equal to 10, the System shall assign valid

to the output1.

The natural way of describing the system behaviour, imposed by the SysReq-CNL, facil-

itates the usability because the user does not need in-depth learning of a particular technology

to describe a system entirely.

Table 2.1: SysReq-CNL – a grammar for system requirements

Requirement → ConditionalClause COMMA ActionClause PERIOD;

ConditionalClause → CONJ AndCondition;

AndCondition → AndCondition COMMA AND OrCondition

| OrCondition;

OrCondition → OrCondition OR Condition | Condition;

Condition → NounPhrase VerbPhraseCondition;
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ActionClause → NounPhrase VerbPhraseAction;

VerbPhraseAction → SHALL (VerbAction VerbComplement

| COLON VerbAction VerbComplement

(COMMA VerbAction VerbComplement)+);

VerbAction → VBASE;

VerbPhraseCondition → VerbCondition NOT? ComparativeTerm?

VerbComplement;

VerbCondition → VTOBE_PRE3 | VPRE3RD

| VTOBE_PRE | VTOBE_PAST3;

ComparativeTerm → (COMP (OR NOT? COMP)?);

VerbComplement → VariableState? PrepositionalPhrase*;

VariableState → (NounPhrase|ADV | ADJ | NUMBER);

PrepositionalPhrase → PREP VariableState;

NounPhrase → DETER? ADJ* Noun+;

Noun → NSING | NPLUR;

For the semantic analysis, a syntax tree is required, which is generated for each valid

requirement during the syntactic analysis. The NAT2TEST strategy uses Thematic Role (TR)

to give meaning for each sentence: each word or group of words has its role and functionality.

In its notation, the TRs associated with a particular verb are grouped in a struct called Case

Frame (CF).

Since the requirements are interpreted as actions that take place under certain condi-

tions, the TRs and the CFs can also be classified into condition or action types. There are nine

TRs grouped by type, which are:

TR’s associated with conditions:

� Condition Patient (CPT): the entity related to each condition;

� Condition Action (CAC): the action that concerns each condition;

� Condition Modifier (CMD): a modifier related to the condition.

� Condition From Value (CFV): the CPT previous value;

� Condition To Value (CTV): the value satisfying the condition;

TRs associated with actions:

� Agent (AGT): entity who executes the action;

� Action (ACT): the action to be executed if the conditions are met;

� To Value (TOV): the Patient value after action completion.



2.1. THE NAT2TEST STRATEGY 23

� Patient (PAT): entity who is affected by the action

A requirement can generate several CFs: one for each verb. They are grouped in a

structure called Requirement Frame (RF), in other words, a requirement gains full meaning

through the interpretation of a RF.

For example, the thematic roles for the requirement described above are assigned as

follows: TR’s associated with conditions:

� Condition Patient (CPT): the input1;

� Condition Action (CAC): becomes;

� Condition Modifier (CMD): greater than or equal to;

� Condition From Value (CFV): -;

� Condition To Value (CTV): 10.

TRs associated with actions:

� Agent (AGT): the System;

� Action (ACT): assign;

� To Value (TOV): valid;

� Patient (PAT): the output1.

2.1.2 Generation of data-flow reactive systems

After creating all the case frames, the strategy has an informal, but structured, meaning

of each system requirement, and the frames are used as input to the third phase. In this step,

a formal representation of the system behavior is built: DFRS. This formal representation is

a symbolic, timed and state-rich automata-based notation for representing natural-language

requirements.

A DFRS has two different representations: a Symbolic Data-Flow Reactive System

(s-DFRS) and an Expanded Data-Flow Reactive System (e-DFRS) one. The s-DFRS is a

more abstract representation that avoids representing possible infinite sets, thus avoiding the

state explosion problem. The e-DFRS representation is dynamically built from the symbolic

model, and is used to check properties such as reachability, determinism, and completeness

(CARVALHO; CAVALCANTI; SAMPAIO, 2016). In the present work we use s-DFRS to represent

the requirements of hybrid systems.

The DFRS is intended to model an embedded system. To help to model temporal

conditionals the DFRS can have timers in its definition. The Symbolic Data-Flow Reactive
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System (s-DFRS) is formalised as a 6-tuple: (I,O,T,gcvar,s0,F). Inputs (I) and outputs (O)

are system variables, timers (T) are a special kind of variable whose values are non-negative

numbers representing a discrete or a dense (continuous) time. The system global clock (gcvar)

has the same type as the timers. The initial state is s0, and F is a set of functions.

The construction of the s-DFRS follows some steps, primarily, from the RFs it is inferred

the system variables (inputs, outputs, and timers), as well as the functions F . Afterwards, these

two pieces of information are compiled to instantiate the model. The definition and construction

of the e-DFRS will not be discussed, given that it is not used in the NAT2TEST extension

proposed in this work.

For example, the DFRS for the only requirement described above is formed by “the

input1” in the set of input, “the output1” in the set of output, the set of Timers is empty, it has a

global clock, also an initial state with initial values of the variables, and a function with the “input1

>= 10” representing a conditional, and “the output := valid” as statement of the conditional.

After deriving DFRS models from the RFs, in the original NAT2TEST strategy, an

intermediate formal notation is considered to generate test cases. For instance, an s-DFRS

model can be encoded as CSP processes, and then test cases are generated via refinement

checking CARVALHO (2016). These phases are not further described since they are specific to

the original approach, and, in the context of hybrid systems, our focus is on simulation, rather

than on test case generation, as already emphasised.
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2.2 Hybrid systems

Hybrid systems are an integral part of modern society. Numerous applications are all

around us: rockets; autonomous auto-mobile systems; medical monitoring; process control

systems; automatic pilot avionics, among others. Actually, hybrid systems is a generic term

used to describe networks of interacting digital and analogue devices. Cyber-physical systems,

control systems and embedded systems are, for example, relevant fields that share the concepts

of hybrid systems (BRANICKY, 2005).

2.2.1 Definition of hybrid systems

It is a challenge to establish a unique definition for hybrid systems, since their investiga-

tion occurs on such a large variety of study areas, which have many concepts in common, even

though the overall area of hybrid systems has not been fully consolidated (BRANICKY, 2005).

There are different perspectives of studying hybrid systems, e.g., the computing industry

considers the context of a digital system interacting with an analogue environment (also known

as embedded systems), where the key points are the analysis and verification of systems with

discrete and dynamics events (SCHAFT, 2000).

Analysing physical systems, it was found that systems can usually operate in different

modes, and changing from one mode to another sometimes can be described as an instanta-

neous discrete transition. From this context, the perspective of the modelling and simulation

emerged. Another perspective involves control systems, where hierarchical systems have a

discrete decision layer and a continuous implementation layer, e.g. supervisory control and

multi-agent control (SCHAFT, 2000).

Therefore, in general, we can say that hybrid systems are a combination of discrete

and continuous events. These events coexist, interact and change in response to dynamics

as described by differential or difference equations in time (NICOLLIN; OLIVERO; SIFAKIS;

YOVINE, 1993). These functions responsible for describing the behaviour of the variables are

called activities (LARSEN; STEFFEN; WEISE, 1997).

One way to define the behaviour of hybrid systems is via the set of all possible tra-

jectories of the continuous and discrete variables associated with the system. In this context,

a hybrid systems is represented as a hybrid automaton model (FAHRENBERG; LARSEN;

LEGAY, 2013).

To illustrate a hybrid system, we consider the thermostat described in (LUNZE; LAMNABHI-

LAGARRIGUE, 2009). A thermostat is a device to regulate the temperature in a room. The

heating system is supposed to work at its maximum power or completely turned off. This is a

system that operates in two modes, "on" or "off". In each operation mode, the evolution of the

temperature T can be expressed by a different differential equation. Figure 2.1, presented in

(LUNZE; LAMNABHI-LAGARRIGUE, 2009), shows the modes and the differential equations of
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Figure 2.1: Thermostat model – an example of a hybrid system

the system.

Each mode corresponds to a node of a directed graph, while the edges indicate the

possible discrete state transitions. The hybrid system in this example consists of two discrete

states, q ∈ {on,off}, and a continuous state T , where T represents the temperature (real

number). Regarding the behaviour of the system, we can say that the system has two distinct

continuous behaviours that establish the evolution of the temperature T . One when in mode "on",

ruled by the dynamics Ṫ (t) = fon(T (t)), which describe temperature lowering, and another

when in the mode "off", governed by the dynamics Ṫ (t) = fo f f (T (t)), which governs the

temperature increase.

The continuous state T and different conditions on T are responsible for changes of

the discrete state q, since they may trigger discrete transitions. In Figure 2.1 it is possible

to see that if the discrete state q is "on", and T is greater than or equal to Tmax, the discrete

transition from "on" to "off" becomes enabled. Differently, in state "off", the discrete transition is

enabled if T is less than or equal to Tmin. In addition, each discrete state also has an invariant,

and the process may only stay within a state as long as it does not violate the invariant and

when the transition is enabled it is executed instantaneously, without time-consuming (LARSEN;

STEFFEN; WEISE, 1997).

The thermostat behaviour is shown graphically in Figure 2.2. It is possible to see that

the temperature does not suffer from discontinuities while the state q changes discontinuously.

Based on this example, we note that hybrid systems are two-phase systems as depicted in

Figure 2.3, reproduced from LARSEN; STEFFEN; WEISE (1997). A continuous phase, where

arbitrary continuous variables, including the clocks, evolve with time, and a discrete phase, in

which one or more operations happen simultaneously with their corresponding state changes,

but where no time passes. Thus, for each discrete state, it is necessary to define the behaviour

of the continuous variables and, as discussed above, the most commonly used way is through

differential equations as usual in physics. In what follows, we show how equations can be used

as a basis for describing the system behaviour, in particular, of hybrid systems.

A system is a collection of parts that interact with each other and with its environment
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Figure 2.2: Example of the behaviour of a thermostat

Figure 2.3: Two-phase system
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through a set of input variables u and output variables y. In a continuous time system the

time t is represented by t ∈ R, whereas in a discrete time system the time t is represented by

t ∈ Z. Regularly, the symbol k is used instead of t to denote discrete time indices. A typical

system that uses discrete-time is the computer, whereas physical systems use continuous time

(HUBBARD; WEST, 1993).

A system can be classified as static or dynamic. The system is static if its output

depends only on its present input. In others words, there is a function f (u, t) to determine the

output at any time t, t ∈ T using only the input u like in equation 2.1.

y(t) = f (u(t), t)
�� ��2.1

Figure 2.4, originally presented in (CHEN, 2013), shows an example of static systems, which

is a resistive circuit excited by an input voltage u(t). Let the output be the voltage across

the resistance R3, according to the circuit theory, the output can be simply determined by the

present input.

On the other hand, a dynamic system requires information on previously received input

to determine the system output. i.e. to determine y(t) one needs to know u(τ), τ ∈ (−∞, t].

Figure 2.5, originally presented (Y.LI, 2012), shows an example of a dynamic time invariant

system: the flow control valve. The fluid pressure P is constant. A is orifice area and ρ is fluid

density. However, the flow rate history is a function of the force F(t) acting on the valve. It is

necessary to know the time history of the forcing function F(t) in order to determine the flow

rate at any time. The position x(t) of the valve is governed by the following differential equation

(Y.LI, 2012):

ẍ = F(t)−bẋ− kx
�� ��2.2

Where k is the spring constant and b is the damping factor. For a circular pipe of radius R, the

flow rate is then given by the following equation (Y.LI, 2012):

Figure 2.4: A resistive circuit
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Figure 2.5: Flow control valve

Q =
x2

R2 A

√
2P(t)

ρ

�� ��2.3

This type of representation, shown in equations 2.2 and 2.3, is commonly used for

system description in research areas such as electrical and mechanical engineering. This is

called state-space representation (KHALI, 2002; SKOGESTAD; POSTLETHWAITE, 2005). In

representation, ẋ means the first derivative with respect to time, ẍ means the second derivative

with respect to time, and so on.

Three essential elements are the basis of the state-space representation: a vector x of

state variables, a vector u of input variables, and a vector y of output variables. All of them are

explicit functions of time, and this means that their values depend on the time at which they are

evaluated. In general, the values of x, u and y as a function of time are expressed as x(t), u(t),

and y(t), respectively. The temporal domain of the state-space representation is continuous or

discrete, and the relationship among x and u is usually governed by differential or difference

equations, respectively. For instance, in the following scheme:

ẋ(t) = f (x(t),u(t), t)

x(k+1) = f (x(k),u(k),k)

�� ��2.4

where t ∈ R and k ∈ Z . Using the equation 2.1 as a basis algebraic relation among y and the

state and input variables, incrementally, it is possible to give an initial condition x(0) . Thus,

to define a function of the inputs, u(t), is required, then, all functions x that are solutions to

Equation 2.4 denote the possible system behaviours.
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2.2.2 Hybrid system representation

Once the key concepts to understand a representation of a hybrid system has been

described, now we present how a hybrid system can be represented as a hybrid automaton

model. ALUR; COURCOUBETIS; HALBWACHS; HENZINGER; HO; NICOLLIN; OLIVERO;

SIFAKIS; YOVINE (1995) define a the hybrid automaton model as a finite automaton equipped

with a set of continuous variables. Formally, it is a seven-tuple HA = 〈X ,Q,ψ, Inv,A,Ev,As〉,
where:

� X is a finite set of real-valued variables {xi}. It is denoted by x, which is a vector

of variables. The values of all variables at a given moment define a state of the

variables. The set of all possible states is denoted by V .

� Q is a finite set of vertices called locations.

� ψ is a function that assigns to each location l ∈ Q a function ψl describing the

evolution of variables in time.

ψl(x, f )→ ẋ( f ) = f (x, f ).
�� ��2.5

� Inv is a function that assigns to each location l ∈ Q a predicate Invl , called the

invariant of l.

� A is a finite set of transitions. Each transition a = (l, l′) joins a source location l ∈ Q

to a target location l′ ∈ Q.

� Ev is a function that assigns to each transition a = (l, l′), a predicate Eva called

guard. The transition a = (l, l′) may be fired if the guard Eva is satisfied.

� As is a function that assigns to each transition a = (l, l′) a relation Asa called

assignment. It is used to model the discrete changing of the values of variables.

Asa→ x = g(x).
�� ��2.6

A state of a hybrid automaton is represented by the pair (l,x), where l ∈ Q and x ∈V .

In each position (vertice) of the automaton, the values of the variables change continuously with

time according to the associated evolution function (an element of ψ). Each transition (edge) of

the automaton is guarded by a condition, and its execution changes the values of the variables

according to the associated assignment. Each location is also labelled with a condition, called

invariant, which must hold while the system remains in the vertice.

The fully automatic analysis of hybrid systems described as hybrid automata is not

feasible due to the complexity inherent to these systems. Therefore, subclasses of hybrid

automata are studied. We can highlight the following subclasses described in (LARSEN;

STEFFEN; WEISE, 1997):
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Timed automata are the special case of hybrid systems where all activities have a growing

and constant behaviour, invariants and pre-conditions are comparisons of clocks (and

clock differences), and post-conditions are restricted to clocks reset.

Drifting-clock timed automata are a similar subclass of timed automata, where all activities

may vary the behaviour within a given interval.

Linear hybrid systems is a subclass which can be analysed effectively and automatically by

techniques shown in (ALUR; COURCOUBETIS; HENZINGER; HO, 1993), unlike the

nonlinear. In these systems, invariants, guards and activities may only depend linearly on

time. It is precisely this hybrid system subclass that this work considers.

2.2.3 DC-DC Boost Converter

To exemplify the use of the proposed strategy, we consider here a DC-DC Boost

Converter (BC) as a running example. This example is the same one presented in (AERTS;

MOUSAVI; RENIERS, 2015). This example is used in Chapter 3 to emphasize the changes

with respect to the original NAT2TEST strategy, and is developed in full in Section 4.1.

The BC is a power converter that rises voltage while stepping down current, from its

input to its output. This type of device is old in the electrical field but widely used in modern

equipment. For example, the engines used in driving electric vehicles require much higher

voltages, than could be provided via a single battery. Even if it were possible to use a single

battery, its weight and size make its use impractical. The solution is to use fewer batteries and

to boost, using a boost converter, the available DC voltage to the appropriate voltage.

The Figure 2.6, originally presented in (AERTS; MOUSAVI; RENIERS, 2015),illustrates

a example physical of the BC and its basic circuit. A generic BC is composed of:

An inductor (L) is a passive electrical device that stores energy in the form of magnetic field,

usually combining the effect of various loops of electric current;

A capacitor (C) is a passive two-terminal electrical component that stores electrical charges

in an electric field, accumulating an internal imbalance of electric charge;

A switch (S) is a physical mechanism that rapidly switches a device on and off.

A diode (D) is a component that allows an electric current to pass in one direction ( it has low

resistance in one direction) while blocking current in the opposite direction (it has high

resistance in the other direction).

A resistive load (R) is the output.

Closing the (S) generates a short circuit from the right side of L to the negative input.

Consequently, a current flows between the positive and negative supply terminals through L,
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which stores energy in its magnetic field. Initially, there is no current running in the right side of

the circuit because of the combination of D, C and the resistive load represent a much higher

impedance than the path straight through the (S).

Opening the (S) causes a sudden drop in current and produce an electromotive force

(emf) in the opposite polarity to the voltage across L (VL) during the open period. The resulting

current through D loads up C to VIN + VL minus the forward voltage loss across D, and also

supplies the load.

After the first start, the switch is closed, consequentely, the output of the circuit is

isolated from the input, despite the load continues to be fulfilled with VIN + VL from the charge

on C. C is recharged each time the switch is open, so maintaining an almost steady output

voltage across the load.

Summarising, the boost of the DC voltage is a consequence the combined physical

properties of the inductor L and capacitor C, which are controlled by the switch S and diode D.

This process transforms the input voltage E to an increased output voltage that is applied to the

resistive load R. Note that the control elements of the boost converter transform the otherwise

continuous system into a hybrid system. Finally, the system is made input dependent by tuning

the resistive load R which results an internal stabilizing behaviour of the boost converter. In

Figure 2.7, originally presented (AERTS; MOUSAVI; RENIERS, 2015), this system is modelled

as a hybrid automaton.

Figure 2.6: Boost converter

The four discrete states of the system are solely dependent on the position of the switch

S and the mode of the diode D (conducting/blocking). In addition, the physical properties of the

system are modelled by the electric charge q of the capacitor and the magnetic flux Φ of the

inductor.
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Figure 2.7: Boost converter automata
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2.3 Simulation

Advances in technology continually lead to the construction of systems with higher

complexity; therefore any change in these systems is made more complicated. A simulation is

an approach to understanding and to evaluate the behaviour of these systems. More formally,

simulation is “the process of designing a model of a real system and conducting experiments

with this model for the purpose either of understanding the behaviour of the system of or

evaluating various strategies (within limits imposed by a criterion or a set of criteria) for the

operation of the system” (SHANNON, 1975).

Simulation has several advantages, for example, it is used to compress a time frame, a

simulation running on a computer describes more quickly the effects of a change in a real word

circumstances. It used in engineering design to verify the effects of changes on the product

without producing a physical prototype. It is especially valuable for testing conditions that

might be difficult to reproduce with simple prototypes, mainly in the early phase of the design

process when the system may not be available. Also, it can increase the quality of the systems,

potentially decreasing the number of errors found later in the design process (FRAMEWORK

FOR SIMULATION OF HYBRID SYSTEMS: INTEROPERATION OF DISCRETE EVENT AND

CONTINUOUS SIMULATORS USING HLA/RTI, 2011).

Moving our focus to hybrid systems, they have participation in several areas, including

in safety-critical areas, and consequently, there is the need to analyse the behaviour of these

systems. A common approach used here is the numeric simulation of such systems. The

simulation of pure continuous systems (ROBERTS; SEDRA; SEDRA; SMITH, 1992) and pure

discrete systems is thereby well understood (CASSANDRAS; LAFORTUNE, 2009). There

exist several numeric simulation methods for systems of Ordinary Differential Equations (ODE).

However, the combination of discrete and continuous dynamics leads to challenging problems

for simulation (MIXED-SIGNAL SIMULATION CHALLENGES AND SOLUTIONS, 2008).

In this context, the idea of building a simulation and verification environment to fill several

gaps in this research area, led to Acumen. The main goal of the Acumen project was developing

a semantic foundation that unified the formalism Functional Reactive Programming, which has

been used successfully in a wide range of domains, including robotics and computer animation,

with real numbers detailed treatment. A peculiarity that enhances the use of Acumen for hybrid

systems is its continuous language. The use of this feature allows the use of real-valued

variables, derivatives with respect to time, partial derivatives, tuples, families of equations (finite

quantifiers), vectors, matrices and recursive functions during the construction of models (TAHA

et al., 2015).

Other features which have been taken into account in the construction of Acumen is

the accessibility (open-source) and the usability. Acumen is used in this work and a brief

introduction is given in the next section, according to TAHA (2012).
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2.3.1 Acumen

Acumen is an experimental environment for modelling and simulation of hybrid systems.

It is built upon a textual modelling language that has the same name. Hereafter, we highlight

the main features of the environment and the language. Using the Acumen GUI, shown in

Figure 2.8, the user can load, edit and save textual models in the Acumen language; also the

user can easily simulate models pressing a single button. Similarly, the user can view a plot, a

table or a 3D visualization of the system variables over time.

Figure 2.8: Graphical user interface of Acumen

A complete model in Acumen is composed of a set of model declarations, which may

appear in any order. A valid model must contain at least a model declaration called Main. This

main statement should have exactly one parameter, and by convention, this parameter is called

simulator. The model declaration starts with a name for the model and, right after, a list of formal

parameters between brackets, followed by an equal sign (=). After the name and the parameters,

the statement may contain a section initially, besides an always section. Model statements may

appear in any order. For example, a typical model has the form presented below. In this case,

we are modelling a bouncing ball, whose initial position is 0 (x,y), considering a given mass and

size.
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1 model B a l l (mass , s ize ) =
2 i n i t i a l l y
3 x_pos i t i on = 0 ,
4 y_pos i t i on = 0
5 always
6 / / the r e s t o f the body of the d e c l a r a t i o n o f the B a l l model
7 model Main ( s imu la to r ) =
8 / / body o f the d e c l a r a t i o n o f the model Main

Initially sections are responsible for the declaration of the variables that are used

throughout the model , besides defining their initial values. Always sections contain a sequence

of statements, usually made up of assignments and/or conditional assignments. It is important

to understand that all these statements are executed at the same time. Thus, the order in which

they are introduced does not matter.

In a model statement, it is allowed to instantiate objects declared in another model, via

the reserved word create. The instantiation is permitted in both initially and always sections.

When in the initially section, it is called a static instance, whereas in the always section, it is

called a dynamic instance. It is shown below how instances differ: the difference between static

instances and dynamic ones is that the static ones can be accessible during all the running of

the program, while the dynamics ones cannot be referenced because they do not have a bound

with a variable. For example, in the code below, b is a static instance, whereas the ball created

later is a dynamic one.

1 model Main ( s imu la to r ) =
2 i n i t i a l l y
3 b = create B a l l (5 , 14) / / S t a t i c ins tance
4 always
5 / / . . .
6 create B a l l (10 , 42) / / Dynamic ins tance
7 / / . . .

Expressions in Acumen can be built with variables, literals, embedded functions, vector

generators, and summations.

A variable has a name followed by zero or more apostrophes (’). Such apostrophes

indicate that this variable is the derivative with respect to time of the variable without apostrophe.

For example, x, x′, x′′, and x′′′ represent the variable x, its first, second and third derivative,

respectively. Acumen defines five types of statements, namely: continuous assignments, condi-

tional (or guarded) statements, discrete assignments, iteration, and sequences of statements.

In a continuous assignment the left-hand side must be a variable or a derivative of a variable,

its right side can be any expression, and the assignment operator is (=). The example below

shows a continuous assignment where two derivatives, from the running example, are being

updated. gc′ is the global clock derivative and it is assigned 1.0 to indicate a steady growth

time. q′ is a variable derivative and it is assigned the corresponding equation of its behaviour.
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1 q ’=((−q ) / ( ( r ) * c ) )
2 gc ’= 1.0

Any continuous statements on the same object are evaluated simultaneously after all discrete

assignments have been made, provided no change occurs in program state.

Similarly to the continuous assignments, in discrete assignments the left-hand side

must be a variable or a derivative of a variable, the right-hand side may be any expression, and

the assignment operator is (+=). However, discrete assignments are instantaneous. It is used

to indicate that there is a discontinuous shift in a particular variable during simulation.

In order for the simulation to behave in an appropriate manner, any discrete assignment

in the model definition must occur within a conditional statement. An if-statement is executed

only if certain conditions are valid. The following code illustrates how if-statements are written:

1 i f ( x >0) then
2 x ’ ’ = −9.8
3 else
4 x ’ = 0

A match-statement is another type of a conditional statement. It can be seen as a generalisation

of an if-statement, or as the switch-statement in imperative programming languages. It allows

one to execute specific statements according to different conditions. These conditions are

based on the value of a particular expression that is being evaluated. The following example

illustrates this statement:

1 match myCommand wi th
2 [ " F a l l " −>
3 x ’ ’ = −9.8
4 | " Freeze " −>
5 x ’ = 0
6 | " Reset " −>
7 x = 0
8 ]

A for-statement allows the execution of an iteration, either for a particular number of times or for

each element in a collection. For example:

1 foreach i i n 1:10 do x=2*y
2 foreach c i n c h i l d r e n do c . x + = 15

Sequential statements are delimited by a comma (,). For example, the code bellow shows a

continuous statement followed by an if-statement using a discrete assignment in its body:

1 gc ’ = 1 . 0 ,
2 i f s i n (1000000*gc ) >= 0 then
3 s += 1
4 else
5 s += 0 ,
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Initially, the simulation of an Acumen model has only one Main object. Due to the dynamic

creation of objects, a tree of objects is created, where the Main object is always the root of the

tree, and the children are the objects dynamically created.

Each simulation step involves the visit of all tree objects, starting from the Main. Two

kinds of steps are performed, as shown in Figure 2.9, originally presented in (TAHA, 2012).

During the discrete step, discrete statements and structural actions (create) are processed.

Once all the discrete statements available are collected, the instructions are performed in

parallel. For each object, the processing begins with the execution of its the structural actions,

and then structural actions of all its children are executed. While there are active actions

that change the state, the execution continues making discrete steps. Contrarily, it makes a

continuous step. During a continuous step, all continuous assignments and integrations are

performed.

Figure 2.9: Order of evaluation
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3
NAT2TEST for hybrid systems

In this chapter, we explain how the SysReq-CNL, proposed in CARVALHO (2016), is

extended to enable writing requirements for hybrid systems. All changes are defined to keep

the expressiveness and overall structure already provided, besides keeping all the requirements

written in the old SysReq-CNL still valid in the new version. We then show how the extended

SysReq-CNL is translated into a Data-Flow Reactive System for hybrid systems (h-DFRS),

which is itself translated into Acumen for the purpose of simulation.

3.1 The SysReq-CNL grammar for hybrid systems

As described in Section 2.2, to express requirements of hybrid systems it is necessary

to use mathematical expressions, variables, functions and derivatives. Some of these features

are not supported by the previous version of the SysReq-CNL, as can be seen in Section 2.1.

As previously mentioned, the extensions to the SysReq-CNL that support these features are

conservative. For a better understanding, each extension is explained in isolation, using a

running example (the DC-DC boost converter). For compatibility with the used parser and to

facilitate the processing and analysis of the requirements, the grammar has been benefited of

techniques to avoid ambiguity (SCOTT, 2005).

Hereafter, only parts of the modified grammar are shown. The whole grammar can be

found in the Appendix C. In the new version of SysReq-CNL, the most crucial change was the

inclusion of expressions, so that it is now possible to write expressions (see Example 3.1) in

conditions instead of writing single comparisons with constant values. In this example, although

S and q are being compared with constant values, they could have been compared with other

variables and expressions as well. The inclusion of expressions in the grammar permits the

construction of logical comparisons, such as those used in the transition guards in Figure 2.7.

For instance, one way to represent the guard of transition from mode 1 to mode 2 is as follows.

S == 1 && q >= 0
�� ��3.1

With no doubt, this form of writing is very similar to the style adopted to express
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requirements. Furthermore, the inclusion of expressions permits the use of variables or values

in arithmetic expressions, making it possible to describe the behaviour of the variable q in mode

1 as follows:

(Phi/L)− (1/R∗C)∗q
�� ��3.2

Considering these characteristics, it is possible to write the requirements of the boost

converter related to transitions between modes. For example, the requirement representing the

transition from mode 1 to mode 2 can be written as follows:

� When the system mode is 1, and S == 1 && q >= 0, the DC-DC boost control system

shall assign 2 to the system mode.

In what follows, one can see how the original SysReq-CNL was evolved to consider

expressions. Now, a VariableState can be written as an Expression, whereas it considered

noun phrases, adverbs, adjectives, and numbers, previously. The grammar roles ensure the

precedence of operators, thus an Expression generates a list of AndExpression separated

by the OR operator. An AndExpression generates a list of NotExpression separated by the

AND operator. A NotExpression generates ComparativeExpression or a token LOGICALNOT

follow by a NotExpression. A ComparativeExpression generates a list of ArithmeticExpression

separated by the ComparativeOperator operator. A ComparativeOperator could be a greater

than (GT ), less than (LT ), greater than or equal to (GE), less than or equal to (LE), equals

(EQ), or not equals (NE). An ArithmeticExpression generates a list of Term separated by the

AdditiveOperator operators. An AdditiveOperator can be a token PLUS or MINUS. A Term

generates a list of Factor separated by the MultiplicativeOperator operators. A MultiplicativeOp-

erator could be a token MULT, or SLASH, or MOD. A Factor is a PrimaryExpression, and it may

be preceded by a PrefixOperator. A PrefixOperator has the same roles as an AdditiveOperator.

A PrimaryExpression is the core of the grammar; it can generate values, variables, anothers

expression between bracket and call functions. The grammar defined four default functions,

namely, SIN, COS, EXP, LOG and SQRT.

VariableState → Expression;

Expression → AndExpression (OR AndExpression)*;

AndExpression → NotExpression (AND NotExpression)*;

NotExpression → LOGICALNOT NotExpression | ComparativeExpression;

ComparativeExpression → ArithmeticExpression

(ComparativeOperator ArithmeticExpression)*;

ComparativeOperator → GT | LT | GE | LE | EQ | NE ;

ArithmeticExpression → Term (AdditiveOperator Term)*;

Term → Factor (MultiplicativeOperator Factor)*;
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Factor → PrefixOperator? PrimaryExpression;

PrefixOperator → AdditiveOperator;

AdditiveOperator → PLUS | MINUS;

MultiplicativeOperator → MULT | SLASH | MOD;

PrimaryExpression → FunctionID LP ArgumentList? RP

| TRUE | FALSE | NUMBER | NounPhrase

| LP Expression RP;

FunctionID → SIN | COS | EXP | LOG | SQRT | Noun;

ArgumentList → VariableState (COMMA VariableState)*;

Table 3.1: Part of the extended SysReq-CNL: – representing expressions

Besides expressions, now it is also possible to declare functions, with or without

parameters. After declaring a function, it can be referred to (called) within a requirement. As it

can be seen in Table 3.2.

The function declaration begins with an identifier, then a list of the parameters between

parentheses and finally the function body. The body of a function can be just a simple expression,

or a ternary expression, or can even be defined using pattern matching. These last two are

constructs inserted to enhance the flexibility and the expressiveness of the grammar.

The ternary conditional operator is a way to make a simple conditional test, analogously

to an if-else structure. This structure is written as follows: test ? expression1 : expression2,

where test is any boolean expression, expression1 is an expression evaluated if test is true,

whereas expression2 is evaluated otherwise.

The last construct allows the definition of expressions for pattern matching. This form

is widely used in the writing of mathematical equations. The structure is as follows, (test

DO expression1)+. Where test is any boolean expression and expression1 is an expression

evaluated if test is true. Using this form, it is possible to define functions by pattern matching.

Since our grammar allows expressions rather than being confined to literals, a peculiarity

was added to simplify the writing. For example, the original grammar, a conditional a > b is true

is a valid conditional, in the proposed one this conditional remains valid and the conditional

a > b is also valid.

Table 3.2: Part of the extended SysReq-CNL: functions

Sentence → Requirement | FunctionDeclaration;

FunctionDeclaration → Noun LP ParameterList? RP EQUALSSIGN FunctionBody;

ParameterList → Noun (COMMA Noun)*;

FunctionBody → TernaryExpression | PatternMatching | Expression;

TernaryExpression → Expression IN TernaryDefinition COLON TernaryDefinition;

TernaryDefinition → Expression | TernaryExpession;

PatternMatching → (Expression DO Expression)+;
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Returning to the running example, the behaviour of q in mode 1 can be described as

the following function:

q_mode1(Phi,L,R,C,q) = (Phi/L)− (1/R∗C)∗q
�� ��3.3

As shown in Section 2.2, in hybrid systems, the behaviour of a variable can involve the

computation of derivatives. Therefore, the new version of the SysReq-CNL also allows such

a characteristic. For such improvement, the new verb action set was incorporated into the

dictionary, and the word derivative was defined as a reserved word, in order to denote when

the derivative of a variable is being considered. In our research, the second, the third and

the others derivatives were not necessary for the description of a hybrid system, but they can

easily be incorporated by adding new reserved words. Now, it is possible to write a requirement

to describe the behaviour of variables using function calls and derivatives. For example, the

requirement for the continuous behaviour of q and Phi in the mode1 can be written as follows:

� When the system mode is 1, the DC-DC boost control system shall:

set q_mode1(Phi,L,R,C,q) to the q derivative, set Phi_mode1(C,q,E) to the Phi

derivative.

Now, during the syntactic analysis phase of the NAT2TEST strategy, a syntax tree is

generated for each grammatically correct requirement, considering the new grammar structure.

Syntax trees are also generated for the user-defined functions. To enable the parsing of these

new elements, the SysReq-CNL (component of the NAT2TEST tool that parses requirements)

was extended.

About the perspective of implementation, the new grammar has introduced into the

parser, and the new tokens were included. In the GUI, it was necessary to create a new area

responsible for creating and manipulating functions.

3.2 Semantic analysis of hybrid-system requirements

This phase consists of relating syntactic structures of grammar elements with semantic

roles according to the theory of Case Grammar (FILLMORE, 1968). The relation of the meaning

of each thematic role to a group of words is obtained by analysing the syntax tree generated

for each valid requirement according to the new System Requirements Controlled Natural

Language (SysReq-CNL) grammar.

The thematic roles considered here are the same shown in Section 2.1. However, now,

the words related to each role can comprise expressions and function calls. Therefore, some

inference rules considered by the RF-Generator (the NAT2TEST component that relates words

to thematic roles) were updated accordingly.

A peculiarity in semantic processing is when the user decides to use one expression

as a condition, for example, to write a > b instead of a > b is true, the thematic role patient
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receives the expression as the value, and the same occurs with toValue. This interpretation does

not affect the Data-Flow Reactive System (DFRS) generation (CARVALHO; CAVALCANTI;

SAMPAIO, 2016).

For generating the thematic roles it is necessary to analyse an entire requirement.

With this in mind, an analysis of the requirement introduced in the previous section is pre-

sented. Figure 3.1 shows the Requirement Frames corresponding to the semantic analysis.

This requirement presents one conditional, “the system mode is 1”, where, thesystemmode

receives the role of Patient (PAT) and 1 receives the role of Condition To Value (CTV). This

requirement also contains two actions, both being executed by theDC−DCboostcontrolsystem

which plays the role of Agent (AGT). As there are two actions, there is also two Patient (PAT),

namely, theqderivative and thePhiderivative. And each patient receives a value, in this case,

q_mode1(Phi,L,R,C,q) and Phi_mode1(C,q,E), respectively.

Meanwhile, looking on the side of development the keywords had a special treatment,

the constants were changed by expressions, and consequently, the definition of expressions

and types was needed.

Figure 3.1: Thematic roles from a requirement

3.3 Hybrid data-flow reactive systems

In the NATural Language Requirements to TEST Cases for hybrid systems (h-NAT2TEST),

the DFRS definition, given in Section 2.1, was modified to incorporate user-defined functions.

Function declarations were incorporated. As a result, the s-DFRS is now formalised as a

7-tuple: (I, O, T, gcvar, s0, F, FD). Inputs (I) and outputs (O) are system variables, timers (T)

are a special kind of variable whose values are non-negative numbers representing a discrete

or a dense (continuous) time. The system global clock (gcvar) has the same type as the timers.

The initial state is s0, F is a set of functions describing the system behaviour and FD are

user-defined functions, which can be referred to (called) by definitions in F .

In the same way, changes on the generation of DFRS models from requirement frames

were performed. In the previous version, only constants were considered and, thus, the type

inference was trivial. Now, with the improvements described in this chapter, the DFRS can
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also consider arbitrary expressions. This has generated the need for a new method for type

inference and analysis.

Attending to the fact that the inference is mostly the analysis of expressions, this infer-

ence resembles a functional language inference. Because of that, the algorithm Hindley–Milner,

see (MILNER, 1978), was selected to be implemented.

Hindley–Milner is a traditional type system for the lambda calculus with parametric

polymorphism. Modern language processors use type inference techniques that are based on

the algorithm W proposed by MILNER (1978). The most relevant properties of the algorithm are

completeness and its ability to deduce the most general type of a given expression without the

need of any kind of annotations or other suggestions provided by the programmer (HEEREN;

HEEREN; HAGE; HAGE; SWIERSTRA; SWIERSTRA, 2002).

Algorithm W is fast, performing type inference in almost linear time on the size of the

source, making it practically usable to type large programs. The implementation of the algorithm

in the DFRS used the technique exposed in (DIEHL, 2002) and (HEEREN et al., 2002). For

the implementation of this algorithm, a behavioural pattern, called visitor, was used. It was

necessary to create a class for each grammar construction, responsible for representing the

syntax tree, and further two major classes responsible for navigating the syntax tree and infer

the types.

Now, after generating a hybrid DFRS, this model is saved in an XML file. This file acts as

a possible input to other extensions of the NAT2TEST strategy, for instance, the one described

in (TEST CASE GENERATION FROM NATURAL LANGUAGE REQUIREMENTS USING CPN

SIMULATION, 2015), where Colored Petri Nets (CPNs) (AALST, 2015) are considered.

3.4 Evolving the NAT2TEST tool

The tool presented in (?) implements the concepts and features in a graphical tool. This

tool was also evolved to support the characteristics described in sections 3.1, 3.2, and 3.3. In

this section, we briefly describe the changes performed.

First, the tool parser receives the new grammar, along with its new tokens. After this

modification, the new style of writing can already be processed by the tool. The main result of

this phase is the possibility of the generation of syntax trees for requirements of hybrid systems.

For instance, Figure 3.2 shows the syntax tree obtained for the following requirement:

� When the system mode is 1, the DC-DC boost control system shall: set the q

derivative to q_mode1(Phi,L,R,C,q), set the Phi derivative to Phi_mode1(C,q,E).

As the new approach deals with user-defined functions, a new screen dedicated to the

creation and manipulation of user-defined functions has been incorporated into the NAT2TEST

tool. It works very similarly to the editing of requirements. Figure 3.3 shows the editing of the
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Figure 3.2: Syntax tree obtained for a requirement of a hybrid system

user-defined function q_mode1, which is used in the definition of the continuous behaviour of q

in mode1. These functions are locally saved in *.fdef files.

The implementation of the inference rules that map words to thematic roles was also

updated, since now to and from values, agents and patients can comprise expressions, and not

only single constants. Figure 3.4 shows the thematic roles identified for the same requirement

presented in Figure 3.2.

As previously explained, the generation of DFRS models was also updated to be able

to infer the type of expressions and, thus, the type of the system variables. Moreover, now, the

DFRS models are also saved as XML files. The next step of the extension to handle hybrid

systems proposed here is to derive an Acumen model, which enables simulation of hybrid

systems, from the hybrid DFRS model. This step is described in details in Section 3.5.1.

Figure 3.5 shows a visual representation of the variables that compose the DFRS. In
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the original strategy, the kind of a variable could be an input, or an output, or a timer, in the

proposed approach derivative is add to the set of kinds. Figure 3.6 shows the functions that

define the system behaviour. For each statement, representing an action, it is associated a

static guard or a dynamic guard, and the requirement name to provide traceability.
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Figure 3.3: User-defined functions
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Figure 3.4: Requirement frames obtained from a requirement of a hybrid system

Figure 3.5: Variables defined from the DFRS of the running example
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Figure 3.6: Functions defined from the DFRS of the running example
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3.5 Generating Acumen specifications

After presenting a formal representation of system requirements based on DFRS models

to hybrid systems, we now discuss how hybrid DFRSs can be simulated by tools that deal with

models of hybrid systems. At first glance, using S-TaLiRo (VISPEC: A GRAPHICAL TOOL FOR

ELICITATION OF MTL REQUIREMENTS, 2015) might seem an interesting option, since its

input model is a hybrid automata, and we noticed that it is possible to derive such a model from

hybrid DFRSs. However, studying in detail this tool has shown that some restrictions apply to

the kind of hybrid automata that can be dealt with. Therefore, considering the Acumen language

and tool (TAHA, 2012) turned out to be a better option, since its input is similar to a textual and

imperative representation of hybrid automata, with less restrictions than S-TaLiRo.

In Section 3.5.1 we explain how Acumen models are derived from hybrid DFRSs.

Afterwards, in Section 3.5.2, we describe how Acumen models can be used to simulate the

behaviour of hybrid systems.

3.5.1 From hybrid DFRSs to Acumen models

After generating a hybrid DFRS that formally represents the system requirements, it is

necessary to translate this model to an Acumen one in order to simulate it. In other words, the

elements of a hybrid DFRS are mapped to the elements of an Acumen specification, ideally

preserving the underlying semantics. In this work, we do not provide prove that the semantics is

preserved, since it is outside the scope of this work. Therefore, it is an interesting and important

topic for future work.

In order to generate syntactically correct Acumen models, it is necessary to know its

syntactic grammar. The Acumen Backus-Naur Form (BNF) was provided by the authors of the

Acumen tool, and can be seen in the Appendix B.

The translation from DFRSs to Acumen models is implemented with the aid of the

Visitor design pattern; for more details, we refer to ERICH; RALPH; RICHARD; JOHN (1994).

The visitor iterates over all nodes of the Extensible Markup Language (XML) representation of

a DFRS, and executes the appropriate translation for each node based on the type of node, its

parent and the data that it holds. In what follows, we describe the main stages of the translation:

Generating the header Stage that generates the initial settings, among them, we can highlight

determining the simulation method (EulerForward by default) and the time step (it is a

pre-establish value, but in the future will be edited by the user via the GUI), which is the

fixed and discrete increment of time that is considered when evaluating the differential

or difference equations. These settings are placed in the Main model. To exemplify, the

main model of the BC is as follows:

� model Main(simulator) =

initially
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a = create DFRS()

always

simulator.timeStep+=0.0001,simulator.endTime+=0.01

,simulator.method+="EulerForward"

Generating the Variables Here, all system variables in the initially section are declared, along

with their initial values. Model variables to represent the system inputs, outputs and timers

are identified and declared. When the derivative of a variable is used at some point of the

system specification, a second auxiliary variable is also declared. The variables of BC is

shown below:

� s= 0, l = 0.000080, phi= 0, q= 0.0, q′= 0.0, r = 20.0, c= 0.000040, phi′=

0.0, the_system_mode = 1, e = 12.0, gc = 0.0, gc′ = 0.0

The variable gc is the global clock; it possible to note that the variables q′, phi′ and gc′

were created to represent the derivatives of q, phi and gc, respectively. At the moment

the initial values are being assigned direct in the source code file, but there is a feature in

the GUI responsible for that task, but it is missing the integration.

Generating auxiliary definitions Introduces auxiliary structures that are necessary, but are

not explicitly described in the model. For example, the derivative of the global clock

variable is set to assume a steady growth behaviour.

Generating the functions It is the most important stage of the translation. The system be-

haviour represented by a hybrid DFRS model (in particular, the F component, see

Section 3.3) is represented in an imperative language. Here, we use if-statements, whose

conditions are composed by discrete and timed guards. The body of each if-statement

comprise continuous and discrete assignments according to the statements defined in

the hybrid DFRS. Since Acumen does not allow the declaration of functions defined by

the user to structure the specification TAHA; ZENG; DURACZ (2016), to represent the

functions written by the user, we generate assignments considering an in-line version

of the user-defined functions. If the user-defined function is recursive, it is not possible

to consider an in-line version of it. Therefore, although our SysReq-CNL allows for the

definition of recursive functions, we restrict ourselves to non-recursive functions due to

this restriction of the Acumen tool. To exemplify, the functions of the BC are as follows:

� i f (((s) == 1)&&((q)> 0) == true && the_system_mode == 1)then

the_system_mode+= 2 noelse,

� i f (((q)< 0) == true && the_system_mode == 2)then

the_system_mode+= 4,q+= 0 noelse,

� i f (the_system_mode == 3)then

q′ = ((−q)/((r)∗ c)), phi′ = 0 noelse,
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� i f (((s) == 1) && ((q)<= 0) == true && the_system_mode == 3)then

the_system_mode+= 4,q+= 0 noelse,

� i f (((s) == 0) && the_system_mode == 2)then

the_system_mode+= 1 noelse,

� i f (((q)< 0) == true && the_system_mode == 4)then

q+= 0 noelse,

� i f (((q)<= ((c)∗ e)) == true && the_system_mode == 3)then

the_system_mode+= 1 noelse,

� i f (the_system_mode == 2)then

q′ = ((((−1)/((r)∗ c)))∗q), phi′ = e noelse,

� i f (((s) == 1) && ((q)<= 0) == true && the_system_mode == 1)then

the_system_mode+= 4,q+= 0 noelse,

� i f (((s) == 0) && ((phi)< 0) == true && the_system_mode == 4)then

the_system_mode+= 3, phi+= 0 noelse,

� i f (the_system_mode == 1)then

q′=((((phi)/l))−((((1)/((r)∗c)))∗q)), phi′=((((((−1)/c))∗q))+e) noelse,

� i f (((s) == 1) && ((q)>= 0) == true && the_system_mode == 3)then

the_system_mode+= 2 noelse,

� i f (the_system_mode == 4)then

q′ = 0, phi′ = e noelse,

� i f (((s) == 0) && ((phi)>= 0) == true && the_system_mode == 4)then

the_system_mode+= 1 noelse,

� i f (((phi) <= 0) && ((q) > ((c) ∗ e)) == true && the_system_mode ==

1)then

the_system_mode+= 3, phi+= 0 noelse,

� i f (((s) == 0) && ((phi)<= 0) == true && the_system_mode == 2)then

the_system_mode+= 3, phi+= 0 noelse

Generating the changes of the inputs Finally, in order to enable simulation of Acumen mod-

els, it is necessary to describe how the input variables evolve over time, considering their

expected values. If the input has only one expected value, no function change is created.

If the input has two possible values of processing, we use a sine function to provide the

variation between these values. The changes of the input s, with two expect values (0 or

1), is shown below:

� i f sin(1000000∗gc)>= 0 then

s+= 1
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else

s+= 0

3.5.2 Simulating the generated Acumen model

As described in Section 3.5, the tool Acumen allows for model simulation. The Acumen

model statically describes the system behaviour, whereas the simulation illustrates how the

system behaviour evolve over time. Simulating the Acumen model derived from natural-

language requirements is a useful validation activity. Figure 3.7 shows the graphical result of

the simulation of the running example; this simulation is explained in details in Section 4.1.

Figure 3.7: Running example simulation

In our approach, after translating a hybrid DFRS into an Acumen model, a file .acm

is generated with the full Acumen code representing the system behaviour. When this file is

opened in the tool, it is possible to simulate the corresponding model. As simulation output, the

tool plots the values of each variable over time.
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4
Application of the h-NAT2TEST strategy

This chapter describes the application of the proposed hybrid version of the NAT2TEST

strategy. The examples considered here were selected in order to cover the maximum possible

characteristics of the proposed strategy, whilst being typical examples of hybrid systems.

It is important to note that, although it is not our focus here, it is also possible to use

the h-NAT2TEST strategy to perform conformance testing. To this goal, besides deriving an

Acumen specification model from natural-language requirements, it is required to have a Matlab

implementation model. Here, we focus on generating Acumen models for simulation purposes.

First (Section 4.1), we illustrate all steps of the h-NAT2TEST strategy considering our

running example (a DC-DC Boost Converter (BC)). Then (Section 4.2), the same steps are

performed but with respect to an Adaptive Cruise Control (ACC).

4.1 A DC-DC boost converter

The general idea of a BC was previously presented in Section 2.2.3. It is used to boost

an input DC voltage to an increased output value. Hereafter, we describe the application of

each step of the h-NAT2TEST strategy considering this example.

4.1.1 Writing the system requirements

Since natural-language requirements were not available for this example, but only the

automaton model showed in Figure 2.7, we manually wrote the requirements taking this model

as input.

First, we note that in each one of the four discrete states of the automaton there are

equations to update the system variables. These equations have been represented as function

declarations. Eight functions were created (one for each output variable with respect to each

state).

FUN-001 q_mode1(Phi,L,R,C,q) = (Phi/L) - (1/R*C)*q.

FUN-002 Phi_mode1(C,q,E) = (-1/C)*q + E.
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FUN-003 q_mode2(R,C,q) = (-1/R*C)*q.

FUN-004 Phi_mode2(E) = E.

FUN-005 q_mode3(R,C,q) = (-1/R*C)*q.

FUN-006 Phi_mode3() = 0.

FUN-007 q_mode4() = 0.

FUN-008 Phi_mode4(E) = E.

Considering these user-defined functions, requirements were written to describe the

discrete transitions between states of the automaton. These transitions update the system

mode, besides performing discrete assignments. Twelve requirements were written, and are

shown below.

REQ-001 When the system mode is 1, and S == 1 && q >= 0, the DC-DC boost control system

shall assign 2 to the system mode.

REQ-002 When the system mode is 1, and Phi <= 0 && q > C*E, the DC-DC boost control

system shall: assign 3 to the system mode, assign 0 to Phi.

REQ-003 When the system mode is 1, and S == 1 && q >= 0, the DC-DC boost control system

shall: assign 4 to the system mode, assign 0 to q.

REQ-004 When the system mode is 2, and S == 0 && Phi >= 0, the DC-DC boost control

system shall assign 1 to the system mode.

REQ-005 When the system mode is 2, and S == 0 && Phi <= 0, the DC-DC boost control

system shall: assign 3 to the system mode, assign 0 to Phi.

REQ-006 When the system mode is 2, and q < 0, the DC-DC boost control system shall:

assign 4 to the system mode, assign 0 to q.

REQ-007 When the system mode is 3, and q <= C * E, the DC-DC boost control system shall

assign 1 to the system mode.

REQ-008 When the system mode is 3, and S == 1 && q >= 0, the DC-DC boost control system

shall assign 2 to the system mode.

REQ-009 When the system mode is 3, and S == 1 && q <= 0, the DC-DC boost control system

shall: assign 4 to the system mode, assign 0 to q.

REQ-010 When the system mode is 4, and S == 0 && Phi > 0, the DC-DC boost control

system shall assign 1 to the system mode.
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REQ-011 When the system mode is 4, and S == 0 && Phi <= 0, the DC-DC boost control

system shall: assign 3 to the system mode, assign 0 to Phi.

REQ-012 When the system mode is 4, and q < 0, the DC-DC boost control system shall assign

0 to q.

Finally, requirements were written to describe the continuous evolution of the system

(the continuous assignments performed within each state). In these requirements, the previously

defined functions are called, and the reserved word derivative is used. These requirements are

shown in what follows.

REQ-013 When the system mode is 1, the DC-DC boost control system shall: set the q

derivative to q_mode1(Phi,L,R,C,q), set the Phi derivative to Phi_mode1(C,q,E).

REQ-014 When the system mode is 2, the DC-DC boost control system shall: set the q

derivative to q_mode2(R,C,q), set the Phi derivative to Phi_mode2(E).

REQ-015 When the system mode is 3, the DC-DC boost control system shall: set the q

derivative to q_mode3(R,C,q), set the Phi derivative to Phi_mode3().

REQ-016 When the system mode is 4, the DC-DC boost control system shall: set the q

derivative to q_mode4(), set the Phi derivative to Phi_mode4(E).

4.1.2 Inferring thematic roles

After verifying whether each system requirement is correct with respect to the SysReq-

CNL grammar, thematic roles are inferred from the obtained syntax trees. To illustrate with

an example, the requirement frame of the requirement REQ001 is shown in Figure 4.1. This

requirement describes a transition between modes 1 and 2. We note that the expression used

in this requirement is properly mapped to the CTV role. In the original NAT2TEST strategy, we

only had literals related to this role. Figure 4.2 shows the requirement frame of the requirement

RE016, which describes the continuous evolution of q and Phi in the mode 4. Here, the function

calls are properly mapped to the TOV role. We note that the expression used in this requirement

is properly mapped to the CTV and CPT roles. In the original NAT2TEST strategy, we only had

literals related to these roles. This information is useful, since later two specific variables are

created to represent the first derivative of q and Phi. The expressions represented here are not

evaluated now, but only when performing simulation of the corresponding Acumen model.

4.1.3 Generating hybrid DFRSs and Acumen models

From the inferred requirement frames a hybrid DFRS is generated. The process of

generating DFRSs automatically infers the initial value of each system variable: 0 is the default
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Figure 4.1: Requirement frame of REQ001

Figure 4.2: Requirement frame of REQ016
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initial value for integers, whereas 0.0 and false are the default values for floating numbers and

booleans, respectively. However, considering the DC-DC boost converter, other initial values

are typically expected: s = 0; l = 0.000080; phi = 0.0; q = 0.0; the q derivative = 0.0; r = 20.0; c

= 0.000040; the phi derivative = 0.000040; the system mode = 1; e = 12.0. Therefore, these

values were manually set via the NAT2TEST tool (see Figure 4.3). The complete XML file

generated for the hybrid DFRS of the BC can be seen in Appendix C.1.

Figure 4.3: Screen of the DFRS

Figure 4.4: Simulation of the Acumen model obtained for the boost converter

The generated XML file, which describes the hybrid DFRS, is used as input to generate

an Acumen specification model according to the steps discussed in Section 3.5.1. The complete

Acumen model is available in Appendix D.1. After simulating this model, the Acumen tool plots

the graphic shown in Figure 4.4. As it can be seen from the figure, the system global clock

grows steadily, and, the switch changes discretely and periodically between “on” and “off” and

this variation causes changes in the values of other variables, based on the behaviour defined

in the system requirements. An important point to note is that the charge q suffers a high

oscillation during the simulation, which in real world conditions would be something inconsistent,
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but when the frequency of switch is increased, see figure4.5, a remarkable stabilisation of the

charge is noticeable.

Figure 4.5: Simulation of the Acumen model obtained for the boost converter (2)

4.2 Adaptive Cruise Control

Adaptive Cruise Control (ACC) is an intelligent sort of cruise control, similar to the

conventional one in which the driver sets the maximum speed, and the vehicle maintains this

pre-set speed. ACC systems have been developed to aid vehicular traffic on highways, when

during long drives a motorist can transfer control to an intelligent vehicular controller system.

However, unlike conventional cruise control, this new technology can automatically adjust speed

to sustain a proper distance between vehicles in the same lane. This distance is measured by

a small radar unit behind the front grille or under the bumper.

Figure 4.6: Mechanisms of a vehicular speed control

Figure 4.6, reproduced from (VERIFICATION OF A MEMS BASED ADAPTIVE CRUISE

CONTROL SYSTEM USING SIMULATION AND SEMI-FORMAL APPROACHES, 2008), shows
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a speed control mechanism used in vehicles. In this system, a gyroscope is attached at the

wheel base to provide details on the vehicular speed. Speed and proximity sensors are also

deployed at the front and back end of the vehicle to continuously observe the speed and

distance of the vehicles ahead and behind. All these items are then sampled by an engine

controller to take a proper course of action for the vehicle.

Figure 4.7: A state machine for an adaptive cruise control system

The vehicular control is characterised by a closed loop control chain, which works

in a continuous polling mode. It represents a state machine, which is created to interpret

the traffic conditions and generate an action for each case. Figure 4.7, originally presented

in (VERIFICATION OF A MEMS BASED ADAPTIVE CRUISE CONTROL SYSTEM USING

SIMULATION AND SEMI-FORMAL APPROACHES, 2008), describes a state machine for an

ACC system. The system behaviour consists of four states: HALT, ACCELARATE, CRUISE

and RETARD. The variables xp (for proximity to the front vehicle) and v (for speed) govern

the assignments to different situations and the transitions between states. The system is

self-explanatory about the behaviour of state changes, its initial state is "HALT" and the

differential equations for ACCELARATE and RETARD are: v̇ = A and v̇ = R These states are

responsible for activating subsystems in charge of acceleration, retardation or maintaining

a uniform speed of the vehicle. During all execution, the sensors keep polling for front and

back vehicular proximity for a continuous update of the system (VERIFICATION OF A MEMS

BASED ADAPTIVE CRUISE CONTROL SYSTEM USING SIMULATION AND SEMI-FORMAL

APPROACHES, 2008).

4.2.1 Writing the system requirements

Similarly to the BC example, natural-language requirements were not available for this

example, but only the automaton model shown in Figure 4.7 and, thus, we manually wrote the

requirements taking this model as a reference. For easier reading of the text, the variables

received intuitive names: v was renamed to velocity, R to retardation, A to acceleration, xp to
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vehicle proximity, xhalt to halt proximity xcru to cruise proximity, and, finally, Vm was renamed to

cruise velocity.

Differently from the BC, since only simple assignments (literals to variables) are per-

formed, auxiliary user-defined functions were not created. In what follows, one can see the

requirements that describe the discrete and continuous assignments performed within each

state. A point to note is that the system mode is no longer an integer and has become a string

showing the freedom of expression that can be used in writing the requirements.

REQ-001 When the system mode is HALT, the ACC shall assign 0 to velocity.

REQ-002 When the system mode is CRUISE , the ACC shall assign cruise speed to velocity.

REQ-003 When the system mode is ACCELARATE , the ACC shall set velocity derivative to

acceleration.

REQ-004 When the system mode is RETARD , the ACC shall set velocity derivative to retar-

dation.

Similarly to the boost converter example, requirements were written for each transition

between states, except for the self-transition with respect to the CRUISE state. The underlying

reason is that, according to the DFRS semantics, only transitions that have side effects needs

to be explicitly modelled. The requirements created after the automaton transitions are shown

below.

REQ-005 When the vehicle proximity < the halt proximity, the ACC shall assign HALT to the

system mode.

REQ-006 When the vehicle proximity > the halt proximity, and the system mode is HALT, the

ACC shall assign ACCELARATE to the system mode.

REQ-007 When the vehicle proximity > the cruise proximity, and the system mode is RETARD,

the ACC shall assign ACCELARATE to the system mode.

REQ-008 When the vehicle proximity < the cruise proximity or velocity >= cruise speed,and

the system mode is ACCELARATE, the ACC shall assign RETARD to the system

mode.

REQ-009 When the vehicle proximity > the cruise proximity, and velocity > cruise speed , and

the system mode is ACCELARATE, the ACC shall assign CRUISE to the system

mode.

REQ-010 When the vehicle proximity < the cruise proximity, and the system mode is CRUISE,

the ACC shall assign RETARD to the system mode.
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4.2.2 Inferring thematic roles

As in the BC exemple, after verifying whether each system requirement is correct with

respect to the SysReq-CNL grammar, thematic roles are inferred from the obtained syntax

trees. To illustrate this example, the requirement frame of the requirement REQ010 is shown in

Figure 4.8. This requirement describes a transition between modes CRUISE and RETARD. We

note that the expression used in this requirement is properly mapped to the CTV and CPT roles.

In the original NAT2TEST strategy, we only had literals related to these roles. The expressions

represented here are not evaluated at this stage, but only when performing simulation of the

corresponding Acumen model.

Figure 4.8: Requirement and requirement frame of REQ010

4.2.3 Generating hybrid DFRSs and Acumen models

From the inferred requirement frames a hybrid DFRS is generated. Similarly to the boost

converter example, here we also need to provide the initial values for the system variables: ac-

celeration = 100, halt = “halt”, cruise_speed=50, the_cruise_proximity=15, the_halt_proximity=5,

retardation=-5, the_vehicle_proximity=10, the_system_mode=“accelarate”, velocity=0, veloc-

ity’=0.

As previously mentioned, the expressions are evaluated only during the simulation, as

a consequence, the expected values are composed by the entire expression, see Figure 4.9.

Consequently, the expression as a whole is a valid value accepted as the initial value.

We note that in this example we use string literals, which are also supported by the

Acumen tool. The complete XML file generated for the hybrid DFRS of the ACC can be seen in

Appendix C.2. Similarly, this file is used as input to derive an Acumen specification model (see

Appendix D.2). In order to produce an interesting simulation, it was defined manually how the

input values should change over time, instead of considering a purely random approach. The

simulation of this model yields the graphic shown in Figure 4.10.
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Figure 4.9: Screen of the DFRS

Figure 4.10: Simulation - Adaptive Cruise Control (ACC)
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As it can be seen from the figure, the system global clock grows steadily, and the state

changes discretely and periodically between “ACCELARATE” and “RETARD”. This variation

causes changes in the values of other variables, based on the behaviour defined in the system

requirements.
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5
Conclusion

The major motivation for this work is to provide means for simulating natural-language

requirements of hybrid systems, in order to enable validation of these requirements. In (CAR-

VALHO, 2016), it is proposed a strategy (NAT2TEST) for analysing and testing reactive systems

from natural-language requirements. Here, we extend this work to the domain of hybrid systems.

The strategy proposed here (h-NAT2TEST) extends the first three stages of the original

NAT2TEST strategy: syntactic and semantic analysis, and generation of DFRS models. In the

syntatic analysis, we proposed a new version of the controlled natural language SysReq-CNL,

adding to it the manipulation of expressions, besides declaring and referring to differential

and difference equations. This new version is a conservative extension of the original one,

since requirements for reactive systems are still valid according to the extended SysReq-

CNL grammar. In the semantic analysis, the inference rules of thematic roles were updated

considering the new elements now supported by the SysReq-CNL grammar. In the DFRS

Generation stage, we now consider a hybrid DFRS, extended with user-defined functions, as

well as type inference algorithm that is capable of dealing with expressions. Finally, a translation

from hybrid DFRSs to Acumen models was implemented, allowing the user to simulate natural-

language requirements of hybrid systems via the Acumen tool, without the knowledge of the

intermediate notations employed by the h-NAT2TEST strategy.

To demonstrate the feasibility of the h-NAT2TEST strategy, two examples were con-

sidered to illustrate the application of the full approach. The first example is a DC-DC boost

converter, a classic example in the electronics field, and the second one is an adaptive cruise

control system being widely employed by the automotive industry.

5.1 Related Work

Here, we present and discuss works related to our proposal extension of the NAT2TEST

strategy.

LUTESS A testing environment that supports highly automated testing of synchronous reactive

systems. During the validation process, Lutess requires three elements: the system
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under test, its environment description and an oracle. The test is performed on a single

action-reaction cycle, operated by the generator. The generator randomly chooses an

input vector for the system under test and sends it to the latter. The unit under test reacts

with an output vector and feeds back the generator with it. The generator proceeds by

producing a new input vector and the cycle is reproduced. The oracle observes the

program inputs and outputs and decides whether the software requirements are violated.

The test data generator is automatically built by the tool from an environment description

written in LUSTRE. The language is detailed in (HALBWACHS; CASPI; RAYMOND;

PILAUD, 1991).

LURETTE Is developed by the same team of the LUTESS. It is an automatic test generator

for reactive systems. Testing is automated in two principal approaches: (1) realistic

input sequences are generated from non-deterministic formal specifications of the SUT

environment properties; (2) the test success decision is done with a formal description

of the wanted properties (proper behaviours) of the SUT. The environment is modelled

using dynamically changing constraints on inputs described using Lucky (RAYMOND;

ROUX; JAHIER, 2008) and for the system it is used a higher-level language named

stochastic Lutin. The language is detailed in (DESCRIBING AND EXECUTING RANDOM

REACTIVE SYSTEMS, 2006).

GATeL Is a tool developed by the French Nuclear Research Agency (CEA). Its focus is not

generating plenty of test cases, but test cases converged to a problem. GATeL requires

three inputs: a model of the system in Lustre, a model containing the aspects of the

environment (also in Lustre), and a declarative definition of desired test cases (MARRE;

ARNOULD, 2000).

LBTest Is a tool for requirements testing of embedded and reactive systems based on the prin-

ciples of learning-based testing (LBT), an emerging technique for black-box requirements

testing. The general concept of LBT is to automatically create a large quantity of test

cases by combining an incremental automata learning algorithm or a model inference

algorithm with a model checking algorithm. LBTest uses as input a formal requirements

model written in linear temporal logic (LTL). LTL is an expressive logical language applied

in LBTest to describe both safety and liveness properties of embedded systems (LBTEST:

A LEARNING-BASED TESTING TOOL FOR REACTIVE SYSTEMS, 2013).

KeYmaera Is a deductive verification tool for hybrid systems. It was developed as a combina-

tion of the deductive theorem prover KeY (VERIFYING OBJECT-ORIENTED PROGRAMS

WITH KEY: A TUTORIAL, 2007) with the computer algebra system Mathematica (WOL-

FRAM, 1988). The systems are described in differential dynamic logic that enables the

proof of correctness, safety, controllability, reactivity, and liveness properties of hybrid

systems.
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20-sim Is a modeling and simulation program for mechatronic systems. The model is built

graphically by drawing an engineering scheme, and it is possible to create models using

equations, block diagrams, physical components and bond graphs. 20-sim contains

simulation algorithms for solving ordinary differential equations (ODE) and differential

algebraic equations (DAE) (WIKIPEDIA, 2016).

SpaceEx Is a new verification platform for hybrid systems. It uses its languagem as input,

the SpaceEx model language (COTTON; FREHSE; LEBELTEL, 2010) that is based

on components built as hybrid automata. This language induces a model hierarchy

since components can be composed to form new components (SPACEEX: SCALABLE

VERIFICATION OF HYBRID SYSTEMS, 2011).

CTE XL (Classification Tree Editor eXtended Logics) is a tool that stands out for using the

Classification-Tree Method (GROCHTMANN; GRIMM, 1993). It expresses logical de-

pendencies in formulas of propositional logic, and any logical rules can be related to a

classification tree.

MuProD Is an IBM’s project that deals with introducing in-line testing techniques to production

processes. It aims to develop a model-based test-generation expert system for simulation

of production systems at the high system level.

Ulysses Is a test case generator following the model-based mutation testing strategy. Basically,

the tool mutates UML models (input) and generate the test cases that would kill a

set of mutated models (FAULT-BASED GENERATION OF TEST CASES FROM UML-

MODELS–APPROACH AND SOME EXPERIENCES, 2011). To generate test cases

for hybrid system models, it accepts as input a hybrid variant of action systems, called

Qualitative Action Systems (QAS) (QUALITATIVE ACTION SYSTEMS, 2009).

TorX Is a testing tool for conformance testing of reactive systems. The tool requires as input a

real implementation and a formal specification. Then, the tool verifies whether the imple-

mentation is correct with respect to the given specification considering a conformance

relation (TIMED TESTING WITH TORX, 2006).

Autofocus Is a tool for the graphical specification and validation of embedded systems. The

tool uses behaviour models as input in a language quite similar to a subset of the UML-RT

(PRETSCHNER; LOTZBEYER; PHILIPPS, 2001).

AutoLink Is to a tool that aims to simplify the test generation process in order to get error-free

test suites in less time. Message Sequence Charts (MSC) are used to describe the

interaction between the SUT and the test equipment. Based on these MSCs and an

Specification and Description Language (SDL) specification, the tool generates the test

cases according to the Tree and Tabular Combined Notation (TTCN); see more details

in (PROBERT; MONKEWICH, 1992).
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S-Taliro Is a tool to check and test Cyber-Physical Systems (CPSs). It is a modular software

tool built on the Matlab platform. S-TALIRO can analyse hybrid automata, user-defined

functions as BlackBox, arbitrary Simulink models, hardware-in-the-loop and processor-in-

the-loop. S-TALIRO performs automated randomised trials based on stochastic optimisa-

tion techniques. The system requirements are defined in Metric Temporal Logic (MTL)

(VISPEC: A GRAPHICAL TOOL FOR ELICITATION OF MTL REQUIREMENTS, 2015).

(AERTS; MOUSAVI; RENIERS, 2015) Proposes a tool prototype for model-based testing of

cyber-physical systems. It is implemented in Matlab and comprises three stages of model-

based testing, specifically, test case generation, test case execution, and conformance

analysis. The tool requires a hybrid system model in a domain-specific language called

Acumen Modeling Language (TAHA; BRAUNER; CARTWRIGHT; GASPES; AMES;

CHAPOUTOT, 2010), and an implementation in Matlab.

Simulink is a software for modelling, simulating and analysing dynamic systems. It supports

linear and nonlinear systems, modelled in continuous time, sampled time, or a hybrid of

the two. It runs on the Matlab platform. For modelling, Simulink provides a graphical user

interface (GUI) for building models as block diagrams.

Table 5.1 summarises the primary purpose of each analysed tool, along with the expected input

language.

Despite the existence of numerous tools that work with hybrid systems, few are in the

context that is pursued in our work. LUTESS, LURETTE, GATEL, LBTest, CTE XL, Autofocus

and AutoLink are intended for low-level systems using logic gates. TorX is not capable of

representing the system behavior via differential and difference equations. Ulysses is not

publicly available. MuProD is a private initiative. 20-sim uses a graphical representation as

input, making it difficult to use it in our approach. SpaceEx apparently is a good alternative to be

adopted, but was only recently discovered by indication, which prevented a deep study aiming

its utilisation. Differently, S-TaLiro seems to be closer related to this work, as it generates test

cases for hybrid systems, however its test generation module is not capable of modifying the

variables in a discrete manner while changing states.

Despite all the tool compatibility, the module for testing is still under construction and

the hybrid automaton, used as input, does not fully support the features used in our strategy.

These facts prevent the use of this tool to support our strategy.

However, when we turn our attention to the tool proposed by AERTS; MOUSAVI;

RENIERS (2015), we note that it represents hybrid systems as models in the Acumen language,

which can be generated from the intermediate notation of our work (hybrid data-flow reactive

systems).

� MATLAB is the tool for design and development complex embedded systems most

widely used in the industrial area.
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Table 5.1: Tools analyzed

Tool Input language Primary purpose
LUTESS LUSTRE Test generation
LURETTE LUSTRE, Lucky, Lutin Test generation
GATEL LUSTRE Test generation and solving con-

straints
LBTest Propositional linear temporal

logic
Learning-based testing and
model checker

KeYmaera Differential dynamic logic Conformance verification
CTE XL Graphical Specifications Classification-Tree method
RTCAT Logical components Test generation
MuProD Gaussian process model Test generation
Ulysses UML models/QAS Test Generation
20-sim Graphical Specifications Simulation
SpaceEx SpaceEx language Verification
TorX LTS (LOTOS, PROMELA, FPS) Conformance testing
Autofocus Autofocus Test generation and solving con-

straints
AutoLink SDL Simulation and validation
S-TaLiRo MTL Specification, Simulink

Model, Hybrid Automata
Simulation and test conformance

(AERTS;
MOUSAVI; RE-
NIERS, 2015)

Acumen Model, Matlab Model Simulation and test conformance

Simulink Graphical models Simulation
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� The model in Acumen can be generated from the DFRS (model used by our a tool)

via a simple translation.

Considering these facts, our adaptation of the NAT2TEST strategy generates models

in Acumen. Once the implementation model is already largely used in industry, our goal is to

use this common implementation model along with a specification model written in Acumen

generated by our strategy from the requirements, and, with these two models, to use as input

for conformance verification processed by AERTS; MOUSAVI; RENIERS (2015).

5.2 Future work

Despite the results achieved in this work, we envisage some future work, described

bellow.

Enable the user to specify the changing of the input variables Although our strategy

automates the generation of Acumen specification models from natural-language requirements,

it is still required to specify manually how the input variables evolve over time, since purely

random values might not lead to relevant simulations. An interesting approach to solving this

problem is used in (AUTOMATED TESTING WITH RT-TESTER - THEORETICAL ISSUES

DRIVEN BY PRACTICAL NEEDS, 2000), where a GUI is available for the user to define how

the change of values shall occur during the simulation.

Expand the proposed approach to generate test cases For such functionality it is needed

to find a tool to give support to the generation of test cases, since this is not covered by the

Acumen tool. A possible candidate is the S-TaLiRo tool, previously mentioned. It is capable

of generating test cases from hybrid automata. However, since some restrictions apply to the

classes of hybrid automata it can deal with, its adoption is not straightforward.

Elaborate a conformance testing approach Conformance testing is characterised by effi-

ciently detecting faults or establishing a level of quality by generating test cases from a model

(in our case, Acumen models), and applying the generated test cases to evaluate the behaviour

of the system under test (BROY; JONSSON; KATOEN; LEUCKER; PRETSCHNER, 2005).

Establishing a conformance relation testing, it can allow the strategy to prove the soundness of

the test case generation, similar to what CARVALHO (2016) did, using CSP.

Perform more empirical analyses As showed in Chapter 4, the h-NAT2TEST strategy has

been illustrated using two examples from different domains. Nevertheless, to investigate the

effective application of the proposed strategy, more empirical analyses need to be conducted,

considering bigger and more complex systems.
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Prove the translation semantics As mentioned in Section 3.5, the translation from DFRS

to Acumen is done with no semantic preservation proof. To establish and prove this semantic

translation would be beneficial to the strategy robustness.

Improve the strategy to support nonlinear hybrid systems As mentioned in Chapter 1,

hybrid systems have been gaining popularity every day and, likewise, its subclass called

nonlinear, it plays an important role in modern mechatronics and robotics (BUSS; GLOCKER;

HARDT; VON STRYK; BULIRSCH; SCHMIDT, 2002). For extension of the strategy, a more

detailed study of nonlinear hybrid systems should be done in order to identify the necessary

changes in the proposed strategy.
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A
SysReq-CNL for hybrid system requirements

Table A.1: SysReq-CNL – a grammar for hybrid system requirements

Sentence → Requirement | FunctionDeclaration;

Requirement → ConditionalClause COMMA ActionClause PERIOD;

ConditionalClause → CONJ AndCondition;

AndCondition → AndCondition COMMA AND OrCondition

| OrCondition;

OrCondition → OrCondition OR Condition | Condition;

Condition → VariableState VerbPhraseCondition?;

ActionClause → VariableState VerbPhraseAction;

VerbPhraseAction → SHALL (VerbAction VerbComplement

| COLON VerbAction VerbComplement

(COMMA VerbAction VerbComplement)+);

VerbAction → VBASE;

VerbPhraseCondition → VerbCondition NOT? ComparativeTerm?

VerbComplement;

VerbCondition → VTOBE_PRE3 | VPRE3RD

| VTOBE_PRE | VTOBE_PAST3;

ComparativeTerm → (COMP (OR NOT? COMP)?);

VerbComplement → VariableState? PrepositionalPhrase*;

VariableState → Expression;

PrepositionalPhrase → PREP VariableState;

NounPhrase → DETER? ADJ* Noun+;

Noun → NSING | NPLUR;

Expression → AndExpression (OR AndExpression)*;

AndExpression → NotExpression (AND NotExpression)*;
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NotExpression → LOGICALNOT NotExpression | ComparativeExpression;

ComparativeExpression → ArithmeticExpression

(ComparativeOperator ArithmeticExpression)*;

ComparativeOperator → GT | LT | GE | LE | EQ | NE ;

ArithmeticExpression → Term (AdditiveOperator Term)*;

Term → Factor (MultiplicativeOperator Factor)*;

Factor → PrefixOperator? PrimaryExpression;

PrefixOperator → AdditiveOperator;

AdditiveOperator → PLUS | MINUS;

MultiplicativeOperator → MULT | SLASH | MOD;

PrimaryExpression → FunctionID LP ArgumentList? RP

| TRUE | FALSE | NUMBER | NounPhrase

| LP Expression RP;

FunctionID → SIN | COS | EXP | LOG | SQRT | Noun;

ArgumentList → VariableState (COMMA VariableState)*;

FunctionDeclaration → Noun LP ParameterList? RP EQUALSSIGN FunctionBody;

ParameterList → Noun (COMMA Noun)*;

FunctionBody → TernaryExpression | PatternMatching | Expression;

TernaryExpression → Expression IN TernaryDefinition COLON

TernaryDefinition;

TernaryDefinition → Expression | TernaryExpession;

PatternMatching → (Expression DO Expression)+;
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B
Acumen EBNF

1 prog = model { model }
2 model = " model " modelname
3 " ( " paramlst? " ) " "= "
4 [ " i n i t i a l l y " i n i t l s t ? [ " always " s t m t l s t ? ] ]
5

6 modelname = name
7 paramlst = var { " , " var }
8 i n i t l s t = d isc rass { " , " d i sc rass }
9 s t m t l s t = stmt { " , " stmt }

10

11 stmt = c la im | d isc rass | contass | c la im | i f | match
12 d isc rass = ( var | dot ) "+ =" ( expr | new)
13 contass = ( var | dot ) "= " ( expr | new)
14 c la im = " c la im " [ s t r i n g ] pred
15 new = " create " modelname [ " ( " e x p r l s t ? " ) " ]
16 i f = " i f " pred " then " s t m t l s t
17 ( " e lse " ( stmt | " ( " s t m t l s t " ) " )
18 | " noelse " )
19 match = " match " name " w i th " " [ " c lause { " | " c lause } " ] "
20 clause = l i t "−>" s t m t l s t ?
21

22 pred = " t rue " | " f a l s e " | r e l
23 | " ( " pred " ) "
24 | unbop pred
25 | pred binbop pred
26 r e l = aexpr re lop aexpr
27 re lop = "<" | "> " | "<=" | ">=" | "== " | "~= "
28 unbop = " not "
29 binbop = "&&" | " | | "
30

31 l i t = modelname | i n t e r v a l | number | s t r i n g | const
32 vec to r = " ( " e x p r l s t ? " ) "
33 const = " red " | " green " | " b lue " | " p i "
34 l e t = " l e t " i n i t l s t " i n " expr
35

36 expr = l e t | vec to r | aexpr | l i t
37 e x p r l s t = expr { " , " expr }
38
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39 aexpr = i n t e r v a l | number | dot | var
40 | " ( " aexpr " ) "
41 | unaop aexpr
42 | aexpr binaop aexpr
43 | fun " ( " a e x p r l s t " ) "
44 a e x p r l s t = aexpr { " , " aexpr }
45 dot = name " . " var [ " ( " i n t " ) " ]
46 var = name ( # \ \ * )
47 name = #[a−zA−Z ] [ a−zA−Z0−9]*
48 number = f l o a t | i n t
49 i n t = #[0−9]+
50 f l o a t = # [0−9 ] * \ \ . [ 0−9 ] *
51 i n t e r v a l = " [ " number [ . . number ] " ] "
52 | number +/− number
53 s t r i n g = #\ " [ a−zA−Z0−9]* \ "
54 unaop = −
55 binaop = + | − | * | /
56 fun = s in | cos | tan | atan | atan2 | abs
57 | dot | f l o o r | c e i l
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C
The DFRS representation in XML

C.1 The DFRS of the DC-DC Boost-Converter

1 <?xml version=" 1.0 " ?>
2 <DFRS>
3

4 < InVa r i ab le >
5 <VarName>s< / VarName>
6 <VarType>INTEGER< / VarType>
7 <ExpectedValue>0< / ExpectedValue>
8 <ExpectedValue>1< / ExpectedValue>
9 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >

10 < / InVa r i ab le >
11

12 < InVa r i ab le >
13 <VarName> l < / VarName>
14 <VarType>FLOAT< / VarType>
15 <ExpectedValue>0.000080< / ExpectedValue>
16 < I n i t i a l V a l u e >0.000080< / I n i t i a l V a l u e >
17 < / InVa r i ab le >
18

19 <OutVar iab le>
20 <VarName>phi< / VarName>
21 <VarType>INTEGER< / VarType>
22 <ExpectedValue>0< / ExpectedValue>
23 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
24 < / OutVar iab le>
25

26 <OutVar iab le>
27 <VarName>q< / VarName>
28 <VarType>FLOAT< / VarType>
29 <ExpectedValue>0.0< / ExpectedValue>
30 < I n i t i a l V a l u e >0.0< / I n i t i a l V a l u e >
31 < / OutVar iab le>
32

33 <OutVar iab le>
34 <VarName> the_q_de r i va t i ve < / VarName>
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35 <VarType>FLOAT< / VarType>
36 <ExpectedValue>0.0< / ExpectedValue>
37 <ExpectedValue>q_mode1 ( phi , l , r , c , q ) < / ExpectedValue>
38 <ExpectedValue>q_mode2 ( r , c , q ) < / ExpectedValue>
39 <ExpectedValue>q_mode3 ( r , c , q ) < / ExpectedValue>
40 <ExpectedValue>q_mode4 ( ) < / ExpectedValue>
41 < I n i t i a l V a l u e >0.0< / I n i t i a l V a l u e >
42 < / OutVar iab le>
43

44 <OutVar iab le>
45 <VarName>r < / VarName>
46 <VarType>FLOAT< / VarType>
47 <ExpectedValue>0.0< / ExpectedValue>
48 <ExpectedValue>q_mode1 ( phi , l , r , c , q ) < / ExpectedValue>
49 <ExpectedValue>q_mode2 ( r , c , q ) < / ExpectedValue>
50 <ExpectedValue>q_mode3 ( r , c , q ) < / ExpectedValue>
51 < I n i t i a l V a l u e >0.0< / I n i t i a l V a l u e >
52 < / OutVar iab le>
53

54 <OutVar iab le>
55 <VarName>c< / VarName>
56 <VarType>FLOAT< / VarType>
57 < I n i t i a l V a l u e >0.0< / I n i t i a l V a l u e >
58 < / OutVar iab le>
59

60 <OutVar iab le>
61 <VarName> t h e _ p h i _ d e r i v a t i v e < / VarName>
62 <VarType>FLOAT< / VarType>
63 <ExpectedValue>0.0< / ExpectedValue>
64 <ExpectedValue>phi_mode1 ( c , q , e ) < / ExpectedValue>
65 <ExpectedValue>phi_mode2 ( e ) < / ExpectedValue>
66 <ExpectedValue>phi_mode3 ( ) < / ExpectedValue>
67 <ExpectedValue>phi_mode4 ( e ) < / ExpectedValue>
68 < I n i t i a l V a l u e >0.0< / I n i t i a l V a l u e >
69 < / OutVar iab le>
70

71 <OutVar iab le>
72 <VarName>the_system_mode< / VarName>
73 <VarType>INTEGER< / VarType>
74 <ExpectedValue>1< / ExpectedValue>
75 <ExpectedValue>2< / ExpectedValue>
76 <ExpectedValue>3< / ExpectedValue>
77 <ExpectedValue>4< / ExpectedValue>
78 < I n i t i a l V a l u e >1< / I n i t i a l V a l u e >
79 < / OutVar iab le>
80

81 <OutVar iab le>
82 <VarName>e< / VarName>
83 <VarType>FLOAT< / VarType>
84 <ExpectedValue>0.0< / ExpectedValue>
85 < I n i t i a l V a l u e >0.0< / I n i t i a l V a l u e >
86 < / OutVar iab le>
87

88 <Funct ion>
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89 <FuncName>the_dc−dc_boost_contro l_system< / FuncName>
90

91 <FuncA t t r i b >
92 <GuardName>REQ001BOOST< / GuardName>
93 <Stat icGuard> ( ( s ) ==1)&amp;&amp ; ( ( q )&gt ; 0 ) = t rue
94 AND the_system_mode = 1< / Stat icGuard>
95 <TimedGuard> n u l l < / TimedGuard>
96 <Statement>
97 <VarName>the_system_mode< / VarName>
98 <Expression>2< / Expression>< / Statement>< / FuncA t t r i b >
99 <FuncA t t r i b >

100 <GuardName>REQ006BOOST< / GuardName>
101 <Stat icGuard> ( ( q )& l t ; 0 ) = t rue
102 AND the_system_mode = 2< / Stat icGuard>
103 <TimedGuard> n u l l < / TimedGuard>
104 <Statement>
105 <VarName>the_system_mode< / VarName>
106 <Expression>4< / Expression>< / Statement>
107 <Statement>
108 <VarName>q< / VarName>
109 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >
110 <FuncA t t r i b >
111 <GuardName>REQ0015BOOST< / GuardName>
112 <Stat icGuard>the_system_mode = 3< / Stat icGuard>
113 <TimedGuard> n u l l < / TimedGuard>
114 <Statement>
115 <VarName> the_q_de r i va t i ve < / VarName>
116 <Expression>q_mode3 ( r , c , q ) < / Expression>< / Statement>
117 <Statement>
118 <VarName> t h e _ p h i _ d e r i v a t i v e < / VarName>
119 <Expression>phi_mode3 ( ) < / Expression>< / Statement>< / FuncA t t r i b >
120 <FuncA t t r i b >
121 <GuardName>REQ009BOOST< / GuardName>
122 <Stat icGuard> ( ( s ) ==1)&amp;&amp ; ( ( q )& l t ;=0 ) = t rue
123 AND the_system_mode = 3< / Stat icGuard>
124 <TimedGuard> n u l l < / TimedGuard>
125 <Statement>
126 <VarName>the_system_mode< / VarName>
127 <Expression>4< / Expression>< / Statement>
128 <Statement>
129 <VarName>q< / VarName>
130 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >
131 <FuncA t t r i b >
132 <GuardName>REQ004BOOST< / GuardName>
133 <Stat icGuard> ( ( s ) ==0) = ( ( ph i )&g t ;=0 )
134 AND the_system_mode = 2< / Stat icGuard>
135 <TimedGuard> n u l l < / TimedGuard>
136 <Statement>
137 <VarName>the_system_mode< / VarName>
138 <Expression>1< / Expression>< / Statement>< / FuncA t t r i b >
139 <FuncA t t r i b >
140 <GuardName>REQ012BOOST< / GuardName>
141 <Stat icGuard> ( ( q )& l t ; 0 ) = t rue
142 AND the_system_mode = 4< / Stat icGuard>
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143 <TimedGuard> n u l l < / TimedGuard>
144 <Statement>
145 <VarName>q< / VarName>
146 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >
147 <FuncA t t r i b >
148 <GuardName>REQ007BOOST< / GuardName>
149 <Stat icGuard> ( ( q )& l t ; = ( ( c ) *e ) ) = t rue
150 AND the_system_mode = 3< / Stat icGuard>
151 <TimedGuard> n u l l < / TimedGuard>
152 <Statement>
153 <VarName>the_system_mode< / VarName>
154 <Expression>1< / Expression>< / Statement>< / FuncA t t r i b >
155 <FuncA t t r i b >
156 <GuardName>REQ0014BOOST< / GuardName>
157 <Stat icGuard>the_system_mode = 2< / Stat icGuard>
158 <TimedGuard> n u l l < / TimedGuard>
159 <Statement>
160 <VarName> the_q_de r i va t i ve < / VarName>
161 <Expression>q_mode2 ( r , c , q ) < / Expression>< / Statement>
162 <Statement>
163 <VarName> t h e _ p h i _ d e r i v a t i v e < / VarName>
164 <Expression>phi_mode2 ( e ) < / Expression>< / Statement>< / FuncA t t r i b >
165 <FuncA t t r i b >
166 <GuardName>REQ003BOOST< / GuardName>
167 <Stat icGuard> ( ( s ) ==1)&amp;&amp ; ( ( q )& l t ;=0 ) = t rue
168 AND the_system_mode = 1< / Stat icGuard>
169 <TimedGuard> n u l l < / TimedGuard>
170 <Statement>
171 <VarName>the_system_mode< / VarName>
172 <Expression>4< / Expression>< / Statement>
173 <Statement>
174 <VarName>q< / VarName>
175 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >
176 <FuncA t t r i b >
177 <GuardName>REQ011BOOST< / GuardName>
178 <Stat icGuard> ( ( s ) ==0)&amp;&amp ; ( ( ph i )& l t ;=0 ) = t rue
179 AND the_system_mode = 4< / Stat icGuard>
180 <TimedGuard> n u l l < / TimedGuard>
181 <Statement>
182 <VarName>the_system_mode< / VarName>
183 <Expression>3< / Expression>< / Statement>
184 <Statement>
185 <VarName>phi< / VarName>
186 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >
187 <FuncA t t r i b >
188 <GuardName>REQ013BOOST< / GuardName>
189 <Stat icGuard>the_system_mode = 1< / Stat icGuard>
190 <TimedGuard> n u l l < / TimedGuard>
191 <Statement>
192 <VarName> the_q_de r i va t i ve < / VarName>
193 <Expression>q_mode1 ( phi , l , r , c , q ) < / Expression>< / Statement>
194 <Statement>
195 <VarName> t h e _ p h i _ d e r i v a t i v e < / VarName>
196 <Expression>phi_mode1 ( c , q , e ) < / Expression>< / Statement>< / FuncA t t r i b >
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197 <FuncA t t r i b >
198 <GuardName>REQ008BOOST< / GuardName>
199 <Stat icGuard> ( ( s ) ==1)&amp;&amp ; ( ( q )&gt ;=0 ) = t rue
200 AND the_system_mode = 3< / Stat icGuard>
201 <TimedGuard> n u l l < / TimedGuard>
202 <Statement>
203 <VarName>the_system_mode< / VarName>
204 <Expression>2< / Expression>< / Statement>< / FuncA t t r i b >
205 <FuncA t t r i b >
206 <GuardName>REQ016BOOST< / GuardName>
207 <Stat icGuard>the_system_mode = 4< / Stat icGuard>
208 <TimedGuard> n u l l < / TimedGuard>
209 <Statement>
210 <VarName> the_q_de r i va t i ve < / VarName>
211 <Expression>q_mode4 ( ) < / Expression>< / Statement>
212 <Statement>
213 <VarName> t h e _ p h i _ d e r i v a t i v e < / VarName>
214 <Expression>phi_mode4 ( e ) < / Expression>< / Statement>< / FuncA t t r i b >
215 <FuncA t t r i b >
216 <GuardName>REQ010BOOST< / GuardName>
217 <Stat icGuard> ( ( s ) ==0)&amp;&amp ; ( ( ph i )&g t ;=0 ) = t rue
218 AND the_system_mode = 4< / Stat icGuard>
219 <TimedGuard> n u l l < / TimedGuard>
220 <Statement>
221 <VarName>the_system_mode< / VarName>
222 <Expression>1< / Expression>< / Statement>< / FuncA t t r i b >
223 <FuncA t t r i b >
224 <GuardName>REQ002BOOST< / GuardName>
225 <Stat icGuard> ( ( ph i )& l t ;=0 )&amp;&amp ; ( ( q )&gt ; ( ( c ) *e ) ) = t rue
226 AND the_system_mode = 1< / Stat icGuard>
227 <TimedGuard> n u l l < / TimedGuard>
228 <Statement>
229 <VarName>the_system_mode< / VarName>
230 <Expression>3< / Expression>< / Statement>
231 <Statement>
232 <VarName>phi< / VarName>
233 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >
234 <FuncA t t r i b >
235 <GuardName>REQ005BOOST< / GuardName>
236 <Stat icGuard> ( ( s ) ==0)&amp;&amp ; ( ( ph i )& l t ;=0 ) = t rue
237 AND the_system_mode = 2< / Stat icGuard>
238 <TimedGuard> n u l l < / TimedGuard>
239 <Statement>
240 <VarName>the_system_mode< / VarName>
241 <Expression>3< / Expression>< / Statement>
242 <Statement>
243 <VarName>phi< / VarName>
244 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >< / Funct ion>
245

246 < F u n c t i o n D e f i n i t i o n >
247 <FunctionName>q_mode1< / FunctionName>
248 <FunctionBody> ( ( ( ( ph i ) / l ) ) − ( ( ( (1 ) / ( ( r ) * c ) ) ) *q ) ) < / FunctionBody>
249 <Params><Param>phi< / Param><Param> l < / Param><Param>r < / Param><Param>c< / Param><

Param>q< / Param>< / Params>
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250 < / F u n c t i o n D e f i n i t i o n >
251

252 < F u n c t i o n D e f i n i t i o n >
253 <FunctionName>q_mode2< / FunctionName>
254 <FunctionBody>( ( ( (−1) / ( ( r ) * c ) ) ) *q ) < / FunctionBody>
255 <Params><Param>r < / Param><Param>c< / Param><Param>q< / Param>< / Params>
256 < / F u n c t i o n D e f i n i t i o n >
257

258 < F u n c t i o n D e f i n i t i o n >
259 <FunctionName>q_mode3< / FunctionName>
260 <FunctionBody>((−q ) / ( ( r ) * c ) ) < / FunctionBody>
261 <Params><Param>r < / Param><Param>c< / Param><Param>q< / Param>< / Params>
262 < / F u n c t i o n D e f i n i t i o n >
263

264 < F u n c t i o n D e f i n i t i o n >
265 <FunctionName>q_mode4< / FunctionName>
266 <FunctionBody>0< / FunctionBody>
267 <Params>< / Params>
268 < / F u n c t i o n D e f i n i t i o n >
269

270 < F u n c t i o n D e f i n i t i o n >
271 <FunctionName>phi_mode2< / FunctionName>
272 <FunctionBody>e< / FunctionBody>
273 <Params><Param>e< / Param>< / Params>
274 < / F u n c t i o n D e f i n i t i o n >
275

276 < F u n c t i o n D e f i n i t i o n >
277 <FunctionName>phi_mode1< / FunctionName>
278 <FunctionBody> ( ( ( ( ( ( −1 ) / c ) ) *q ) ) +e ) < / FunctionBody>
279 <Params><Param>c< / Param><Param>q< / Param><Param>e< / Param>< / Params>
280 < / F u n c t i o n D e f i n i t i o n >
281

282 < F u n c t i o n D e f i n i t i o n >
283 <FunctionName>phi_mode4< / FunctionName>
284 <FunctionBody>e< / FunctionBody>
285 <Params><Param>e< / Param>< / Params>
286 < / F u n c t i o n D e f i n i t i o n >
287

288 < F u n c t i o n D e f i n i t i o n >
289 <FunctionName>phi_mode3< / FunctionName>
290 <FunctionBody>0< / FunctionBody>
291 <Params>< / Params>
292 < / F u n c t i o n D e f i n i t i o n >
293

294 < /DFRS>

C.2 The DFRS of the adaptive cruise control

1 <?xml version=" 1.0 " ?>
2 <DFRS>
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3

4 < InVa r i ab le >
5 <VarName> acce le ra t i on < / VarName>
6 <VarType>INTEGER< / VarType>
7 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
8 < / InVa r i ab le >
9

10 < InVa r i ab le >
11 <VarName> h a l t < / VarName>
12 <VarType>BOOLEAN< / VarType>
13 <ExpectedValue> f a l s e < / ExpectedValue>
14 <ExpectedValue> t rue < / ExpectedValue>
15 < I n i t i a l V a l u e > f a l s e < / I n i t i a l V a l u e >
16 < / InVa r i ab le >
17

18 < InVa r i ab le >
19 <VarName>cruise_speed< / VarName>
20 <VarType>INTEGER< / VarType>
21 <ExpectedValue> ( ( v e l o c i t y )&gt ;= cruise_speed ) < / ExpectedValue>
22 <ExpectedValue>cruise_speed< / ExpectedValue>
23 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
24 < / InVa r i ab le >
25

26 < InVa r i ab le >
27 <VarName> the_c ru i se_p rox im i t y < / VarName>
28 <VarType>INTEGER< / VarType>
29 <ExpectedValue> ( ( t he_veh i c l e_p rox im i t y )& l t ; t he_c ru i se_p rox im i t y ) < /

ExpectedValue>
30 <ExpectedValue> ( ( t he_veh i c l e_p rox im i t y )&gt ; t he_c ru i se_p rox im i t y ) < /

ExpectedValue>
31 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
32 < / InVa r i ab le >
33

34 < InVa r i ab le >
35 <VarName>c ru i se < / VarName>
36 <VarType>BOOLEAN< / VarType>
37 <ExpectedValue> f a l s e < / ExpectedValue>
38 <ExpectedValue> t rue < / ExpectedValue>
39 < I n i t i a l V a l u e > f a l s e < / I n i t i a l V a l u e >
40 < / InVa r i ab le >
41

42 < InVa r i ab le >
43 <VarName> t h e _ h a l t _ p r o x i m i t y < / VarName>
44 <VarType>INTEGER< / VarType>
45 <ExpectedValue> ( ( t he_veh i c l e_p rox im i t y )& l t ; t h e _ h a l t _ p r o x i m i t y ) < / ExpectedValue>
46 <ExpectedValue> ( ( t he_veh i c l e_p rox im i t y )&gt ; t h e _ h a l t _ p r o x i m i t y ) < / ExpectedValue>
47 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
48 < / InVa r i ab le >
49

50 < InVa r i ab le >
51 <VarName> r e t a r d a t i o n < / VarName>
52 <VarType>BOOLEAN< / VarType>
53 <ExpectedValue> f a l s e < / ExpectedValue>
54 <ExpectedValue> t rue < / ExpectedValue>
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55 < I n i t i a l V a l u e > f a l s e < / I n i t i a l V a l u e >
56 < / InVa r i ab le >
57

58 < InVa r i ab le >
59 <VarName> the_veh i c l e_p rox im i t y < / VarName>
60 <VarType>NUMBER< / VarType>
61 <ExpectedValue> f a l s e < / ExpectedValue>
62 <ExpectedValue> t rue < / ExpectedValue>
63 < I n i t i a l V a l u e > f a l s e < / I n i t i a l V a l u e >
64 < / InVa r i ab le >
65

66 <OutVar iab le>
67 <VarName>the_system_mode< / VarName>
68 <VarType>INTEGER< / VarType>
69 <ExpectedValue>acce la ra te< / ExpectedValue>
70 <ExpectedValue>c ru i se < / ExpectedValue>
71 <ExpectedValue> h a l t < / ExpectedValue>
72 <ExpectedValue> r e t a r d < / ExpectedValue>
73 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
74 < / OutVar iab le>
75

76 <OutVar iab le>
77 <VarName> v e l o c i t y < / VarName>
78 <VarType>INTEGER< / VarType>
79 <ExpectedValue> ( ( v e l o c i t y )&gt ;= cruise_speed ) < / ExpectedValue>
80 <ExpectedValue>0< / ExpectedValue>
81 <ExpectedValue>cruise_speed< / ExpectedValue>
82 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
83 < / OutVar iab le>
84

85 <OutVar iab le>
86 <VarName>acce la ra te< / VarName>
87 <VarType>BOOLEAN< / VarType>
88 <ExpectedValue> f a l s e < / ExpectedValue>
89 <ExpectedValue> t rue < / ExpectedValue>
90 < I n i t i a l V a l u e > f a l s e < / I n i t i a l V a l u e >
91 < / OutVar iab le>
92

93 <OutVar iab le>
94 <VarName> v e l o c i t y _ d e r i v a t i v e < / VarName>
95 <VarType>INTEGER< / VarType>
96 <ExpectedValue> acce le ra t i on < / ExpectedValue>
97 <ExpectedValue> r e t a r d a t i o n < / ExpectedValue>
98 < I n i t i a l V a l u e >0< / I n i t i a l V a l u e >
99 < / OutVar iab le>

100

101 <OutVar iab le>
102 <VarName> r e t a r d < / VarName>
103 <VarType>BOOLEAN< / VarType>
104 <ExpectedValue> f a l s e < / ExpectedValue>
105 <ExpectedValue> t rue < / ExpectedValue>
106 < I n i t i a l V a l u e > f a l s e < / I n i t i a l V a l u e >
107 < / OutVar iab le>
108
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109 <Funct ion>
110 <FuncName>the_acc< / FuncName>
111

112 <FuncA t t r i b >
113 <GuardName>REQ008< / GuardName>
114 <Stat icGuard>the_system_mode = acce la ra te
115 AND ( ( v e l o c i t y )&gt ;= cruise_speed ) = t rue
116 OR ( ( the_veh i c l e_p rox im i t y )& l t ; t he_c ru i se_p rox im i t y ) = t rue < / Stat icGuard>
117 <TimedGuard> n u l l < / TimedGuard>
118 <Statement>
119 <VarName>the_system_mode< / VarName>
120 <Expression> r e t a r d < / Expression>< / Statement>< / FuncA t t r i b >
121 <FuncA t t r i b >
122 <GuardName>REQ007< / GuardName>
123 <Stat icGuard>the_system_mode = r e t a r d
124 AND ( ( the_veh i c l e_p rox im i t y )&gt ; t he_c ru i se_p rox im i t y ) = t rue < / Stat icGuard>
125 <TimedGuard> n u l l < / TimedGuard>
126 <Statement>
127 <VarName>the_system_mode< / VarName>
128 <Expression>acce la ra te< / Expression>< / Statement>< / FuncA t t r i b >
129 <FuncA t t r i b >
130 <GuardName>REQ001< / GuardName>
131 <Stat icGuard>the_system_mode = h a l t < / Stat icGuard>
132 <TimedGuard> n u l l < / TimedGuard>
133 <Statement>
134 <VarName> v e l o c i t y < / VarName>
135 <Expression>0< / Expression>< / Statement>< / FuncA t t r i b >
136 <FuncA t t r i b >
137 <GuardName>REQ006< / GuardName>
138 <Stat icGuard>the_system_mode = h a l t
139 AND ( ( the_veh i c l e_p rox im i t y )&gt ; t h e _ h a l t _ p r o x i m i t y ) = t rue < / Stat icGuard>
140 <TimedGuard> n u l l < / TimedGuard>
141 <Statement>
142 <VarName>the_system_mode< / VarName>
143 <Expression>acce la ra te< / Expression>< / Statement>< / FuncA t t r i b >
144 <FuncA t t r i b >
145 <GuardName>REQ010< / GuardName>
146 <Stat icGuard>the_system_mode = c ru i se
147 AND ( ( the_veh i c l e_p rox im i t y )& l t ; t he_c ru i se_p rox im i t y ) = t rue < / Stat icGuard>
148 <TimedGuard> n u l l < / TimedGuard>
149 <Statement>
150 <VarName>the_system_mode< / VarName>
151 <Expression> r e t a r d < / Expression>< / Statement>< / FuncA t t r i b >
152 <FuncA t t r i b >
153 <GuardName>REQ002< / GuardName>
154 <Stat icGuard>the_system_mode = c ru i se < / Stat icGuard>
155 <TimedGuard> n u l l < / TimedGuard>
156 <Statement>
157 <VarName> v e l o c i t y < / VarName>
158 <Expression>cruise_speed< / Expression>< / Statement>< / FuncA t t r i b >
159 <FuncA t t r i b >
160 <GuardName>REQ009< / GuardName>
161 <Stat icGuard>the_system_mode = acce la ra te
162 AND ( ( v e l o c i t y )&gt ;= cruise_speed ) = t rue
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163 AND ( ( the_veh i c l e_p rox im i t y )&gt ; t he_c ru i se_p rox im i t y ) = t rue < / Stat icGuard>
164 <TimedGuard> n u l l < / TimedGuard>
165 <Statement>
166 <VarName>the_system_mode< / VarName>
167 <Expression>c ru i se < / Expression>< / Statement>< / FuncA t t r i b >
168 <FuncA t t r i b >
169 <GuardName>REQ003< / GuardName>
170 <Stat icGuard>the_system_mode = acce la ra te< / Stat icGuard>
171 <TimedGuard> n u l l < / TimedGuard>
172 <Statement>
173 <VarName> v e l o c i t y _ d e r i v a t i v e < / VarName>
174 <Expression> acce le ra t i on < / Expression>< / Statement>< / FuncA t t r i b >
175 <FuncA t t r i b >
176 <GuardName>REQ004< / GuardName>
177 <Stat icGuard>the_system_mode = r e t a r d < / Stat icGuard>
178 <TimedGuard> n u l l < / TimedGuard>
179 <Statement>
180 <VarName> v e l o c i t y _ d e r i v a t i v e < / VarName>
181 <Expression> r e t a r d a t i o n < / Expression>< / Statement>< / FuncA t t r i b >
182 <FuncA t t r i b >
183 <GuardName>REQ005< / GuardName>
184 <Stat icGuard> ( ( t he_veh i c l e_p rox im i t y )& l t ; t h e _ h a l t _ p r o x i m i t y ) = t rue < /

Stat icGuard>
185 <TimedGuard> n u l l < / TimedGuard>
186 <Statement>
187 <VarName>the_system_mode< / VarName>
188 <Expression> h a l t < / Expression>< / Statement>< / FuncA t t r i b >< / Funct ion>
189

190 < /DFRS>
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D
Acumen representation of DFRS models

D.1 The DFRS of the DC-DC Boost-Converter

1 model Main ( s imu la to r ) =
2 i n i t i a l l y
3 a = create DFRS( )
4 always
5 s imu la to r . t imeStep +=0.0001 , s imu la to r . endTime+=0.01
6 , s imu la to r . method+=" EulerForward "
7 model DFRS( ) =
8 i n i t i a l l y
9 s=0 , l =0.000080 , ph i =0 ,q=0.0 ,q ’ = 0 . 0 , r =20.0 , c=0.000040 , phi ’ = 0 . 0 , the_system_mode

=1 ,e=12.0 , gc =0.0 , gc ’=0 .0
10 always
11 gc ’ = 1 . 0 ,
12 i f sin (1000000*gc ) >= 0 then
13 s += 1
14 else
15 s += 0 ,
16

17 i f ( ( ( s ) ==1) &&((q ) >0) == t rue && the_system_mode == 1) then
18 the_system_mode += 2 noelse ,
19 i f ( ( ( q ) <0) == t rue && the_system_mode == 2) then
20 the_system_mode += 4 ,q += 0 noelse ,
21 i f ( the_system_mode == 3) then
22 q ’=((−q ) / ( ( r ) * c ) ) , phi ’=0 noelse ,
23 i f ( ( ( s ) ==1) &&((q ) <=0) == t rue && the_system_mode == 3) then
24 the_system_mode += 4 ,q += 0 noelse ,
25 i f ( ( ( s ) ==0) && the_system_mode == 2) then
26 the_system_mode += 1 noelse ,
27 i f ( ( ( q ) <0) == t rue && the_system_mode == 4) then
28 q += 0 noelse ,
29 i f ( ( ( q ) <=(( c ) *e ) ) == t rue && the_system_mode == 3) then
30 the_system_mode += 1 noelse ,
31 i f ( the_system_mode == 2) then
32 q ’= ( ( ( ( −1 ) / ( ( r ) * c ) ) ) *q ) , phi ’ = e noelse ,
33 i f ( ( ( s ) ==1) &&((q ) <=0) == t rue && the_system_mode == 1) then
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34 the_system_mode += 4 ,q += 0 noelse ,
35 i f ( ( ( s ) ==0) &&(( ph i ) <0) == t rue && the_system_mode == 4) then
36 the_system_mode += 3 , ph i += 0 noelse ,
37 i f ( the_system_mode == 1) then
38 q ’ = ( ( ( ( ph i ) / l ) ) − ( ( ( (1 ) / ( ( r ) * c ) ) ) *q ) ) , phi ’ = ( ( ( ( ( ( −1 ) / c ) ) *q ) ) +e ) noelse ,
39 i f ( ( ( s ) ==1) &&((q ) >=0) == t rue && the_system_mode == 3) then
40 the_system_mode += 2 noelse ,
41 i f ( the_system_mode == 4) then
42 q ’=0 , phi ’= e noelse ,
43 i f ( ( ( s ) ==0) &&(( ph i ) >=0) == t rue && the_system_mode == 4) then
44 the_system_mode += 1 noelse ,
45 i f ( ( ( ph i ) <=0)&&((q ) >(( c ) *e ) ) == t rue && the_system_mode == 1) then
46 the_system_mode += 3 , ph i += 0 noelse ,
47 i f ( ( ( s ) ==0) &&(( ph i ) <=0) == t rue && the_system_mode == 2) then
48 the_system_mode += 3 , ph i += 0 noelse

D.2 The DFRS of the adaptive cruise control

1 model Main ( s imu la to r ) =
2 i n i t i a l l y
3 a = create DFRS( )
4 always
5 s imu la to r . t imeStep +=0.001 , s imu la to r . endTime+=0.5
6 , s imu la to r . method+=" EulerForward "
7 model DFRS( ) =
8 i n i t i a l l y
9 acce le ra t i on =100 , cruise_speed =50 , the_c ru i se_p rox im i t y =15 , t h e _ h a l t _ p r o x i m i t y =5 ,

r e t a r d a t i o n =−5, the_veh i c l e_p rox im i t y =5 , the_system_mode=" acce la ra te " ,
v e l o c i t y =0 , v e l o c i t y ’=0 , gc =0.0 , gc ’=0 .0

10 , t he_veh ic le_p rox im i t y ’=0 .0
11 always
12 gc ’ = 1 . 0 ,
13

14 i f ( the_system_mode == " acce la ra te " && ( ( ( v e l o c i t y ) >cruise_speed ) == t rue | |
( ( ( t he_veh i c l e_p rox im i t y ) < the_c ru i se_p rox im i t y ) == t rue ) ) ) then

15 the_system_mode += " r e t a r d " noelse ,
16 i f ( the_system_mode == " r e t a r d " && ( ( t he_veh i c l e_p rox im i t y ) >

the_c ru i se_p rox im i t y ) == t rue ) then
17 the_system_mode += " acce la ra te " noelse ,
18 i f ( the_system_mode == " h a l t " ) then
19 v e l o c i t y += 0 noelse ,
20 i f ( the_system_mode == " h a l t " && ( ( t he_veh i c l e_p rox im i t y ) > t h e _ h a l t _ p r o x i m i t y )

== t rue ) then
21 the_system_mode += " acce la ra te " noelse ,
22 i f ( the_system_mode == " c ru i se " && ( ( t he_veh i c l e_p rox im i t y ) <

the_c ru i se_p rox im i t y ) == t rue ) then
23 the_system_mode += " r e t a r d " noelse ,
24 i f ( the_system_mode == " c ru i se " ) then
25 v e l o c i t y += cruise_speed noelse ,
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26 i f ( the_system_mode == " acce la ra te " && ( ( ( v e l o c i t y ) ==cruise_speed ) == t rue &&
( ( ( t he_veh i c l e_p rox im i t y ) >= the_c ru i se_p rox im i t y ) == t rue ) ) ) then

27 the_system_mode += " c ru i se " noelse ,
28 i f ( the_system_mode == " acce la ra te " ) then
29 v e l o c i t y ’= acce le ra t i on noelse ,
30 i f ( the_system_mode == " r e t a r d " ) then
31 v e l o c i t y ’= r e t a r d a t i o n noelse ,
32 i f ( ( ( t he_veh i c l e_p rox im i t y ) < t h e _ h a l t _ p r o x i m i t y ) == t rue && the_system_mode ==

" r e t a r d " ) then
33 the_system_mode += " h a l t " noelse ,
34

35

36

37

38 i f t he_veh i c l e_p rox im i t y < the_c ru i se_p rox im i t y then
39 t he_veh ic le_p rox im i t y ’ = a cce le r a t i on
40 else
41 t he_veh ic le_p rox im i t y ’ = r e t a r d a t i o n
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