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Abstract— Ambient Assisted Living promotes healthy inde-
pendent ageing of the elderly at their homes by monitoring their
behaviour, and support medical assistance whenever needed.
For privacy and acceptance issues, non-intrusive sensors are
preferably used. However, such sensors are more prone to
produce false positive or negative data. Faulty sensor data could
be automatically detected if correlations between sensors can be
identified. This paper aims to propose the use of association rule
mining to find correlations between binary event-driven sensors
installed for monitoring purposes in an apartment. A case study
was carried out to validate the approach and investigate the
effect of different data mining parameters on the quality of
obtained association rules. The results show that correlations
could be successfully deduced from unlabelled datasets with no
prior expert knowledge on the sensors topology.

I. INTRODUCTION

The Ageing population phenomenon is affecting countries
all over the world, with an expectancy of multiplying by two
the number of people aged over 60 years by 2050. Several
countries will have more than 30% of its population over 60
years old, like Germany, France, China, Canada and others
[1]. To be able to face this demographic shift, an increasing
numbers of research works are investigating the development
of approaches and tools for Ambient Assisted Living (AAL).
Ambient Assisted Living promotes healthy ageing in the
elderly’s place of residence by using information and com-
munication technologies to monitor their Activities of Daily
living (ADL), detect deviation of their behaviour, predict
their future activities, and provide help whenever needed.

Sensors used to monitor the behaviour of elderly people
at their homes are either intrusive sensors, e.g., cameras and
microphones, or non-intrusive sensors, e.g., motion sensors
and contact sensors. The systems equipped with intrusive
sensors are not highly accepted by the population due to
privacy and security concerns. Consequently, in the last
decade, a stronger focus in research was directed towards the
use of non-intrusive sensors in AAL. However, such sensors
often suffer from false positive or negative triggers that can
affect the performance of the system.

Two types of sensor failures could be encountered; fail-
stop failures, where the sensors completely stop responding,
and non-fail-stop failures, where the sensors are still working
but give false information about their environment. The
typical non-fail-stop sensors malfunctions that were reported
by Flöck [2] during practical implementation of AAL include
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spurious signals of motion sensors at night, faulty activation
of motions sensors by sunlight, bouncing of door contact
sensors for several minutes, and switch-off delays of motion
sensors after the last observed activity. Other sources for
non-stop-failures could be moved-location failure when the
sensor gets remounted by the resident to another location,
and obstructed-view failure where the sensor gets blocked
by furniture [3].

Various fault detection techniques have been developed for
wireless sensor networks that consist of homogeneous, time-
driven and continuous-valued sensors, e.g., majority voting
scheme and time-series analysis. However, the non-intrusive
sensors used in AAL are heterogeneous, event-driven and
binary sensors.

Sensor failure detection in Ambient Assisted Living
equipped with non-intrusive ambient sensors has been ap-
proached previously in a few works.
SMART [3] used classification technique in which the clas-
sifier instances are trained with one sensor left out of the
training dataset to replicate a sensor failure. This approach
deals only with single sensor failure and lacks scalability due
to the significantly increasing training effort required.
FailureSense [4] exploited the correlation between the turn
on/off of electrical appliances and the sensors trigger events
based on Gaussian mixture model. However, it assumes that
the person has to be physically beside the electrical appliance
to turn it on/off and the average failure detection latency is
approximately 22 hours. A clustering based outlier detection
was proposed in [5], that can only deal with false positives
sensor triggers but not false negatives.
Amri et al. [6] used q-relaxed intersection technique to detect
faulty sensors via comparing the estimated location of the
resident from the activation of motion sensors with the loca-
tion estimated from the random walk model. Nevertheless,
the random walk model is not accurate enough to model the
resident behaviour.
Idea’s [7] approach to detect failures is based on the as-
sumption that there are functional redundant sensors for
ADL recognition. A sensor failure is flagged when the
probability that a certain activity has been detected while
the sensor was not triggered exceeds a certain threshold. This
approach relies on accurate ADL recognition which can not
be guaranteed in presence of sensor failures, in addition it
needs labelled dataset for the training phase.
Ye et al. [8] have attempted to detect missing sensor data
by finding correlations between sensors using mutual in-
formation technique along with predicting the trigger time
using non-liner time series analysis techniques. However, the



authors could not prove the effectiveness of their approach
due to the limited duration of the testing dataset and the low
number of used sensors beside its biased distribution across
the flat under test.

As highlighted in the previous paragraph, sensor failures
detection in AAL is still challenging, especially in the pres-
ence of the non-deterministic human behaviour that made
model-based fault detection unable to guarantee good results.
This paper aims to find correlations between non-intrusive
binary sensors using a data-driven approach, specifically
association rule mining. A refinement to the association
rule mining method is proposed and a comparison of the
results obtained for different parameters is done in order
to evaluate the feasibility of extraction correlations. Those
sensors correlations could be utilized in the future for the
detection of fail-stop and non-fail-stop sensor failures in
AAL.

II. BACKGROUND

In order to detect sensor failures in AAL, large sensors
datasets have, first, to be thoroughly analysed to detect the
fault-free sensors correlations during the nominal behavior
of the resident. Association rule mining is a data mining
technique that was introduced by Agrawal et al. [9] to find
associations between items in large datasets. Association rule
mining was successfully used in various fields, with its most
common application is the market basket analysis [10].

The items in the datasets are the set of binary features
denoted as I = {I1,I2,..,Im}. The dataset consists of a number
of transactions T = {T1,T2,..,Tn}, where each transaction
contains a subset of the items I; T ⊆ I. The association rule
is in the form of X → Y, where X ⊂ I, Y ⊂ I and X ∩
Y = φ. X and Y are the itemsets called the antecedent and
consequent of a rule, respectively. An association rule X →
Y means that “IF the item(s) X occured THEN the item(s) Y
occured as well”. There are two important evaluation metrics
for each rule, which are the support and confidence of this
rule, defined as follows:

Support(X → Y ) =
|Transactions containing X&Y|

|Transactions|
(1)

Confidence(X → Y ) =
|Transactions containing X&Y|
|Trasactions containing X|

(2)
To find the association rules of interest from a dataset,

minimum support and confidence are predefined by the user
for the association rule mining. The support reflects how
likely it is to find the items of X and Y together in the
transactions of a dataset, while the confidence reflects how
frequent the items of Y in the transactions that contains items
of X.

One of the widely used algorithms for association rule
mining is the Apriori algorithm, in which the dataset is first
scanned to find 1-itemsets (itemsets of length 1) that satisfy
the minimum support, then from those frequent 1-itemsets, 2-
itemsets will be generated and checked against the minimum
support value, and so on [11]. Only the association rules

Fig. 1. Sample of the sensors dataset

that satisfy the minimum support and minimum confidence
will be extracted. Another evaluation metric for association
rules is the lift, which confirms the correlation between the
antecedent and consequent items of rules if its value is
greater than 1. The lift of an association rule is defined as
follows:

Lift(X → Y ) =

|Transactions containing X&Y|
|Transactions containing X| ∗ |Transactions containing Y|

(3)

III. APPROACH

An essential step towards developing a sensor failure
detection system is to find strong correlations between the
employed sensors. In this paper, we investigate the use of
association rule mining to find the highly correlated sensors
from an unlabelled recorded dataset. The obtained rules
could then be used for sensor failure detection in such a
way that if the sensor(s) of the antecedent part of rule got
triggered while the sensor(s) of the consequent part of rule
did not within a specific time, then the sensor(s) can be
suspected to be faulty. The higher the correlation, the higher
the confidence in the sensor failure detection and the shorter
the time to detection.

A. Data Preprocessing

As the association rule mining was primarily designed
for transactional databases, some modifications had to be
done so that this method would better suit our application
whose dataset consists of timestamped sensor event triggers
as depicted in Fig. 1, e.g., On 2010-11-4 at 19:48:25.951116,
the sensor M015 got switched ON. The first step is to
reformat the data in a more usable form. First, the dataset
is converted to a set of binary time series, a series for each
sensor. At each time stamp of the dataset, the signal value
(0/1) of each sensor is calculated, based on its previous value
and the current event. Thus, the dataset is converted from an
event-based to a signal-based dataset. Then, all-zeros rows
were deleted as we are interested in the relation between
positively triggered sensors. The resulted transformation can
be seen on Fig. 2(a).

In a market basket analysis, transactional datasets are anal-
ysed to discover which items are likely to be bought together.
Similarly, in AAL, we would like to know which sensors
are likely to be ON simultaneously. Even in single-resident
homes, simultaneously ON sensors in different locations can



(a) (b)

Fig. 2. Data aggregation using sliding window of size 3 seconds

be observed due to the switch-off delay time of motion
sensors or due to the overlapping detection areas of those
sensors. We are also interested to know which sensors are
usually triggered within a few seconds from each other. To
take into account the temporal correlations, we consider that
if a sensor is ON within t seconds from another sensor
then they are considered as happening simultaneously. Thus,
a time-based sliding window is then used to aggregate the
sensor data into a set of transactions as in Fig. 2(b).

B. Association Rules Mining

In an attempt to find the strong association rules that
reflects the correlations between sensors, the use of rule
mining with different measures were investigated. The first
technique uses the typical measures for association rule
mining which are the support and confidence of a rule. The
minimum support and minimum confidence values should
be determined by the designer to control the quality of
the obtained association rules. The support calculates the
probability of finding two or more simultaneous positively
triggered sensors.

As the use of different areas in the apartment may not
be equally distributed, some sensors may be triggered much
less often than others, consequently their support will be
relatively low in comparison to others, and thus, they will not
appear in the extracted rules as they did not exceed the min-
imum support value. Consequently, a new measure termed
relative support is calculated as defined in equation 4. The
second technique investigate the use of the relative support
and confidence as evaluation metrics for the association rules
mining.

Rel. Support(X → Y ) =

|Transactions containing X&Y|
Min(|Transactions for each item in X or Y|)

(4)

For example, the relative support of the rule M4,M5 →
M7, is calculated as follows:

Rel. Support(M4,M5→M7) =

Trans4,5&7

Min(Trans4,Trans5,Trans7)
(5)

where Trans4,5&7 is the number of transactions in which the
sensors M4, M5 and M7 appear together, and Trans4, Trans5
and Trans7 are the number of transactions containing M4,
M5 and M7, respectively.

IV. CASE STUDY

A. Dataset

The proposed approach has been evaluated on the publicly
available Aruba CASAS dataset [12], which was collected
from a single-resident apartment for 6 months. The apartment
is equipped with 31 motion sensors, 4 contact door sensors
and 5 temperature sensors. However, only the motion and
contact sensors were included in our experiments. Also, there
is one door contact sensor that never triggered any event in
the recorded dataset. Thus, in total we have used the data
from 31 motion sensors and 3 contact sensors which results
in a dataset of 1316981 sensor triggers. The training data
used for finding the correlations is 50% of the dataset. The
other 50% of the data is left to be used for the validation
of a sensor failure detection system based on the extracted
correlations; however, this is not addressed in this paper.
Also, it is assumed that the recorded dataset does not have
faulty sensors triggers.

B. Experiments

In order to evaluate the techniques proposed in the
previous section, two experiments were conducted using
MATLAB 2017b software. Standard support experiment (
Experiment A) uses the first technique which implements
association rule mining with minimum support values of
0.5%, 1% and 1.5%, minimum confidence values of 60%,

Fig. 3. Aruba CASAS floor plan [12]



80%, 90% and 100%, and sliding window sizes of 3, 5,
8, 10, 15, 30 and 45 seconds. Relative support experiment
(Experiment B) uses the second technique which depends
on the minimum relative support instead of the minimum
support and experimented with the values of 15%, 20%, 25%,
35% and 45%, and the same minimum confidence and sliding
window parameters.

The objective of these experiments is to extract meaningful
association rules that have as many as possible of the
employed sensors appearing in at least one of the consequent
parts of the extracted rules so that most sensors could be
checked for faulty behaviour. An example of the outputted
association rules is as follows: M6, M8 → M20 (Support:
4.5942%, Confidence: 92.9159%). This rule means that,
according to the given dataset, 92.9159% of the times the
sensors M6 and M8 were active, the sensor M20 was also
active. From a fault detection perspective, it would also
means that, if during a real-time monitoring, the sensors M6
and M8 are active and the sensor M20 is not activated within
the size of sliding window used in the data preprocessing,
then it is highly probable that any of these sensors is faulty.

In the next subsection, several combinations of the above-
mentioned parameters will be evaluated and compared with
respect to the number of extracted rules, the number of
sensors present in the consequent part and the ratio of sensors
present in the consequent part to the number of extracted
rules.

C. Results

The number of association rules obtained from each exper-
iment, the number of the sensors present in the consequent
part of those rules and the ratio of sensors present in the

consequent part to the number of extracted rules were plotted
on Fig. 4, Fig. 5 and Fig. 6, respectively.

First, as shown in Fig. 4, in all experiments the number
of obtained rules increases roughly linearly as the sliding
window size is increased from 3 to 10 seconds included, then
afterwards the number increases exponentially even more
drastically. On the other hand, as shown in Fig. 5, after 10
seconds the number of sensors in the consequent part of rules
does not increase in the same rate of increase of number of
rules. However, as shown in Fig. 6, for a sliding window
larger than 10 seconds, a dramatic drop occurs in the ratio of
the number of sensors to the number of rules. As a first result,
it can be concluded that for a sliding window larger than 10
seconds, the drastic increase in the number of association
rules is not useful as it does not permit to extract more new
rules that covers the sensors that have been missing in the
consequent parts.

In the standard support experiment, the graphs plotted in
Fig. 4 clearly show that the trend is almost consistent within
the sub-experiments; at each specific minimum support, the
number of rules and consequent sensors increase for each
value of minimum confidence as the sliding window size
increase. The trend is also consistent on the global view of
the sub-experiments; as the minimum support decreases, the
number of association rules increase (see Fig. 4) as well
as the number of sensors in consequent part (see Fig. 5).
However, the latter one is increasing less rapidly, as depicted
in Fig. 6, where the ratio of sensors to rules decreases as the
minimum support decreases.

Similarly to the standard support experiment, in the rela-
tive support experiment as the minimum support decreases
the number of association rules and consequent sensors

Fig. 4. Number of association rules w.r.t. minimum support/relative support, minimum confidence and sliding window size



Fig. 5. Number of sensors in the consequent part of association rules

Fig. 6. Ratio of the number of sensors in the consequent part of association rules to the number of rules

increase. However, the plots of the relative support exper-
iment show that the trend within the sub-experiments is
inconsistent, for example, at minimum relative support of
20% the number of consequent sensors at a sliding window
size of 10 seconds that have a confidence of 100% is greater
than that at 8 seconds, while at minimum relative support of
15% the same parameter is less at 10 seconds than that at 8
seconds (see Fig. 5). This could be due to the fact that each
of the numerator and denominator of the relative support
equation increases in different rates according to the switch-
off delays of motion sensors and the resident’s behaviour,
changing the relative support of each itemset.

As observed in Fig. 6, the ratio of consequent sensors
to the number of rules that have a confidence of 90% or
more is always the highest in all sub-experiments compared
to the other minimum confidence values. By setting the
minimum relative support to 35%, sliding window size to
3 seconds and minimum confidence to 90%, the resulted
ratio of consequent sensors to rules is 0.615. However, the
number of consequent sensors is only 8. Therefore, such rules
are not sufficient to discover faulty sensors in an apartment
that deploys 34 sensors. As illustrated, judging the best
parameters for achieving good results in association rules
from investigating either one or two of Fig. 4, 5 and 6 is not



Fig. 7. Sample of the obtained rules at 25% min. relative support, 60%
min. confidence and sliding window size of 3 seconds

sufficient, the three figures should be considered together to
determine the best trade-off among the parameters, as will
be discussed in the next section.

D. Discussion

Overall, the relative support experiment permits to extract
more consequent sensors within less number of functionally
redundant rules than the standard support experiment. This
shows that using the relevant support of rule is more bene-
ficial for our application. This can be explained by the fact
that the AAL datasets are usually unbalanced: some sensors
are triggered much more often than others; yet, infrequent
triggered sensors may be highly correlated.

Pursuing a trade-off between the number of meaningful
association rules and consequent sensors, a minimum relative
support of 25%, combined with a sliding window size of 3
seconds and a minimum confidence of 60% appear to be the
best values for extracting strong correlations between sensors
that could be used to detect sensor failures. Those parameters
produce 104 rules that contains 26 different sensors in the
consequent part of the association rules. 32 out of the 104
rules have a confidence of 90% or more; 12 sensors out of the
26 consequent sensors are included in those 90% confidence
rules. In general, this means that for some sensors it would
be easy to extract relations with a few rules, but others may
require many more rules or are even impossible to correlate
for a given configuration of these sensors positioning in an
apartment. A sample of the obtained rules is shown in Fig.
7, the lift value for all the rules is always greater than 1.

By checking the extracted association rules and the apart-
ment layout, logically correct correlations could be obtained
between the different sensors. As a consequence, a sensor
failure detection for Ambient Assisted Living could rely on
those rules to flag a fail-stop or non-fail-stop sensor failure.
Those rules could be exploited to build a probabilistic model
for sensors’ triggers which can be used for fault detection. As
the number of rules with 100% confidence is relatively small,
it is not possible, after a positive/negative trigger observation
of a sensor, to guarantee with certitude whether the sensor
is faulty or not. Yet, after a sequence of highly probable
unexpected events (confidence >80%), the confidence in the
diagnostic can be increased.

V. CONCLUSION AND FUTURE WORK

This paper proposed the use of association rule mining to
find the correlations between binary event-triggered sensors
deployed in Ambient Assisted living environment. Two tech-
niques were implemented, one using support and the other
using relative support, and compared on a case study. The
criteria for obtaining the association rules of interest were
discussed. The proposed approach, using the relative support
of a rule, permits to obtain interesting correlations between
sensors from an unlabelled dataset, with no need for prior
expert knowledge.

As future work, those correlations could be used for the
detection of fail-stop and non-fail-stop sensor failures and/or
fault tolerance in Ambient Assisted Living. A limitation
for the proposed system is that some of the deployed
sensors do not have rules that enable us to check on their
faulty behaviour. This point will be considered in the future
work, especially in relation to existing works on automatic
placement of sensors for ADL recognition [13]. Also, a
sensor failure detection system will be developed based
on the obtained rules and real-time experiments will be
conducted with injecting various types of failures to evaluate
the performance of detecting failures.
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