
Towards Automatic Learning of Discrete-Event Models from Simulations

Downloaded from: https://research.chalmers.se, 2024-04-27 00:17 UTC

Citation for the original published paper (version of record):
Farooqui, A., Falkman, P., Fabian, M. (2018). Towards Automatic Learning of Discrete-Event
Models from Simulations. IEEE International Conference on Automation Science and Engineering,
2018-August: 857-862. http://dx.doi.org/10.1109/COASE.2018.8560451

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

Towards Automatic Learning of Discrete-Event Models from Simulations

Ashfaq Farooqui, Petter Falkman and Martin Fabian
Department of Electrical Engineering

Chalmers University of Technology, Göteborg, Sweden 412 96
Email: {ashfaqf, petter.falkman, fabian} @ chalmers.se

Abstract— Model-based techniques are, these days, being
embraced by the manufacturing industry in their development
frameworks. While model-based approaches allow for offline
verification and validation before physical commissioning, and
have other advantages over existing methods, they do have their
own challenges. Firstly, models are typically created manually
and hence are prone to errors. Secondly, once a model is
created, tested, and put into use on the factory floor, there
is an added effort required to maintain and update it. This
paper is a preliminary study of the feasibility of automatically
obtaining formal models from virtual simulations. We apply
the foundational algorithm from the active automata learning
community to study the requirements and enhancements needed
to be able to derive discrete event models from virtual simula-
tions. An abstract model in the form of operations is learned
by applying this algorithm on a simulation model composed of
discrete operations. While a major bottleneck to be solved is
the generation of counterexamples, the results seem promising
to apply model learning in practice.

I. INTRODUCTION

Model-based techniques, that offer design, validation, ver-
ification, and testing, are being actively adopted within the
manufacturing industry [1], [2] to formally ensure correct-
ness of complex systems. The last few years have seen
a drastic advancement in model-based algorithms that are
practical to use on common manufacturing systems. These
techniques are usually coupled with virtual technologies
such as simulations [3] and virtual reality [4] in the early
phases of manufacturing systems development or the virtual
commissioning phase [5], thereby leading to shorter physical
commissioning effort. However, creating formal models is a
challenging task that requires skill, in-depth knowledge of
the system, and creativity.

The automotive manufacturing industry, and manufactur-
ing industries in general, are gradually moving towards sim-
ulation based techniques during the initial phase of setting up
the systems known as the virtual commissioning phase [5].
During the virtual commissioning phase, a virtual replica
of the manufacturing station is first created in a simulation
software and is tested in simulation to ensure correctness,
before physically commissioning the station. Testing in a
virtual environment can be enabled using formal models [3].
However, the formal models and the specifications are typi-
cally created manually, which is a daunting task.

This work has been supported by ITEA3 VINNOVA ENTOC (2016-
02716), and VR SyTeC (2016-06204).

Models specifying the intended behaviour of the system
need to be created early during the specification and design
phase of virtual commissioning. Incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. In reality, these models do not
always capture the complete behaviour and, even when they
do, become outdated as the system evolves if they are not
updated regularly.

A possible method to deal with incorrect and outdated
models is to create them automatically. Several methods have
been proposed in the literature that deal with automatically
creating models. These methods work by either observing
the behaviour of the components in the system or by ac-
tively interacting with the system, and then using specially
designed techniques to construct a model. These techniques
are now receiving increased attention within the verification
and testing communities [6], [7], and are known as automata
learning (a.k.a grammatical inference) [8], [9].

Previously, in [10], a method for learning models was pre-
sented using passive learning. The focus was on collecting
data from the manufacturing system and then processing this
date to create the model. In this paper we present the first
steps toward automatically creating models by interacting
with a virtually commissioned simulation system using a
method called active learning. To this end, we investigate
the possibility of using grammatical inference techniques,
specifically active learning techniques, to automatically learn
a formal model representation of a given simulation. The
results of these first steps will provide directions for future
research.

A. Outline

We will first introduce Dana Angluin’s seminal algo-
rithm [11] and will this use this algorithm to learn a model
of a simulated robotic arm. The learning outcome will be the
evaluation of possibilities and limitations in applying these
techniques to larger manufacturing systems.

In order to be able to apply automata learning to simulated
systems we use the abstraction of operations [12] to build
the simulated controller. To achieve this, the functionality
present in the simulated controller is made up of several
smaller, unique, actions that actuate a specific component.
An operations is then a sequence of actions that accomplish
a task. The learning algorithm takes the set of operations as
the input for the learning task.

Section II provides a brief literature survey regarding
the available work in the field of learning automata. Sec-
tion III provides the basic definitions and preliminaries used
in the remainder of the paper, and also briefly highlights
the L* algorithm with an example. We then present the
basic framework to enable learning models from simulation
systems in Section IV. Thereafter, to practically demonstrate
the approach discussed in this paper Section V describes
how the model of a simulated robotic arm is learnt using
the defined setup. Finally, Section VI concludes with some
remarks about future work.

II. RELATED LITERATURE

Grammatical inference [9] is associated with various fields
of study like computational linguistics, machine learning,
formal learning theory, and computational biology, to name
but a few. Hence, it is also known by different names depend-
ing on the field, such as Automata learning, Grammatical
induction, Grammar learning etc. An in-depth survey of
grammar inference techniques is provided by [8], [13], [14].

A large body of work already exists in this field, and can
be classified into the two categories Active and Passive learn-
ing. In this paper we deal with Active learning, sometimes
called learning with interaction, which deals with submitting
queries to the target system and forming a hypothesis based
on the responses obtained. The learner first starts with
an initial hypothesis which is iteratively improved by first
finding counterexamples that invalidate the hypothesis, and
then querying the target system to revise the hypothesis.

A seminal paper in the field of Active learning is Dana
Angluin’s work on learning minimal automata using queries
and counterexamples [11]. From an algorithmic perspective,
there have been only a handful of improvements and new
approaches suggested in this field. Schapire [15] improves
the algorithm by handling the counterexamples in a smarter
way. Kearns and Vazirani [16] introduce the idea of discrim-
ination trees, which is further used by Malte et.al [17] who
suggest the TTT algorithm.

From a more practical perspective, [11] has inspired a
tremendous amount of work that has yielded positive re-
sults. Active automata learning has been applied to verify
communication protocols using Mealy machines [18], [19].
By using a suitable abstraction interface Arts [20] learn IO
automata. Other techniques are directed towards learning
models of software systems. [21] apply active automata
towards learning models of software programs modeled as
register automata, [22] focus on learning embedded software
programs.

III. PREREQUISITES

In this section, we introduce the concepts and terminology
used throughout the paper. First, the modeling formalisms –
Operations and Automata – are defined. Subsequently, a brief
explanation of the L* algorithm is provided to highlight its
workings.

A. Operations

The system to be learnt can perform several tasks, and
these need to be pre-defined. To define the tasks we use the
abstraction of operations. Each operation corresponds to one
specific function performed by the target system.

Definition 1 (Operation): An operation is defined as
a 4-tuple 〈PreGaurd,PreActions,PostGaurd,PostActions〉
where:
PreGuard, is a predicate over the state that defines when the
operation is allowed to execute;
PreActions, defines assignments to configuration parameters
in the state that will execute the operation in the target
system;
PostGuard, is a predicate over the state that defines when the
operation completes;
PostActions, defines assignments to configuration parameters
in the state that ensures completion of the operation.

For simplicity, we will consider operations that are two-
state. That is, when an operation is executed it transforms
the system from one state to another when the operation
completes.

B. Alphabets, Words and Languages

Let Σ, known as the alphabet, represent a finite set of
symbols, then Σ∗ is used to denote the set of words of
finite length over Σ including the empty word ε, i.e a set
of sequences of symbols formed by concatenation. Con-
catenation of sets is represented using the dot (·) operator,
and concatenated symbols are written together without a
space. For example, for two sets A = {a} and B =
{b}, set concatenation is represented by A · B and symbol
concatenation by ab. Note that A · B = {ab}. A language
L ⊆ Σ∗ contains the set of words over Σ including the empty
word ε.

A set of words is said to be prefix-closed if the prefix of
every member in the set is also a member. Suffix-closed sets
are defined analogously.

C. Deterministic Finite State Automata

Definition 2 (DFA): An automaton is defined as a 4-tuple
〈S,Σ, δ, sq〉, where:
S, is the set of states;
Σ, is the alphabet;
δ : S × Σ→ S, is the transition function;
sq ⊆ S, is a set of states representing the marked states.

The marked language given by Lm ⊆ L, is the set of
traces that reach marked states. There are many automata
that represent the same language, but it is known [23] that
among all of these automata there is a minimal one, with the
smallest number of states and transitions. This automaton is
unique.

D. The L* Algorithm

The L* algorithm [11] learns a minimal automata accept-
ing a regular language Lm ⊆ Σ∗ over a finite alphabet
Σ. Two types of queries need to be answered to make the

algorithm work, and these are answered by a teacher. For
pedagogic reasons, we will refer to the algorithm as the
learner that interacts with the teacher using queries. The two
types of queries made by the learner are:

• Membership queries: given a word w ∈ Σ∗, the
teacher replies positively if w belongs to Lm, else the
reply is negative.

• Equivalence queries: given a hypothesis automata H,
the teacher must verify if H accurately represents the
language Lm. If not, the teacher must provide a coun-
terexample c ∈ Σ∗, such that, c is incorrectly accepted
or rejected by H.

The algorithm terminates when the teacher cannot find such
a counterexample. The L* algorithm is outlined in Figure 1.

At any given time the learner updates its knowledge about
the target language. Internally, this knowledge is represented
as an observation table. The observation table has three parts,
a non-empty finite prefix-closed set S ⊆ Σ∗, a non-empty
finite suffix-closed set E ⊆ Σ∗, and a transition function T
mapping ((S ∪ S.Σ).E) to {0, 1}.

Result: A Hypothesis automata H
initialisation S,E ← ε;
repeat

while the table is not closed or not consistent do
if table is not closed then

find u ∈ S, a ∈ A such that
row(ua) 6= row(s)∀s ∈ S;
S ← S ∪ {ua};

end
if table is not consistent then

find s1, s2 ∈ S , a ∈ A and e ∈ E such that
row(s1) = row(s2) and
row(s1ae) 6= row(s2ae);
E ← E ∪ {ae};

end
end
Construct the hypothesis H to the teacher if the

teacher replies no with a counterexample c then
S ← S ∪ prefixes(c)

end
until the teacher replies yes;
return H

Fig. 1: The L* Algorithm

The learner uses the observation table to construct a
hypothesis automata from the rows of the table, where the
rows represent the states of the automata. Rows with the
same content result in a single state. The marked states are
represented by row(s) where s ∈ S and T (s)(ε) = 1. The
initial state corresponds to a row with the empty word, i.e
row(ε).

In order to be able to construct a hypothesis, the observa-
tion table needs to be closed and consistent.

• An observation table is said to be closed if for all t ∈
S, a ∈ Σ there is an s ∈ S such that the row(s) =

row(t a). In other words, each transition reaches some
state in the hypothesis.

• A table is consistent if for s1 ∈ S and s2 ∈ S and
row(s1) = row(s2) then for all a ∈ Σ, row(s1 a) =
row(s2 a). In other words, there is no ambiguity in the
transition.

The learner ensures that the table is closed and consistent
by updating the sets S and E according to the algorithm in
Figure 1. Once the table is closed and consistent, the learner
submits a hypothesis to the teacher requesting an equivalence
query. If the teacher provides a counterexample, the observa-
tion table is updated with the traces from the counterexample,
new queries are made, and a revised hypothesis is submitted
when the table is again closed and consistent. This process
is repeated until no more counterexamples can be found by
the teacher, at which point the current hypothesis is the DFA
representing the model of the system.

IV. THE LEARNING FRAMEWORK

The previous section discussed the general framework that
is applied to learn an unknown regular language of a system.
In this section, focus will be on the system to be learnt. More
specifically, the components needed by the learner in order to
apply the discussed learning technique to learn an automata
model using the simulation of the system.

A. The Simulation

The first component is a simulator capable of simulating
the system to be learnt. The target system must be modeled
in a simulator to create the simulation model. Simulations
provide several advantages in comparison to using the real
system. Unlike the real system, the simulation can be run
faster than real-time, even multiple instances in parallel,
thereby speeding up the learning process. Dangerous col-
lisions and unforeseen events are avoided and confined to
the simulation, providing a safer environment to learn. The
financial investment needed, once a simulation is obtained,
relates to obtaining powerful computers – which in today’s
world is relatively cheap. Additionally, simulation models
are easier to reset to a known predefined state. This ability
to reset helps the teacher while answering queries.

The simulation model and its controller must be created
depending on the level of detail required to be captured in
the model. The basic requirement, of the simulation model,
needed to learn a behavioural model of the system is the
ability to accurately simulate the sensors and actuators. Fur-
thermore, a simulation capable of capturing physics can be
used to capture collisions and other such unwanted behaviour
in the system.

B. Modeling operations for the learner

In order for the learning algorithm to be able to interface
with the simulation a common interface needs to be defined.
Operations are a sufficiently good abstraction to use while
creating the simulated model. The learning algorithm takes
the operations as defined in Section III, where each operation

must correspond to a specific function effectuated by a
sequence of actions in the simulated model.

Each operation has a name by which it can be identified,
and guards and actions that start and stop it. The learner
uses the name of each operation while constructing the
observation table. These names are then matched with the
corresponding operations by the teacher while querying the
simulation environment. Thus, the operation names are the
symbols of the alphabet.

Apart from the operations, the algorithm requires a “goal”
– a predicate over the system state – that defines the marked
states of the system. The goal is used by the teacher while
evaluating queries as explained in the following section.

C. The teacher

As defined earlier, L* is an interactive query based al-
gorithm which consists of a learner and a teacher. The
teacher is responsible for answering two types of queries,
membership and equivalence queries. In order to answer
these, the teacher needs to interact with the simulated model,
making the teacher an interface between the learner and the
simulation. For this, the simulator must have an accessible
interface enabling communication. Practical details about the
communication are presented in Section V.

1) Membership queries: The learner poses membership
queries by providing a sequence of operations to the teacher.
The teacher is then responsible to execute this sequence in
the simulator, and to check if it results in a marked state –
i.e if the sequence reaches the goal.

The teacher first ensures that the simulator is in the initial
state, else the simulation is reset. For simulations where
reset is not possible a homing sequence can instead be
used [24]. The sequence of operations received from the
teacher is then executed one operation at a time. By first
evaluating the PreGuard to check if the operation is allowed,
and then, setting the parameters defined as PreAction, the
operation is started. The teacher then monitors the state until
the operation has ended by evaluating the PostGuard and
stopping the operation by setting the parameters as defined
by the PostAction.

If the resulting state after executing the SOP is the goal
state, the teacher sends a positive response. In all other cases
it replies negatively.

2) Equivalence queries: Once the learner has completed
one cycle of learning – by fulfilling properties of the
closedness and consistency – it presents a hypothesis to the
teacher. The role of the teacher is to either provide a suitable
counterexample existing in the system to be learnt, but not
in the hypothesis; or the teacher approves the hypothesis to
be an acceptable model of the system.

Generation of counterexamples is not easy, the teacher
needs to exhaustively try all possibilities in order to provide
a counterexample. Presence of loops in the model add
complexity to the task. A survey of various counterexample
generation strategies applied to communication protocols are
discussed in [25]. More generally, communication protocols
are usually modelled as Mealy machines. Counterexamples

are generated by comparing the output strings obtained from
the target system and the hypothesis, for a given input string.
One of the main differences while applying counterexample
generation strategies using the setup defined in this paper is
to perform the comparison against the final state reached.
The example discussed in Section V will clarify how coun-
terexamples are obtained.

V. L* LEARNING APPLIED TO A ROBOTIC ARM

In this section the L* algorithm is applied to construct
a model of a simulated robotic arm. The robotic arm is
programmed using ladder logic and controlled by a PLC. The
arm can move in the X and Y directions, and is fitted with a
gripper that allows the arm to grip objects. The gripper has
the ability to extend and retract in order to grip. The program
contains the required logic to control the arm, which includes
moving the arm in four directions: up, down, left, and right;
and extending, retracting, closing, and opening the gripper.

The different operations are controlled, in the PLC, by
a variable that can start the execution of its corresponding
action. Additionally, the PLC program keeps track of the
current position of the arm in both the X and Y directions
using sensors. Figure 2 provides an image of the simulation
environment.

Fig. 2: Simulation of the robotic arm.

In order to learn the model of this robotic arm, the teacher
must be able to communicate with the simulation envi-
ronment. Furthermore, the algorithm requires the alphabet
(the operations) as input, and also a technique to generate
counterexamples. In this section we explore these different
components and provide the end result from the learning
algorithm.

The example will be treated as a purely discrete system
with no parallelism. That is, only one operation is allowed
to execute at any given time.

A. Communicating with the PLC

A communication system should be in place allowing the
teacher and the PLC to communicate. This communication
is achieved using the OPC protocol [26]. OPC provides
bidirectional access to all the variables internal to the PLC.
By monitoring the changes on the OPC, the state of the

target system is captured and observed. The observed state
is maintained as a map of the variables and their current
values, this map is called as a StateMap. The StateMap is a
digital replica of the system’s state.

The bidirectional nature of OPC provides the means to
update variables on the PLC by changing their counterparts
in the StateMap, thereby allowing the teacher to start an
operation in the PLC by assigning the correct values in the
StateMap.

B. Defining the system
The operations in the PLC need to be defined for the

teacher and the learner in the format specified in Section III.
The guard predicates for each operation must specify exactly
when the operation is allowed to execute and when it has
finished. Correspondingly, the actions need to specify the
variable assignments to start and stop the operation. The
guards ensure that only one operation can execute at a time,
even though it is possible that several operations are enabled.
Additionally, the guards must ensure that the arm cannot
move when it is extended, and can open and close the gripper
only when it has already extended.

The goal is constructed according to what we want to learn
about the system. For simplicity, we define the goal to be the
initial state of the arm. An interesting modification would
be to define every state as part of the marked language. By
doing this, as we will see, the learning takes place with fewer
queries.

C. Generating counterexamples
Given a hypothesis, the teacher needs to find a coun-

terexample. A counterexample is generated using a random
walk algorithm. The teacher randomly selects one executable
operation and executes it in the simulator. The resulting
StateMap obtained is then compared with the corresponding
operation in the hypothesis. If either such a trace does not
exist in the hypothesis, or the StateMaps do not match, a
counterexample is found. Since such a random walk can go
on for an unbounded time we explicitly define a maximum
number of allowed steps and also restart the algorithm at
random instances to avoid the possibility of getting stuck in
loops and to ensure randomness.

D. Results and Discussions
Using the setup as defined above the learning algorithm

was capable of learning a model of the robotic arm. In
order to learn how the algorithm scales as the simulation
grows, the arm was allowed to move on different sized grids.
Furthermore, the operations were grouped depending on the
function they performed to see if it was possible to learn
smaller subsystems rather than the complete system.

Figure 3 shows the learnt model while learning the four
operations related to gripping. Figure 4 shows the model
obtained while learning only the operations involved in
motion. Both these were learnt against a grid size of 3 × 3
as seen in Figure 2.

The learning algorithm was also capable of learning the
complete model of the robotic arm. The time taken to learn

S t a t e (s 3)

t o u

S t a t e (s 2)
e x t e n d

S t a t e (s 1)

t o u

S t a t e (s 5)
e x t e n dr e t r a c t

t o u

g r i p r e t r a c t

r e l e a s e

t o u

Fig. 3: learnt model of extending and gripping

S t a t e (s 4) t o u

S t a t e (s 5)

r i g h t

S t a t e (s 9)

d o w n

S t a t e (s 8)

u p

S t a t e (s 2)

le f t

l e f t

t o u

S t a t e (s 7)

d o w n

S t a t e (s 3)

u p

u p

t o u

le f t

u p

r i g h t

t o u

S t a t e (s 1)

le f tr i g h t

t o u

u p

S t a t e (s 1 0) t o u

r i g h t

d o w n

d o w n

lef t

t o u

r i g h t r i g h t

d o w n

u p

t o u

d o w n

lef t

t o u

Fig. 4: learnt model consisting of the four movements

a 3× 3 grid was around 5 minutes. However, the execution
times of both cases vary significantly between different
runs, so evaluating based on time does not provide good
metrics. The main reason for this is the dependence on the
simulated environment and the random walk algorithm. A
more obvious way to evaluate the algorithm is based on the
number of queries made. By increasing the grid size we could
scale up the system to get a glimpse into the performance
and applicability to real world systems.

Table I shows some metrics obtained for several trials
while learning a model of the robotic arm. Table Ia shows
the results for learning a prefix-free system, while Table Ib
corresponds to the prefix-closed system. The ‘Grid’ column
in the tables refers to the grid size within which the robot
arm was allowed to move. ‘Eq’ and ‘Mq’ refer to the number
of equivalence and membership queries made, and ‘States’
gives the total number of states in the learnt automata.
The numbers in the tables are not absolute. They depend
on the counterexamples provided, which in turn depend
on the parameters of the random walk algorithm. Hence,
all experiments were performed with fixed random walk
parameters. For example, learning a grid of size 4× 4 in the
prefix-free setting resulted in an incomplete solution, missing
several states and transitions, this was due to the current
implementation of the random walk algorithm that terminates
after traversing a fixed number of steps. The inference we
draw here is the need to have better techniques to generate
valid and useful counterexamples. A more in-depth study
towards understanding properties of useful counterexamples
and how to generate them is needed.

As can be seen in the tables, learning a prefix-closed

Grid Eq Mq States
2x2 10 9476 17
3x3 24 118208 37
4x4 38 219431 56

(a) Prefix-free system

Grid Eq Mq States
2x2 5 2981 17
3x3 8 17060 37
4x4 8 29021 65

(b) Prefix-closed system

TABLE I: Observations on the performance of L* while
learning the model of the simulated robotic arm.

system results in fewer queries. This is contrary to the ex-
periments performed using random automata in [27], which
shows that learning a prefix-closed language results in higher
number of queries. We hypothesise that this contradiction is
due to the structure of our system. Probably, the cyclic nature
due to operation pairs (up-down, left-right, extend-retract) is
the cause for this behaviour.

VI. CONCLUSION

In conclusion, this paper presents an approach to learn
discrete event models using simulation environments. To
this end, the L* algorithm, a fundamental active learning
algorithm, is briefly described. A framework is presented
that enabled learning of models from simulations of systems.
Furthermore, the presented framework was applied to learn
the model of a simulated robotic arm. Through this, we could
identify the different components that will enable us to apply
the L* techniques to learn models of real manufacturing
systems.

According to the experiences from these experiments, sev-
eral lines of work are identified to be explored that will help
towards applying these algorithms practically. These include
improvement of the learning algorithm. More specifically,
most of the existing algorithms and techniques are specifi-
cally designed to address the needs of either communication
protocols or software programs, and need to be adapted or
newer ones need to be explored that can be used on simulated
manufacturing systems.

Another line of work to be explored concerns generation
of counterexamples. Generating counterexamples is the bot-
tleneck towards learning. An approach using the predefined
specifications of the system or model-based testing may
improve the quality of the counterexample generation.

The third line of work, and maybe the most challenging
one, is to learn richer formalism in particular Extended Finite
State Machines [28].

REFERENCES

[1] J. Campos, C. Seatzu, and X. Xie, Formal methods in manufacturing.
CRC press, 2014.

[2] G. Frey and L. Litz, “Formal methods in PLC programming,” in
Systems, Man, and Cybernetics, 2000 IEEE International Conference
on, vol. 4, 2000.

[3] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falk-
man, “Integrated virtual preparation and commissioning: Support-
ing formal methods during automation systems development,” IFAC-
PapersOnLine, vol. 49, no. 12, pp. 1939–1944, 2016.

[4] M. Dahl, A. Albo, J. Eriksson, J. Pettersson, and P. Falkman, “Virtual
reality commissioning in production systems preparation,” in 22nd
IEEE International Conference on Emerging Technologies And Fac-
tory Automation, 2017.

[5] C. G. Lee and S. C. Park, “Survey on the virtual commissioning
of manufacturing systems,” Journal of Computational Design and
Engineering, vol. 1, 2014.

[6] C. Y. Cho, E. C. R. Shin, D. Song et al., “Inference and analysis of
formal models of botnet command and control protocols,” in Proceed-
ings of the 17th ACM conference on Computer and communications
security. ACM, 2010, pp. 426–439.

[7] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and
B. Steffen, “On the correspondence between conformance testing
and regular inference,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2005, pp. 175–189.

[8] C. de la Higuera, “A bibliographical study of grammatical inference,”
Pattern Recognition, vol. 38, no. 9, 2005.

[9] ——, Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, 2010.

[10] A. Farooqui, K. Bengtsson, P. Falkman, and M. Fabian, “From
factory floor to operation models: An approach to generate, transform,
and visualise manufacturing systems,” 2018, submitted for possible
publication.

[11] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, no. 2, pp. 87 – 106, 1987.

[12] K. Bengtsson, B. Lennartson, and C. Yuan, “The origin of operations:
Interactions between the product and the manufacturing automation
control system,” IFAC Proceedings Volumes, vol. 42, 2009.

[13] M. Bugalho and A. L. Oliveira, “Inference of regular languages using
state merging algorithms with search,” Pattern Recogn., vol. 38, no. 9,
2005.

[14] R. Parekh and V. Honavar, “Grammar inference, automata induction,
and language acquisition,” Handbook of natural language processing,
pp. 727–764, 2000.

[15] R. E. Schapire, The Design and Analysis of Efficient Learning Algo-
rithms. Cambridge, MA, USA: MIT Press, 1992.

[16] M. J. Kearns and U. V. Vazirani, An Introduction to Computational
Learning Theory. Cambridge, MA, USA: MIT Press, 1994.

[17] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A
redundancy-free approach to active automata learning,” in Runtime
Verification, B. Bonakdarpour and S. A. Smolka, Eds. Cham: Springer
International Publishing, 2014, pp. 307–322.

[18] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective,” in International School on
Formal Methods for the Design of Computer, Communication and
Software Systems. Springer, 2011, pp. 256–296.

[19] B. Jonsson, Learning of Automata Models Extended with Data.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 327–349.

[20] F. Aarts and F. Vaandrager, “Learning I/O automata,” in CONCUR
2010 - Concurrency Theory, P. Gastin and F. Laroussinie, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 71–85.

[21] M. Isberner, F. Howar, and B. Steffen, “Learning register automata:
from languages to program structures,” Machine Learning, vol. 96,
no. 1, pp. 65–98, Jul 2014.

[22] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying
automata learning to embedded control software,” in Formal Methods
and Software Engineering, M. Butler, S. Conchon, and F. Zaïdi, Eds.
Cham: Springer International Publishing, 2015, pp. 67–83.

[23] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Introduction
to Automata Theory, Languages and Computability, 2nd ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[24] R. Rivest and R. Schapire, “Inference of finite automata using homing
sequences,” Information and Computation, vol. 103, no. 2, pp. 299 –
347, 1993.

[25] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yev-
tushenko, “FSM-based conformance testing methods: A survey anno-
tated with experimental evaluation,” Information and Software Tech-
nology, vol. 52, no. 12, pp. 1286 – 1297, 2010.

[26] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture,
1st ed. Springer Publishing Company, Incorporated, 2009.

[27] “Insights to Angluin’s learning,” Electronic Notes in Theoretical
Computer Science, vol. 118, pp. 3 – 18, 2005.

[28] R. Malik, M. Fabian, and K. Åkesson, “Modelling large-scale discrete-
event systems using modules, aliases, and extended finite-state au-
tomata,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 7000 – 7005,
2011, 18th IFAC World Congress.

