
Digital Twin for Legacy Systems: Simulation Model Testing and Validation

Downloaded from: https://research.chalmers.se, 2024-04-26 13:12 UTC

Citation for the original published paper (version of record):
Khan, A., Dahl, M., Falkman, P. et al (2018). Digital Twin for Legacy Systems: Simulation Model
Testing and Validation. IEEE International Conference on Automation Science and Engineering,
2018-August: 421-426. http://dx.doi.org/10.1109/COASE.2018.8560338

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



Digital Twin for Legacy Systems: Simulation Model Testing and
Validation

Adnan Khan∗, Martin Dahl∗, Petter Falkman∗, and Martin Fabian∗

Abstract— In this paper, an approach to incorporate a digital
twin for legacy production systems is presented. Hardware-in-
the-loop setups are routinely used by manufacturing companies
to carry out virtual commissioning. However, manufacturing
companies having online legacy production systems are still
struggling to incorporate a digital twin due to the absence of
verified and validated simulation models. Companies that use
virtual commissioning as a part of their engineering tool chain,
usually perform offline verification of the simulation model.
This approach is typically based on visual inspection and is a
tedious task as each aspect of the model has to be visually
validated. For legacy systems, only assessing the behavior
visually in the absence of updated documents can result in an
incorrect simulation model, i.e. simulating incorrect behavior
with respect to the specification. Due to this, such simulation
models cannot be incorporated in the engineering tool chain,
as the simulated results can lead to improper decisions and can
even cause equipment damage. This paper presents a platform
and an approach, based on model-based testing, that is a first
step for manufacturing companies to incorporate a validated
simulation model for existing online production systems that
will serve as a digital twin.

I. INTRODUCTION

In today’s digital age, computers are doing most of the
major tasks in manufacturing industries with more precision
and efficiency providing products of better quality. Manu-
facturing industries in addition to the stress of producing
quality products also struggle to meet physical commis-
sioning deadlines of production systems. To make physical
commissioning quicker, hardware-in-the-loop setups are be-
ing routinely used to carry out virtual commissioning. To
implement a virtual commissioning setup, simulation and
modeling engineers create a model of a real production
system.

After modeling the production system, control logic is
created and tested on the simulation model prior to imple-
menting it on the real production system. The core advantage
of carrying out virtual commissioning is reduced physical
commissioning time. In addition, an accurate simulation
model, a digital twin, which can be used throughout the real
system’s life span is created. This simulation model can then
serve as a platform for testing future modifications. Having
a digital twin in the engineering chain increases productivity,
and assists systems and service applications during operation
of the production systems [1].

This work has been carried out at the Wingquist Laboratory VINN
Excellence Centre within the Production Area of Advance at Chalmers.
It has been supported by ITEA3 Vinnova ENTOC (ref 2016-02716), and
VR SyTeC (ref 2016-06204).

∗Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden {kadnan, martin.dahl,
petter.falkman, fabian}@chalmers.se

Currently, simulation engineers spend a lot of their time
and effort on making detailed models of real production
systems [2], [3]. Different approaches have been researched
to ease the modeling task, e.g. automatic model genera-
tion [4], and using a single simulation model throughout the
engineering cycle [5], [6].

However, in order to meet the challenges of the up-coming
fourth industrial revolution, manufacturing companies having
legacy production systems with functioning PLC code need
a way to incorporate a validated digital twin in their existing
tool chain. Unlike virtual commissioning of new production
systems in which the simulation model is created with the
help of complete documentation, legacy systems usually lack
complete and updated engineering documents. Due to this,
creating a robust simulation model that can serve as a digital
twin for a legacy system is a difficult task.

As the documents related to legacy systems are either
incomplete or rarely updated, the process of creating a sim-
ulation model for a legacy system must be supplemented by
gathering data about the modifications made since the system
was commissioned. Most of the data regarding modifications
is typically collected manually by the engineers from the
factory floor. Since the whole procedure of data collection
from the shop floor is manual, human errors are inevitable.
Also, due to to the use of natural language in the engineering
documents auto-generation of the simulation model is typ-
ically intractable. Under such conditions, engineers have to
rely on the manually collected data to create the simulation
model, hence testing and validation of the created simulation
model is a necessity.

Due to the problems associated with legacy systems,
assessing behavioral equivalence by visual inspection is not
enough, since minor but important errors can be overlooked
by the engineers. The visual inspection procedure can be
further strengthened by formally testing important properties.
However, testing every property is impossible, and even
testing important properties of a simulation model formally
can be a tedious and time consuming task. Still, depending
on the production system, testing certain important aspects
in combination with visual inspection would result in a more
robust simulation model.

Model-based testing [7] is an approach in which a model
of an implementation undergoes a series of tests aiming to
uncover errors. A specification provides the basis of the tests
and the implementation either fails or passes the specified be-
havior. In the case of a legacy system, the simulation model
will be the implementation which undergoes testing. Model-
based testing can either be carried out in an offline or online



manner. In offline testing, issues of state-space explosion
and handling non-determinism are intrinsic [8]. Due to these
issues and having an already physically commissioned pro-
duction system with existing PLC code makes online testing
a perfect fit. But to test scenarios simultaneously on an online
system and a simulation model is not always suitable, as
production disruption or other issues can arise. Therefore,
the approach based on offline model-based testing seems
more suitable to validate a simulation model’s behavior. The
literature does not, to the best of the authors’ knowledge,
include any approach that incorporates offline model-based
testing for validation of legacy system simulation model.

A. Contribution

This paper describes an offline model-based testing ap-
proach to test and validate a legacy system’s simulation
model, based on a setup as in Fig. 1. In this approach, the
specification model, which is expressed using the software
Sequence Planner [6], initiates different sequences of actions
in the simulation by sending a signal Start Sequence. On
the completion of each action in the simulation model, a
feedback is sent back in terms of Sensor Outputs to the
specification model. The received feedback signal updates
the output values related to each operation in the specification
model. Finally, the output values received are then compared
with the specified values to verify the conformance of the
outputs. If the received output values are not as expected
then the conformance fails with respect to the specification.
Non-conformance can occur either due to faulty specification
or faulty implementation. The problem related to faulty
specification is quite probable in the case of legacy systems
due to outdated documents and needs to adjusted. For new
systems, non-conformance due to faulty implementation is
an issue and needs to be adjusted manually.

The benefits gained by using the proposed approach are
as follows:

• Incorporation of a digital twin for existing production
systems

• Validated simulation models for future modifications
• Overall reduction in commissioning time for future

modifications

B. Outline

This paper is structured in the following way: In Sec-
tion II, a brief overview regarding current concepts of
virtual commissioning and the proposed approach is given.
In Section III, the IOCO testing relation is introduced in the
context of model-based testing. In Section IV, an overview
of the proposed approach is detailed with an implementation
example. Section V concludes the paper with future work
direction.

II. CURRENT CONCEPTS AND THE PROPOSED APPROACH

A. Virtual Commissioning

Virtual commissioning [2], [3] is a hardware-in-the-loop
configuration used before real (physical) commissioning of a
production system to test and verify the control logic. In the

Fig. 1. Proposed Setup based on Offline model-based testing

setup, real PLCs with implemented control logic are used to
control simulation models to find faults. The behavior of the
simulation model is observed and errors found are corrected
before the PLC program is put into place on the shop-
floor controlling the real production system. Due to prior
testing of the PLC code in the virtual environment, several
programming and logical errors found in the PLC code have
already been corrected, hence overall commissioning time of
the real production system is reduced.

B. Hybrid Commissioning

When a real controller is simultaneously connected to both
a real production system and a simulation model, this setup
is known as hybrid commissioning [9]. Unlike conventional
virtual commissioning, hybrid commissioning consists of
step-wise introduction of real components, resources, and
or production lines of the production system replacing their
virtual counterparts [10]. In hybrid commissioning, instead of
testing the complete control logic of the whole production
system at once, the control logic is tested gradually. Due
to the gradual introduction of control, only the tested parts
of production system are exposed to damage in the case of
errors in the PLC code. Hence, this practice is considered
more safe compared to conventional virtual commissioning.

C. Synchronous Simulation

Another concept where a real control system is connected
to a simulation model and a real production system at
the same time is known as synchronous simulation [11].
Unlike the hybrid commissioning, synchronous simulation
is implemented after the real commissioning, i.e. when the
production system is online already. The idea behind this
concept is to compare the behavior of the simulation model
with the real production system based on a production system
description. Deviations found after the comparison of signals
are then corrected. In [11] a few approaches are presented to
implement synchronous simulation along with the require-
ments. Comparisons made using this approach are based on
the production system description (usually expressed in terms
of different drawings and natural language).



Fig. 2. Automaton as Operations

The synchronous simulation proposed in [11] can be clas-
sified as online model-based testing. The comparison made
in the approach presented in [11] is based on the production
system descriptions. But for legacy systems, the complete-
ness and accuracy of such documents is questionable. In
addition, if the synchronous simulation approach is applied
to test the simulation model, the testing will be limited only
to the operations run in real-time on the legacy system. Due
to this, critical scenarios that can cause production disruption
can only be tested if they occur naturally in real-time. Hence,
this limitation on the scope of testing might pose questions
on the reliability and robustness of the tested simulation
model.

D. Proposed Approach
The setup shown in Fig 1 provides the basis of the

proposed approach, which is based on offline model-based
testing. Compared to synchronous simulation, which is based
on visual inspection of the simulated behavior, this approach
validates the correct input-output assignments based on
conformance testing in addition to visual inspection. Due
to conformance testing, modeling errors overlooked during
visual inspection can be identified in a formal manner. Hence,
resulting in a more robust simulation model.

Due to offline testing, the proposed approach does not
suffer from the limitations posed by synchronous simulation.
Therefore, many low probability and high risk scenarios
that can cause production disruption or even damage to the
equipment can be tested in a safe environment.

In this offline setup, different specified scenarios modeled
in the specification model can be triggered in the simulation
model. The signal to start any operation can be sent as an
input to the simulation model and after the completion of
each operation, a feedback is received as an output from the
sensors in the simulation model. The received feedback from
the simulation model is then compared with the specified
outputs of the executed operation. The comparison reveals
whether the test was either a success, in the case of posi-
tive conformance relation between the specification and the
simulation model, or a failure.

III. MODEL-BASED TESTING

Manufacturing industries currently use a number of more
or less informal tools, such as Piping and Instrumentation Di-
agrams, verbal descriptions of processes, and sketches [12],

to specify production system behavior. These tools are then
used to test and validate the behavior of real manufacturing
production systems.

Due to the heterogeneity of the formal tools and the use of
verbal descriptions to specify production systems, it is hard
to generate robust and complete models of the production
system automatically. Therefore, the simulation models are
typically built manually.

Manufacturing production systems and their logical behav-
ior can often be beneficially modeled as discrete event sys-
tems [13]. Discrete event systems evolve dynamically on the
occurrence of events, while at each time instant occupying a
specific state where certain conditions hold. Using discrete
event formalisms [13], many formal approaches have been
developed to implement and test the behavior of systems
with respect to specifications.

One of those approaches is model-based testing [7], which
is a formal approach to subject a model of an implementation
to series of tests that try to falsify the specification according
to which the implementation was created, in order to find
faults in the implementation. To formalize this, the concept
of input-output conformance (IOCO) was proposed by [14].

In the IOCO testing relation, the specification provides
the basis for the behavior of the implementation in that
it dynamically defines the outputs that the implementation
is allowed to emit. If other than the specified outputs are
emitted by the implementation, it is not IOCO with respect
to the specification and some modifications need to be made.
When the implementation is found to be non-IOCO, this can
mean two things. Either the specification is correct and the
implementation needs to be modified. Or, because of having a
legacy system, the specification was designed from outdated
documentation and it is in fact the implementation that is
correct and the specification is faulty. This of course needs to
be evaluated for each case separately, but if the specification
is found to be faulty, then it has to be changed.

In IOCO the inputs and outputs are viewed as events and
outs(i) and outs(s) represent the respective possible outputs
of the implementation when in state i, and the specification
when in state s, respectively. From the formal definition of
the IOCO testing relation presented in [15], the key concepts
relevant to IOCO are traces, after and outs. A trace t is a
sequence of (input and output) events, which when executed
establishes a path between two states in a system. A state
defines the status of a system and can be reached if the trace
leading to that particular state is enabled by the events. The
outs in the IOCO definition are basically output events, that
are computed from the state reached after the execution of
a particular trace. The traces of the specification are used as
a limit to check the implementation. Formally, this can be
defined as:

∀t ∈ traces(s) : outs(i after t) ⊆ outs(s after t) (1)

The formal definition (1) from [15] describes the IOCO
relation such that, an implementation conforms to a spec-
ification, if and only if for all the traces in the specification
the output events possible from the state i, reached by the



implementation after the trace, form a subset of the possible
output events form the state s, reached by the specification
after the same trace. Whenever this subset relation between
the respective sets of output events exist, the implementation
is said to be IOCO with respect to the specification, for
that particular trace. If the implementation is IOCO with
respect to the specification for all the traces defined by the
specification, then the implementation is said to be IOCO
with respect to the whole specification.

To further elaborate the concepts of traces, events, and
after, an example shown in Fig 2 is considered. In the
automaton, start, !DoneG, !DoneP, and !DoneW are input
and output events, with the output events prefixed by an ex-
clamation mark. The possible traces in the shown automaton
are the empty trace of length zero, the start trace of length
one, and the start.!DoneG, start.!DoneP, and start.!DoneW
traces of length two. The outs after the trace start, which
establishes a path between the initial state S0 and state S1,
are !DoneG, !DoneP, and !DoneW. For all other traces the
possible outs in the given example is the empty set.

The above mentioned concepts traces, outs, and after
related to the IOCO testing relation need to be appropriately
applied to their respective conceptual equivalent in the sim-
ulation model. The concept of traces is related to sequences
that occur dynamically depending on the inputs and outputs
in an implementation. Similarly, after will be the post actions
scenario in the implementation and outs will be the outputs
from the sensors. These sensor outputs will then be compared
to the expected outputs to check if the implementation is
IOCO or not.

In practice, there are no events shared between the simu-
lation model and the specification, but only Boolean signal
values. The correlation between events and signal values will
in this work be made as False is a subset of both False
and True, while True is considered to be a subset of only
True. Hence, if the specification output is False and the
implementation output is True then the IOCO relation fails as
the implementation output is not a subset of the specification
output.

IV. IOCO FOR TESTING SIMULATION MODEL

To create a simulation model, different parts, components,
and equipment are put together manually in a manner that
it can perform the required sequences of actions. These
sequence of actions once completed will give a feedback
to the specification model in terms of Sensors Outputs.

In the proposed methodology, instead of checking each
input-output combination for conformance, the specification
model describes sequences of operations [16]. Creating op-
erations eases the testing procedure as multiple input-output
combinations that are part of an operation can be tested
simultaneously. In the specification model, each sequence
will have an input Start Sequence associated with it. This
start event, once triggered will initiate a sequence of actions
in the simulation model.

The initiated sequence of actions in the simulation model
will activate different parts, equipment and sensors associated

Fig. 3. Simulation Model

with the operation triggered from the specification model.
After the completion of the actions related to the initiated
operation, the status of the sensor outputs in the simulation
model will always be set, either ”true” or ”false” (assum-
ing binary sensors). The values of these sensors from the
simulation model will then be fed back to the specification
model.

After receiving the feedback from the simulation model,
i.e. updated values of the sensors, the specification model will
update its own variables associated with the sensor outputs.
For the purpose of identification, the output events in the
specification model are labelled with a tag number or a name
of the operation. In Fig. 2, G, P, and W are the tags of the
associated operation. The updated values of executed oper-
ations are constantly monitored by the specification model
and in case of non-conformance the executed sequence stops
at the operation which is non-IOCO.

A. Use Case

1) Simulation Model: An application of the model-based
testing has been carried out on a simulation model of a real
cell, which exists in a production facility at one of Sweden’s
leading vehicle manufacturers. The cell is presented in Fig. 3.
The equipment and work stations used for testing the input-
output conformance involves only the two pick stations,
one robot (labelled as Operating Robot), the gluing station,
and the place station. These are pointed out in Fig. 3.
From the perspective of IOCO, this simulation model is
the implementation. In this implementation, the following
operations have been modeled and are tested using the input-
output conformance relation:

• Loading of the pick stations
• Picking a part from Pick Station 1
• Picking a part from Pick Station 2
• Gluing
• Pressing
• Placing the parts on Place Station
The above operations are also specified in the specification

model for input-output conformance testing, which will be
detailed later. When an operation is finished, it provides
feedback to the specification model, the feedback provided



in this case will be for the signals loading done, pick done
1, pick done 2, gluing done, press done, and place done.

The series of actions in the cell begins with the simulta-
neous loading of parts into both pick stations. The loaded
parts are then detected by the sensors installed on the pick
stations, the part detected will trigger the Operating Robot
to move and pick the part from Pick Station 2, which it then
moves to the Gluing Station where glue is applied on the
exposed area of the part.

Once the glue is applied, the part is taken to Pick Station
1 by the robot. At Pick Station 1, the robot places the part
on top of the part that is already lying on Pick Station 1.
Both parts are now pressed against each other for the glue
to bind them together. After the pressing operation, the robot
picks the pressed part and places it on the Place Station.

2) Sequence Planner for Writing Specifications: Se-
quence Planner (SP) [17] is a tool for modeling and analyz-
ing automation systems. In SP, automation systems are mod-
eled using operations and variables. It includes supporting
algorithms for a variety of use cases relating to modeling, for
instance synthesizing control logic, and visualizing complex
operation sequences in different projections. By also provid-
ing online monitoring and control, it can be used in early
phases to integrate model-based control design (based on
operations) with simulation-based validation based on virtual
commissioning.

In this example, SP is used to create the specification
model, shown in Fig. 4, which monitors and tests the
implementation (simulation model). The sequence starts with
the simultaneous loading of parts on both the pick stations.
Two operations in parallel i.e. If2LoadPart and If1LoadPart0
in the specification model are related to the loading of parts.

Once the parts are loaded in the simulation model, the
output values of the sensors at the pick stations get updated,
these updated sensor values from the pick stations represent
the outs of the implementation. The specification model up-
dates the outs related to the loading operations after getting
the feedback from the simulation model. Now, the values
of outs related to the loading operations in the simulation
model and the specification model are the same.

Now, to test the IOCO testing relation for the loading
operation, we recall Definition 1, which states that for all
traces in the specification, the outs of the implementation
(simulation model) should be a subset of the outs of the
specification. In this case, the loading operation is the trace
executed and the outs of the simulation model and the
specification model are the same, so the implementation is
IOCO with respect to the specification, for the trace related
to loading.

Applying the same concept to all operations, the IOCO
relation was found to be valid for all operations except
the pick operation from Pick Station 1. After the gluing
operation, the robot takes the glued part at Pick Station 1,
where the pressing operation is carried out successfully. But
the implementation (simulation model) fails the IOCO testing
relation in the next pick operation. This pick operation con-
sists of segments AR31PickLF2Seg20, AR31PickLFSeg30,

Fig. 4. Specification Model in Sequence Planner



and AR31PickLFSeg40, and is pointed out in Fig.4.
In this operation, the robot picks only the top part, leaving

the bottom part at Pick Station 1. Due to this, the value
of the sensor installed at Pick Station 1 remains True.
However, the value of the related outs in the specification
model for this operation is False as the specification expects
that the two parts now glued together are simultaneously
removed from the station. Hence, according to the definition
of IOCO the stated operation is not IOCO, as the outs in
the implementation is True and is not a subset of the outs in
the specification, which is False. This non-IOCO operation
causes the sequence to stop at its second to last step,which
needs to be adjusted to make the implementation IOCO
with respect to the specification. The adjustment is carried
out manually by adding the missing actions in the pressing
operation.

V. CONCLUSION

In this paper, a methodology of incorporating a digital twin
for legacy systems based on model-based testing is outlined.
The proposed methodology is applied on a simulation model
to demonstrate the input-output conformance relation. For
validation, any software using operations and variables can
be used; in the described case study the tool Sequence
Planner was used. Also, depending on the completeness of
design documents, this approach can be extended to complex
legacy systems. This work is an initial step to incorporate
model-based testing in the field of virtual commissioning.
Furthermore, this work has laid the foundation to use a
model-based testing approach to test and validate the safety-
PLC code in a virtual environment, which will be carried out
in the future.

Another direction for future work is related to the auto-
matic adjustment of a non-conforming implementation. If
the implementation fails to conform to the specification,
there are two possible scenarios. One scenario is related to
faulty specifications. The IOCO relation assumes that the
specification is correct, and in the case of non-conformance
the implementation has to be changed rather than specifi-
cation. But in the case of legacy systems this might not
always be true, as the specification can be faulty due to
outdated documents. To counter this, an algorithmic way
to adjust the specification using synthesis [13], [18] could
be used similar to the approach by [19]. Then, a non-
conforming implementation due to faulty specification can be
fully automatically adjusted. Depending on the requirement
and the application, synthesis using the supremal control-
lable sub-language [20] or the infimial controllable super-
language [21] can be carried out.

The second scenario is related to faulty implementation
and at the moment the implementation has to be adjusted
manually. In the future, we will examine different approaches
to automatically adjust a faulty implementation by using
synthesis or similar techniques.

REFERENCES

[1] S. Boschert and R. Rosen, “Digital twin—the simulation aspect,” in
Mechatronic Futures. Springer, 2016, pp. 59–74.

[2] C. G. Lee and S. C. Park, “Survey on the virtual commissioning
of manufacturing systems,” Journal of Computational Design and
Engineering, vol. 1, no. 3, pp. 213–222, 2014.

[3] P. Hoffmann, R. Schumann, T. M. Maksoud, and G. C. Premier,
“Virtual commissioning of manufacturing systems a review and new
approaches for simplification.” in 24th European Conference on Mod-
elling and Simulation (ECMS 2010), 2010, pp. 175–181.

[4] O. Mathias, W. Gerrit, D. Oliver, L. Benjamin, S. Markus, and
U. Leon, “Automatic model generation for virtual commissioning
based on plant engineering data,” IFAC Proceedings Volumes, vol. 47,
no. 3, pp. 11 635–11 640, 2014.

[5] S. Seidel, U. Donath, and J. Haufe, “Towards an integrated simulation
and virtual commissioning environment for controls of material han-
dling systems,” in Proceedings of the winter simulation conference.
Winter Simulation Conference, 2012, p. 252.

[6] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falk-
man, “Integrated virtual preparation and commissioning: supporting
formal methods during automation systems development,” IFAC-
PapersOnLine, vol. 49, no. 12, pp. 1939–1944, 2016.

[7] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[8] M. Mikucionis, K. G. Larsen, and B. Nielsen, “T-UPPAAL: Online
model-based testing of real-time systems,” in Proceedings of the 19th
IEEE international conference on Automated software engineering.
IEEE Computer Society, 2004, pp. 396–397.

[9] Z. Liu, C. Diedrich, and N. Suchold, Virtual Commissioning of
Automated Systems. INTECH Open Access Publisher, 2012.

[10] S. Dominka, F. Schiller, and S. Kain, “Hybrid commissioning–
speeding-up commissioning of field bus driven production plants,”
in Mechatronics, ICM2007 4th IEEE International Conference on.
IEEE, 2007, pp. 1–6.

[11] S. Kain, S. Dominka, M. Merz, and F. Schiller, “Reuse of HIL
simulation models in the operation phase of production plants,” in In-
dustrial Technology, 2009. ICIT 2009. IEEE International Conference
on. IEEE, 2009, pp. 1–6.

[12] G. Frey and L. Litz, “Formal methods in PLC programming,” in
Systems, Man, and Cybernetics, 2000 IEEE International Conference
on, vol. 4. IEEE, 2000, pp. 2431–2436.

[13] C. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, ser. SpringerLink Engineering. Springer US, 2009.

[14] G. Tretmans, “Test generation with inputs, outputs and repetitive
quiescence, 1996,” URL http://doc. utwente. nl/65463, vol. 46, 1996.

[15] C. Gregorio-Rodrı́guez, L. Llana, and R. Martı́nez-Torres, “Input-
output conformance simulation (iocos) for model based testing,” in
Formal Techniques for Distributed Systems. Springer, 2013, pp. 114–
129.

[16] K. Bengtsson, Flexible design of operation behavior using modeling
and visualization. Chalmers University of Technology,, 2012.

[17] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falkman,
“Sequence planner: Supporting integrated virtual preparation and
commissioning,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5818
– 5823, 2017, 20th IFAC World Congress. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896317309047

[18] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[19] H. Marchand, J. Dubreil, and T. Jéron, “Automatic testing of access
control for security properties,” in Testing of Software and Communi-
cation Systems. Springer, 2009, pp. 113–128.

[20] R. Malik, K. Åkesson, H. Flordal, and M. Fabian, “Supremica-–an
efficient tool for large-scale discrete event systems,” in IFAC World
Congress, Tolouse, France, 2017.

[21] L. Ricker, S. Lafortune, and S. Genc, “DESUMA: A tool integrating
GIDDES and UMDES,” in 2006 8th International Workshop on
Discrete Event Systems, July 2006, pp. 392–393.


