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“[...] it is such a *simple* thing, not at all what you thought it might be, and you

feel yourself suddenly comforted. In knowing your name, your true name, you

know that you have gained back perhaps the most important part of yourself. In

knowing your name, you know yourself, and you know, now, there is very little

you cannot do.”

— THE NAMELESS ONE, “PLANESCAPE: TORMENT”, 1999
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ABSTRACT

We present c-M2DP, a fast global point cloud descriptor that combines color and shape in-

formation, and perform loop closure detection using it. Our approach extends the M2DP

descriptor by incorporating color information. Along with M2DP shape signatures, we

compute color signatures from multiple 2D projections of a point cloud. Then, a compact

descriptor is computed using SVD to reduce its dimensionality. We performed experi-

ments on four public available dataset sequences, with point clouds generated using either

camera-LIDAR fusion or stereo depth estimation. Our results show an overall accuracy

improvement over M2DP while maintaining efficiency, and are competitive in compari-

son with another color and shape descriptor.

Keywords: Point Cloud Descriptor, Loop Closure Detection, SLAM.



c-M2DP: Um Descritor Rápido de Nuvem de Pontos com Informações de Cor para

Efetuar Detecção de Fechamento de Loop

RESUMO

Esta dissertação apresenta o c-M2DP, um descritor global de nuvem de pontos rápido e

que combina informações de cor e forma, além de sua utilização na detecção de fecha-

mento de loop. A abordagem é uma extensão do descritor M2DP que incorpora informa-

ções de cor. Em conjunto com as assinaturas da forma originais do M2DP, são computadas

assinaturas de cor de multiplas projeções 2D de uma nuvem de pontos. Em seguida, um

descritor compacto é computado usando SVD para redução da dimensionalidade. Expe-

rimentos em quatro sequências de conjuntos de dados disponíveis publicamente foram

realizados. Os resultados apresentam um aprimoramento na precisão em relação ao des-

critor M2DP, mantendo-se eficiente, e são competitivos em comparação à outro descritor

que combina cor e forma.

Palavras-chave: Descritor de Nuvem de Pontos, Detecção de Fechamento de Loop,

SLAM.
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1 INTRODUCTION

Autonomous robots became a common sight in many aspects of our society. Ex-

amples of their current developments and applications can be found in different envi-

ronments, including stationary industrial arms in manufacturing (WHITE, 2017; MARR,

2019), mobile platforms automating logistics and retail warehouses (VINCENT, 2018;

SIMON, 2019), automated cleaners and other domestic tasks (SCHUMACHER, 2018),

search and rescue robots in emergency services (BROWN, 2018), and also self-driving

vehicles (DAVIES, 2018). To accomplish these tasks autonomously in real-world environ-

ments, robots often rely on the ability to perform self-localization using a representation

of their surroundings. Truly autonomous robots can either localize themselves in a map

of the environment known beforehand, or build a map while simultaneously performing

self-localization, also known as Simultaneous Localization and Mapping (SLAM) (SIEG-

WART; NOURBAKHSH, 2004).

Over the past decades, the SLAM problem has been widely investigated, with

numerous approaches being proposed to improve different aspects of it, such as pose un-

certainty, map building and measurements ambiguities (DURRANT-WHYTE; BAILEY,

2006). However, SLAM is still an open problem with varying research maturity depend-

ing on the type of robot being used, the operating environment and the given precision

requirements (CADENA et al., 2016).

The recognition of previously visited places by a robot is an important task for

SLAM. Also known as loop closure detection, this subject draws more attention as robots

operate over long distances, accumulating errors during movement that increase pose un-

certainty. If two observations correspond to the same place in the environment, a robot

can recognize where it is and correct the drifting.

Based on the sensors equipped on the robot, different approaches can be employed

to detect loop closures. Earlier works using range finders, namely sonars or LIDAR1,

usually employed comparisons between range measurements, among other methods, for

this task (THRUN; BURGARD; FOX, 2005). Recent works using 3D LIDARs often

perform a correspondence search, matching 3D feature descriptors extracted from point

clouds generated using range measurements (BOSSE; ZLOT, 2013; RÖHLING; MACK;

SCHULZ, 2015). Likewise, a common 2D camera based approach to detect loop closures

is by matching feature descriptors extracted from images (CUMMINS; NEWMAN, 2008;

1Light Detection and Ranging



12

SÜNDERHAUF; PROTZEL, 2011), among several other methods such as computing the

sum of absolute differences from image patches (MILFORD; WYETH, 2012).

Recently, He, Wang and Zang (2016) proposed the global point cloud descriptor

Multiview 2D Projection (M2DP), and applied it to a LIDAR-based loop closure detection

approach. It outperforms other state-of-the-art global point cloud descriptors by both

accuracy and efficiency. The M2DP descriptor is built using signatures of geometric

information, computed from multiple 2D projections of a point cloud. Its structure can

be naturally extended to incorporate signatures of additional information that may be

associated with the point cloud.

As shown in object recognition (LOGOGLU; KALKAN; TEMIZEL, 2016) and

other surface matching (TOMBARI; SALTI; STEFANO, 2011; FENG; LIU; LIAO, 2015)

works, combining color and shape information can enhance descriptiveness over shape

only descriptors. Point clouds with associated color information are able to provide ad-

ditional appearance details from the scene, which in turn can be exploited by point cloud

descriptors. However, loop closure detection approaches that combine color with shape

data are still insufficiently investigated.

Our focus in this work is to incorporate color information into a state-of-the-

art point cloud descriptor, in order to improve the loop closure detection performed by

an autonomous vehicle. Although 3D based approaches to loop closure detection have

found significant results using only shape information (BOSSE; ZLOT, 2013; RÖHLING;

MACK; SCHULZ, 2015; HE; WANG; ZHANG, 2016), adding color can improve its

accuracy by making use of information commonly available from the vehicle cameras.

Either by combining sensors, such as a 3D LIDAR and a single camera, or employing

stereo2 cameras, we were able to generate and use point clouds with associated color

information for this goal.

1.1 Motivation

In this section we present our motivation for this work by beginning with a discus-

sion about the requirements for autonomy of mobile robots. After that, we examine why

these robots need to build a map and self-localize at the same time, and why the ability

to recognize a previously visited place is so important for this task. Then, we discuss on

how a mobile robot can have such ability, focusing on 3D vision-based approaches.

2Multiple camera configuration with partially overlapped field of views
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1.1.1 How a mobile robot can achieve autonomy?

In mobile robotics, several problems need to be addressed in order to successfully

achieve autonomy. According to Makarenko et al. (2002), localization, mapping and mo-

tion planning are the three fundamental problems that an autonomous mobile robot need

solving, to be able to accurately perceive the surroundings and accomplish its objectives

in a environment.

The localization problem comprises in estimating the correct robot’s pose3 through

its sensors readings, assuming a priorly known map that represents the environment ac-

curately. It can be either local, when the initial pose is known and subsequent estimates

are done during movement, or global, when localization is done without an initial pose

(STACHNISS, 2006).

On the other hand, the mapping problem assumes that the correct robot’s pose is

known to build an accurate representation of the environment. Sensors readings gathered

by the robot are used, and the map is often incrementally enhanced by new readings over

time (STACHNISS, 2006).

Motion planning consists in efficiently guiding a robot to reach a goal location.

It assumes that an accurate map and a correct pose is known (SIEGWART; NOUR-

BAKHSH, 2004).

Often, autonomous robots need to perform some of these tasks simultaneously,

with their combination generating other problems as seen in Fig. 1.1. For instance,

despite being able to be performed independently, localization and mapping can be so

closely related that they cannot be decoupled. Over the past decades, building maps while

simultaneously self-localizing became an important subject in order to solve robotic nav-

igation without external sensors. Simultaneous Localization and Mapping (SLAM) is

a widely investigated topic by the robotics community, but is still an open problem that

draws much attention due to its application in different robots, sensors and environments.

1.1.2 Why an autonomous mobile robot would need SLAM?

Building a map of the environment while self-localizing is considered a challeng-

ing problem in robotics (THRUN; BURGARD; FOX, 2005). Sensors measurements are

used to construct a map of an environment partially or totally unknown, while the robot
3Position and orientation of the robot in the environment.
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state, described by its pose, is simultaneously estimated in the map (DISSANAYAKE et

al., 2001). SLAM is strongly dependent on an accurate map of the environment to de-

termine the robot’s pose, while at same time requiring that the pose, whose uncertainty

increases as the robot moves, is precisely known to build a map (SIEGWART; NOUR-

BAKHSH, 2004; THRUN; BURGARD; FOX, 2005).

Figure 1.1: Localization, Mapping, Motion control and the problems originated by their
overlapping areas. Adapted from Makarenko et al. (2002).

Motion
planning

SLAM

Integrated
exploration

MappingLocalization

Exploration
Active 
localization

During movement, the robot new readings of the environment are associated with

landmarks built in the map. Bailey and Durrant-Whyte (2006) remarked that early SLAM

proposals employed naive data association methods, testing each measurement individ-

ually to cull unlikely associations. Such approaches are considered unreliable due to the

lack of geometric relationship between landmarks (BAILEY; WHYTE, 2006), with later

proposals (NEIRA; TARDOS, 2001) considering multiple associations and their geomet-

ric relations simultaneously with more robust batch validation gate methods. A reliable

data association method is critical for SLAM algorithms, as any incorrect association

can be catastrophic for map building and also can lead SLAM into a irrecoverable state

(BAILEY; WHYTE, 2006).

Data association is also extremely important when a robot returns to a previously

visited place, known as the loop closure detection problem (HO; NEWMAN, 2006). As

previously mentioned, errors accumulated during robot movements increase the pose un-

certainty and cause drifting, resulting in an inconsistent representation of the environment.

When a loop closure is detected, the precise pose knowledge allows SLAM to update the

map and reduce the drift. Also, detecting loop closures avoids the endless corridor issue

where the robot assumes that it is always in a new place. Fig. 1.2-a shows that without
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loop closure detection, places that in reality are near each other (e.g. B and C in Fig. 1.2-

b) are considered distant, and revisits after long excursions (e.g. A in 1.2-b) are always

considered as new places.

Figure 1.2: Comparison between SLAM and odometric maps, with trajectory dotted
from starting place A to C. Adapted from Cadena et al. (2016).

A

C
B

(a) Map built using only odometry, without loop
closure detection.

A

C B

(b) Map built using SLAM, with loop closure
detection.

1.1.3 How to recognize a revisited place?

Often considered a key aspect in SLAM algorithms, loop closure detection com-

prises in performing a search for correspondences between the sensor measurements and

the landmarks previously observed during the trajectory (CADENA et al., 2016). How-

ever, detecting loop closures is a challenging task, as any false detection caused from

issues such as perceptual aliasing can ruin the map building process, and SLAM conse-

quently. Besides that, scalability, sensor noise and changes in the environment are also

issues that can affect its performance.

Loop closure detection methods often employ appearance signature techniques

(ULRICH; NOURBAKHSH, 2000; NEWMAN; COLE; HO, 2006; SÜNDERHAUF;

PROTZEL, 2011; HE; WANG; ZHANG, 2016), which are designed to exploit shape,

color, texture and other available information from the sensor readings. These signatures

are computed and can be used to find correspondences between places visited during the

trajectory, being able to recognize two different visits to the same place through similarity

metrics (BAILEY; WHYTE, 2006).

The focus of our work is on a 3D vision based loop closure detection approach

that uses color information. While there is a significant amount of visual based methods
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(CUMMINS; NEWMAN, 2008; SÜNDERHAUF; PROTZEL, 2011; MILFORD; WY-

ETH, 2012; LOWRY et al., 2016; NASEER et al., 2015) exploiting 2D camera features

to accomplish loop closure detection, few approaches (BOSSE; ZLOT, 2013; RÖHLING;

MACK; SCHULZ, 2015; HE; WANG; ZHANG, 2016) employ 3D sensor readings such

as LIDARs or stereo cameras. Spatial data captured from these sensors are often used to

generate point clouds as seen in Fig. 1.3-b, enabling more descriptive scenes than using

only 2D cameras. Besides, many of the current 3D sensors are also equipped with means

to acquire color data from the scene, that can be used to generate colored point clouds, as

seen in Fig. 1.3-c. Additionally, several works (TOMBARI; SALTI; STEFANO, 2011;

FENG; LIU; LIAO, 2015; LOGOGLU; KALKAN; TEMIZEL, 2016) on object recogni-

tion and surface matching reports accuracy improvements when adding color information

to 3D descriptors. Nevertheless, loop closure detection using descriptors with shape and

color information still have not received much attention.

Figure 1.3: Comparison between different sensor readings. Color data provide more
descriptive point clouds. Extracted frames from the KITTI dataset (GEIGER; LENZ;

URTASUN, 2012).

(a) 2D image.

(b) Point cloud.

(c) Point cloud with color data.
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Typical loop closure detection methods for point clouds employ a similarity mea-

sure that can be obtained through different matching approaches. Local methods (RUSU;

BLODOW; BEETZ, 2009; TOMBARI; SALTI; STEFANO, 2010) can operate around

detected keypoints from the point cloud, computing characteristics from each keypoint

local neighborhood to build feature descriptors. However, keypoint repeatability, time ef-

ficiency and local descriptiveness are still struggling issues for them. Local methods can

also directly operate on raw points, either exhaustively for every point when working with

roughly aligned scenes (BESL; MCKAY, 1992; SEGAL; HAEHNEL; THRUN, 2009),

or point samples when there are larger distances between the clouds (AIGER; MITRA;

COHEN-OR, 2008). In comparison, global methods (RUSU et al., 2010; WOHLKIN-

GER; VINCZE, 2011; HE; WANG; ZHANG, 2016) represent the entire cloud geometry

into a single descriptor, reducing dimensionality and improving time efficiency. Never-

theless, invariance and relative transformation between point clouds can be challenging

to achieve for global methods. Moreover, there are approaches that seek a compromise

between local and global features by using hybrid descriptors, or doing offline vector

quantization of local descriptors for a 3D bag-of-words (STEDER et al., 2011). Other

point cloud matching alternatives can also use specific shapes (MORAL et al., 2013)

or objects (MORENO et al., 2013), often requiring segmentation steps, offline classifier

training, object recognition, and/or controlled environments to operate.

1.2 Objectives

In this work, we propose a global point cloud descriptor named Color M2DP

(c-M2DP), which incorporates color information into a state-of-the-art point cloud de-

scriptor, in order to improve loop closure detection performed by an autonomous vehicle

equipped with 3D vision sensors and a color camera.

Our proposal is an extension of the state-of-the-art M2DP descriptor (HE; WANG;

ZHANG, 2016), which is built using only geometric information from the point cloud,

computed by projecting it into multiple 2D planes. Each plane represent a different view-

point of the point cloud, from which a spatial density distribution is computed. These

multiple distributions are in turn singular value decomposed (SVD), with the first left and

right singular vectors being used as the final descriptor.

We noticed that the M2DP descriptor can be extended to incorporate color data in

order to increase its descriptiveness. Along with the shape information, color distributions
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are computed for each 2D projection that represents different viewpoints of the point

cloud. These color distributions are concatenated to the M2DP shape signatures and used

to build a signature matrix. Then we follow M2DP original steps and employ SVD to

reduce the matrix dimensionality, concatenating the first left and right singular vectors

and using it as our compact descriptor.

The main contributions of this work are:

• Color M2DP (c-M2DP), a global descriptor comprising of color and shape data for

point cloud matching;

• An improved loop closure detection approach using the c-M2DP descriptor on point

cloud sequences, generated either by employing camera-LIDAR sensor fusion or a

stereo camera, from publicly available outdoor datasets.

1.3 Organization

This thesis is structured as follows. First, in Chapter 2, we discuss the theoretical

background of this work, reviewing some of the main problems in robot state estima-

tion, with approaches mentioned in the literature and other works that address them. In

this chapter we also discuss about the point cloud descriptor M2DP, which is later ex-

tended in this dissertation, and present a brief overview of the related work, examining

other point cloud descriptors and their respective applications for loop closure detection

or other tasks. In Chapter 3, we present c-M2DP, a novel point cloud descriptor that

uses color information, detailing the techniques employed while also describing our loop

closure detection approach using it. In Chapter 4, we detail our experimenting platform,

its settings, the evaluation methods employed, and our experimental results using the c-

M2DP descriptor. Lastly, in Chapter 5 we discuss our conclusions about the current work

and other possible future endeavors.
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2 THEORETICAL FOUNDATION

In this chapter we detail concepts and techniques used throughout this dissertation,

providing a theoretical background. First, in Section 2.1, we start on the concepts of state

estimation in mobile robotics, namely localization and mapping that we discuss further on

Sections 2.2 and 2.3, respectively. Then, in Section 2.4, we address the SLAM problem,

where we discuss about its implementations in Section 2.4.1, data association in Section

2.4.2, and loop closure detection in Section 2.4.3. After that, in Section 2.5, we present

the state-of-the-art Multiview 2D Projection (M2DP) descriptor, the basis in which our

work extends from. Finally, we review existing 3D descriptors and loop closure methods

that are related with our work in Section 2.6.

2.1 State Estimation in Mobile Robotics

In order to accomplish tasks in real-world environments, autonomous mobile robots

must gather data of their surroundings through sensors, have the ability to build a repre-

sentation of the environment and localize themselves in it, along with other objects and

potential obstacles. In Table 2.1 we present four variables that are employed in the con-

text of state estimation in mobile robotics that are used in the next sections, where we

introduce the concepts of localization, mapping and SLAM.

Table 2.1: List of Symbols used for State Estimation in Mobile Robotics
Symbol Meaning

xt Robot’s pose at the instant t. The trajectory of the robot is given by x0:t =
{x0,x1, . . . ,xt}.

m Map of the environment given by m = {m1,m2, . . . ,mn}, with n landmarks,
where mi is the position of the i-th landmark in the map.

zt Vector of measurements made by the robot at instant t given by zt =
{z1

t , z
2
t , . . . ,z

n
t }, where zit is the i-th observation at instant t. Measurements

during the trajectory are given by z0:t = {z1, z2, . . . ,zt}.
ut Control vector applied to move from pose xt−1 to xt. The control commands

history are given by u1:t = {u1,u2, . . . ,ut}.
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2.2 Localization

The ability to known its own pose in the environment is fundamental for an au-

tonomous robot. With knowledge of its own location in relation to surrounding obstacles,

the robot is able to avoid them while performing a designed task, that can also require

interacting with nearby objects or other entities of interest.

The Localization problem estimates the correct pose xt of the robot at instant t,

through inference methods using the measurement zt (STACHNISS, 2006). It assumes

that an accurate map m is known a priori, described in a global coordinate system repre-

senting the environment. As there is not a direct way to sense the pose, sensor measure-

ments are integrated over time to be able estimate it. According to Thrun et al. (2005),

localization can be seen as a transformation that obtains a correspondence between a map

and the robot’s local coordinate system.

Depending on the type of environment it operates, localization can be a difficult

task. In static environments the robot’s pose is the only variable that changes over time,

while other environment elements remain fixed. In contrast, dynamic environments have

objects and other elements (e.g. people) that vary their respective locations and configura-

tions. These changes can be challenging, specially if they become permanent, generating

divergences between measurements and the known map.

Thrun et al. (2005) divided localization in different problems with varying diffi-

culty, depending if there is an initial knowledge of the pose or not. Local localization, or

tracking, is a problem characterized by the initial robot’s pose being known. It is accom-

plished by assuming a small pose error as the uncertainty is considered local, surrounding

the correct pose. On the other hand, the global localization problem is characterized

by the initial robot’s pose being unknown. It is considered more difficult than the local

problem, as the robot can be anywhere in the environment and pose uncertainty cannot be

assumed using a local approach.

Also worth mentioning, the kidnapped robot is considered a harder variant of

the global localization problem (THRUN; BURGARD; FOX, 2005), that can be seen

as the robot’s ability to recover from failures in localization. It occurs when a robot is

unknowingly placed in a different location during its operation, resulting in a wrong pose

belief that must be corrected.
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2.3 Mapping

Autonomous mobile robots need to acquire and maintain a model of their sur-

roundings. While navigating in an unknown environment, they must build a map repre-

senting the information gathered by their sensors, such as obstacles to avoid, free space

and objects of interest.

The Mapping problem assumes a correct knowledge of the robot’s pose xt, using

the associated measurement zt captured through its sensors at instant t, to build a map m

representing the environment. In order to properly represent the z0:t measurements, the

adopted mapping technique must be suitable to the robot needs, while also being aware

of the sensors noise and other perceptual limitations.

According to Thrun (1998), maps can follow metrical or topological models, or

even combine these two approaches in order to better represent an environment. Metric

maps use either 2D or volumetric 3D grids in a discrete manner to geometrically represent

the environment. Each grid cell can store the desired representation properties, such as

being an obstacle or free space. They can be easier to build and maintain, robust against

viewpoint changes, but have a higher memory footprint. In contrast, topological maps

use graphs to represent the environment, where nodes can store information, such as being

a place already visited or a specific landmark, among other properties, and are connected

by arcs if there is a direct path between them. They often allow more efficient planning at

lower memory requirements, and can easily employ natural language approaches, but can

be difficult to build, maintain, and also more sensitive to viewpoint changes.

2.4 SLAM

Simultaneous localization and mapping is considered one of the most challeng-

ing problems in robotics (THRUN; LEONARD, 2008; CADENA et al., 2016). In it, an

autonomous robot is designed to navigate through a partially known or totally unknown

environment m, starting from a known pose x0. As the robot moves by applying the

controls u1:t (i.e. odometry), it can sense the environment through measurements z0:t,

but the uncertainty of its pose xt grows over time. As described by Thrun and Leonard

(2008), the SLAM problem comprises in simultaneously estimating both the pose xt and

the map m, by using the observed sensor measurements z0:t and the controls u1:t made

by the robot during its trajectory.
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An example of the SLAM problem can be seen in Fig. 2.1. The robot observes

landmarks m1 and m2 at the instant t − 1, estimating the poses of both based on the

measurements z1
t−1 and z2

t−1, respectively. Then, the control ut is applied to move the

robot from pose xt−1 to xt. In this step, landmarks m3 and m4 observed at instant t have

their poses estimated through measurements z3
t and z4

t , followed by robot movement

from pose xt to xt+1 using the control ut+1. The process is subsequently repeated, with

the robot observing m3 again and m5 at instant t + 1, until estimating the pose of m6,

observed at instant t+ 2.

Figure 2.1: Example of the SLAM problem, with map m and robot’s poses xt−1:t+2

being estimated through measurements zt−1:t+2 and controls ut:t+2. The actual robot’s
poses and map are unknown. Adapted from Durrant-Whyte and Bailey (2006).
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Additionally, a graphical model of the SLAM problem is shown in Fig. 2.2, il-

lustrating the causal relationship between the variables. By using the observed variables,

which are the measurements z0:t and controls u1:t made by the robot, SLAM aims to

estimate the poses x0:t and the map m.

Figure 2.2: Graphical model of the SLAM problem. Arcs indicate causal relationships
between variables. Adapted from Thrun et al. (2005).
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The SLAM problem difficulty comes from the tight coupling of building a map and

self-localizing at same time. Siegwart and Nourbakhsh (2004) described it as a chicken-

and-egg problem, where a correct pose knowledge is needed to accurately build a map,

while an accurate map is required in order to perform self-localization and correctly esti-

mate the robot’s pose.

Although there is a wide range of SLAM implementations (DURRANT-WHYTE;

BAILEY, 2006; CADENA et al., 2016), Thrun and Leonard (2008) identified three basic

paradigms from which most of the others are derived, the extended Kalman filter (EKF)

SLAM, the graph-based SLAM and the particle filter SLAM, that we summarize briefly:

• EKF SLAM is the earliest of them. It consists in using a single state vector of

estimated poses, a set of environment landmarks, and an associated error covariance

matrix for these estimates. An EKF update both the state vector and covariance

matrix. New landmarks are added to the state vector, while the covariance matrix

grows quadratically.

• Graph-based SLAM has every landmark and robot’s pose as nodes in a graph.

Arcs between consecutive poses indicate a control command applied for movement,

and arcs between poses and landmarks indicate sensing at the same instant. As

arcs in this graph are soft constraints, estimating the map and trajectory is done by

relaxing them.

• Particle filter SLAM provides a representative sample from the posterior distri-

bution through a set of particles, where each of them can be seen as a pose guess.

Increasing the number of particles approximate the filter to the true posterior, but

also scale exponentially with the state vector dimensions.

2.4.1 Implementations

In the literature, Thrun and Leonard (2008) distinguished SLAM by considering

it through different dimensions. For instance, depending if the variables are estimated

only at instant t, or for the whole trajectory, the SLAM problem is distinguished in two

main forms. Online SLAM algorithms seeks to estimate a posterior probability over the

current robot’s pose xt, often being incremental. In contrast, full SLAM algorithms seeks

to estimate a posterior probability over the entire trajectory x0:t, along with the map m.

Additionally, in passive SLAM the robot is passively controlled by another agent,
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while in active SLAM the robot uses exploration methods to pursue an accurate map.

Single and multi-robot SLAM are very differentiable due to the interactions between

multiple robots. Static or dynamic environments, and metric or topological mapping,

mentioned in Section 2.2 and Section 2.3 respectively, are also distinguishing factors.

In regards to the map density, volumetric SLAM approaches employ high dimensional

maps that can allow photorealistic reconstructions depending on the resolution adopted,

at the cost of being a heavy computational burden to build and maintain them. In contrast,

feature-based SLAM build maps using only sparse features extracted from the environ-

ment, often prioritizing speed instead of precision, and can be limited to environments for

which the features are designed (BOSSE; ZLOT, 2008).

Furthermore, sensors can have a strong influence in distinguishing SLAM imple-

mentations. For instance, in visual SLAM, cameras are the only exteroceptive1 sensors

employed. Often inexpensive and embeddable for robots, cameras can provide appear-

ance information from the environment, while also enabling the use of techniques such as

object recognition. However, they can be sensitive to lighting changes, occlusion, fast

movements and featureless environments (FUENTES-PACHECO; RUIZ-ASCENCIO;

RENDÓN-MANCHA, 2015). In the particular case of monocular SLAM, the lack of

depth information from the camera results in issues during landmark initialization and

scale ambiguity, differently from stereo SLAM or RGB-D SLAM, which are able to pro-

vide depth through triangulation or structured light, respectively (FUENTES-PACHECO;

RUIZ-ASCENCIO; RENDÓN-MANCHA, 2015).

In contrast, LIDAR-based SLAM approaches employ laser range finders, which

have the ability to provide precise range information from the environment, even for

featureless surfaces and independently of lighting conditions (NÜCHTER et al., 2007).

Among the earliest sensors used for SLAM, very robust 2D LIDAR-based algorithms

were developed over the years (DURRANT-WHYTE; BAILEY, 2006). Recently, 3D

LIDAR-based SLAM approaches have been attracting more attention, especially for au-

tonomous vehicle applications (CADENA et al., 2016). Their precise range information

can be used to build point clouds, which are particularly useful for applications that re-

quire accurate 3D representations. However, they are generally an expensive type of

equipment, and processing such amounts of often sparse data can be a challenging task

with high computational costs (DUBÉ et al., 2018).

Finally, having the ability to sense the identity of landmarks is another distinguish-

1Sensors that acquire information from the environment.
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ing factor. In general, SLAM implementations are unable to directly identify landmarks

and employ estimation methods in order to perform data association, which we discuss

more about in Section 2.4.2. The degree of uncertainty allowed by the system is also con-

sidered, with some SLAM algorithms being able to handle only small amounts of error in

a simple environment, while others must accumulate high uncertainties during excursions

on more complex environments with large loops. Such uncertainties can be reduced by

detecting these loop closures, being further discussed in Section 2.4.3

2.4.2 Data Association

In order to merge new data into the current map representation, SLAM algorithms

require a reliable method for estimating correspondences between their sensor measure-

ments and the observed landmarks. Known as the data association problem, it is con-

sidered a difficult task for SLAM, as incorrect associations between measurements and

existing map landmarks often cannot be revised, resulting in wrong map estimations that

can be irrecoverable (BAILEY; WHYTE, 2006).

Perceptual aliasing is one of the main issues for data association methods. Ca-

dena et al. (2016) described it as challenging problem that occurs when different sensory

inputs are computed and result in the same measurement. These ambiguous measure-

ments can be erroneously associated with landmarks, resulting in false positive match

result. Therefore, an incorrect association generates an inconsistent map, which in turn

causes self-localization to fail. False negatives, on the other hand, occur when associ-

ations between measurements and landmarks are incorrectly rejected, which can reduce

the accuracy, as fewer measurements are used for estimation (CADENA et al., 2016).

According to Bailey and Durrant-Whyte (2006), early data association methods

verified correspondences between measurements and landmarks individually, being con-

sidered unreliable in most types of real environments and when pose uncertainty is high,

as they did not examine the geometric relationships with other landmarks. In contrast,

robust SLAM implementations employ batch validation gates (NEIRA; TARDOS, 2001;

NEIRA; TARDOS; CASTELLANOS, 2003), which verify if the associations are mu-

tually compatible by using the geometric relationship between landmarks. When suf-

ficiently constrained, they can avoid or significantly diminish the effects of association

errors and poor correspondences, at the cost being more computationally expensive (BAI-

LEY; WHYTE, 2006; BOSSE; ZLOT, 2008).
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Data association methods are strongly influenced by the map representation adopted

by the SLAM approach (BOSSE; ZLOT, 2008). For instance, batch validation gates

and appearance signatures (ULRICH; NOURBAKHSH, 2000; NEWMAN; COLE; HO,

2006) are usually employed in feature-based SLAM. Originated from image database

indexing techniques, these appearance signatures are generally built with vision based

approaches, such as computing histograms using shape, color, texture and other available

information from the sensor readings. In these methods, correspondences between mea-

surements and landmarks in the map are found by matching signatures using similarity

metrics. Although they can provide additional discriminative information to assist a vali-

dation gate method, appearance signatures are generally faster, which makes them being

used more often for long-term data association (BAILEY; WHYTE, 2006).

According to Cadena et al. (2016), the architectures of current SLAM algorithms

are generally composed by front- and back-end modules. The front-end module abstracts

data from the robot sensors to perform data association, which can be divided in short-

and long-term approaches. The front-end provides information models to the back-end

module, which uses it to perform localization, estimate the trajectory and build the map.

Additionally, the back-end module can provide feedback to support loop closure detection

and perform verification of it for the front-end.

Short-term data association methods are responsible for detecting and tracking

landmarks in the environment, associating them with the corresponding measurements

from consecutive sensor readings. They are designed for work in real-time during move-

ment, but can rapidly accumulate errors when large motions occur. In contrast, long-term

methods are designed to perform a correspondence search over the entire known map,

which can be a costly task, but can reduce the amount of accumulated errors generated

during the robot movement. As result, some implementations adopt delayed approaches,

or even perform it offline (CADENA et al., 2016). Finally, long-term data association

methods are also often employed in loop closure detection, a task that is critical for SLAM

and is further discussed in Section 2.4.3.

2.4.3 Loop Closure Detection

After a long excursion, an autonomous robot that returns to a previously visited

place must have the ability to recognize it as a revisit. Detecting the occurrence of loop

closures is essential to build a correct representation of the environment during SLAM.
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Otherwise, the robot would build a map without loops, in which the world is seen as an

infinite corridor. However, as errors accumulate during long trajectories, they can increase

pose uncertainty and drifting in the map up to a level that short-term data association

methods are often unable to recognize a place being revisited.

Loop closure detection is an extremely important task for SLAM, being responsi-

ble for associating new measurements with older landmarks in the map. It is a long-term

case of data association (CADENA et al., 2016), employing more globally applicable

matching techniques instead of local ones (BOSSE; ZLOT, 2008). Detecting loop clo-

sures allows correcting the pose knowledge after long excursions, which in turn enables

the map to be updated accordingly, achieving an accurate representation of the environ-

ment (CADENA et al., 2016).

According to Granström et al. (2011), loop closure detection can be seen as a

place recognition problem applied for robotics, in which a correspondence search is done

between the sensor measurements and landmarks previously observed during the trajec-

tory in order to find loop closures. Cieslewski et al. (2016) expressed place recognition

as a function

x ∈ Q→ f(x) ∈D, (2.1)

where a query set is denoted by Q, and a database set by D. Place recognition can be

distinguished in either a localization done between places of two trajectories, one being

database D and the other being query Q, or a loop closure detection done within a single

trajectory (CIESLEWSKI et al., 2016). In the latter case, both query and database sets

are defined by a given instant t and the pose xt at that same instant,

Qt = {xt} (2.2)

Dt = {xt′ | t′ < t−∆t}, (2.3)

where ∆t > 0, and is a minimal difference used to avoid self queries.

According to Lowry et al. (2016), detecting loop closures is a challenging task

that must address high levels of ambiguity, possible environment symmetries and sensor

noise. Perceptual aliasing is a main issue, occurring when distinct places look similar

enough that a false positive loop closure is detected. False loop closures are disastrous

for the map building process, resulting in inconsistencies that can be irrecoverable for

SLAM. Additionally, a place also may not be visited from the same viewpoint as before.

Environment changes over time can also be very difficult to address, as places can be
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drastically changed by dynamic elements, illumination, weather and seasons. Finally, as

the map size increases, scalability can also be an issue due to the number of comparisons

and dimensionality needed for an efficient correspondence search.

2.4.3.1 Visual Loop Closure Detection

Over the past decade, several visual loop closure detection methods were pro-

posed (FUENTES-PACHECO; RUIZ-ASCENCIO; RENDÓN-MANCHA, 2015), oper-

ating in different map representations using image matching techniques. For instance,

direct methods employ a dense analysis based on pixels intensities of the whole image,

providing information even from image regions with small gradients (MILFORD; WY-

ETH, 2012). They can be robust against motion blur, defocus and poor texture in images,

but are generally more costly to compute. As an alternative, semi-dense methods em-

ploy the same analysis but only for regions with strong gradients, such as edges (ENGEL;

SCHÖPS; CREMERS, 2014).

On the other hand, feature-based methods (ULRICH; NOURBAKHSH, 2000;

MURILLO; KOSECKA, 2009; SÜNDERHAUF; PROTZEL, 2011) can compute gra-

dients, intensities, or other image characteristics from features detected in the environ-

ment, such as corners, points or lines. They are generally optimized for speed rather than

precision, are dependent on feature availability of the scene and often rely on detection

and matching thresholds (CADENA et al., 2016). Moreover, inspired by text document

analysis, bag-of-visual-words methods (LÓPEZ; TARDÓS, 2011) employ offline feature

quantization in order to measure term frequencies in images, having shown reliable per-

formance (CUMMINS; NEWMAN, 2008) in detecting loop closures.

Finally, visual loop closure detection methods can also use 3D shapes (MORAL

et al., 2013) or objects (MORENO et al., 2013) detected in the environment. However,

these methods require additional segmentation steps and controlled indoor environments

to operate, and often employ recognition techniques based on offline trained classifiers.

2.4.3.2 3D LIDAR-Based Loop Closure Detection

Loop closure detection methods using 3D LIDARs are still insufficiently investi-

gated, having not reached the same level of maturity as some visual methods (HE; WANG;

ZHANG, 2016; DUBÉ et al., 2017). According to Nüchter et al. (2007), earlier 3D

LIDAR-based approaches often generated point clouds from LIDAR readings and em-
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ployed a costly dense analysis directly on the whole cloud, using registration techniques

such as iterative closest point (ICP) (BESL; MCKAY, 1992). In contrast, recent 3D

LIDAR-based approaches often employ feature-based methods (BOSSE; ZLOT, 2013;

RÖHLING; MACK; SCHULZ, 2015), computing point cloud descriptors using surface

normals, point distributions and other characteristics from features detected in the envi-

ronment. Similar to visual methods, they can be optimized for speed rather than precision,

are sensitive to featureless scenes and may rely on detection and matching thresholds.

Our focus on 3D feature-based approaches is due to their efficiency in comput-

ing characteristics detected from point clouds. Similar to image descriptors, global or

local techniques can be employed to build point cloud descriptors. Global descriptors

are computed by taking the entire point cloud geometry and characteristics into account,

providing a single descriptor (RUSU et al., 2010; WOHLKINGER; VINCZE, 2011; HE;

WANG; ZHANG, 2016). In comparison with local approaches, global descriptors have

lower dimensionality and are often faster to compute, at the cost of being less precise, and

unable to perform relative transformations between point clouds in general.

On the other hand, local descriptors are computed using the geometry and other

characteristics inside a predefined support region around multiple keypoints (RUSU; BLO-

DOW; BEETZ, 2009; TOMBARI; SALTI; STEFANO, 2010; TOMBARI; SALTI; STE-

FANO, 2011). They are regarded as being more precise than their global counterpart,

and often can be used to compute relative transformations between point clouds more

efficiently than using the costly direct methods (BESL; MCKAY, 1992). However, they

require keypoint detection techniques for point clouds, which still struggle with issues

such as keypoint repeatability, when detected regions overlap, local descriptiveness qual-

ity, and computing costs. As an alternative, some implementations employ point sampling

techniques (BOSSE; ZLOT, 2013), or detect 3D shapes from point clouds, such as seg-

ments (DUBÉ et al., 2017), and then compute descriptors from them.

2.5 M2DP: Multiview 2D Projection

He, Wang and Zang (2016) proposed the global point cloud descriptor M2DP and

applied it in a loop closure detection approach. Instead of performing an analysis in

3D space, which is often done by other descriptors using surface normals (TOMBARI;

SALTI; STEFANO, 2010; RUSU et al., 2010) that can be costly to compute for large

point clouds, M2DP computes point distributions from multiple 2D projections of the
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point cloud. Using the scene spatial information, this approach aims to capture the point

cloud intricate details, an ability that other similar descriptors (JOHNSON; HEBERT,

1999; WOHLKINGER; VINCZE, 2011) struggle with. The M2DP descriptor outper-

formed other state-of-the-art global descriptors by both accuracy and efficiency, in loop

closure detection experiments done using various publicly available datasets, such as

KITTI (GEIGER; LENZ; URTASUN, 2012).

Algorithm 1 presents how M2DP descriptor is computed, while input parameters

and variables used are denoted in Table 2.2. Similar to other global descriptors (RUSU

et al., 2010), in M2DP first steps, the centroid of point cloud P is computed, and P is

demeaned, with the centroid being used the reference frame origin. Then, in order to

achieve rotation invariance, PCA is performed on P points, with the first and second

principal components being used to define both the x-axis and the y-axis respectively,

aligning the point cloud.

After the first pre-processing steps, a 2D plane X centered at origin with a normal

vector v is defined, where v is characterized by the pair of parameters [θ, φ], with θ being

the azimuth angle, and φ the elevation angle. The point cloud P is projected into multiple

2D planes, where each plane is an unique X generated using distinct b and q angles for

the [θ, φ] parameters, respectively.

Algorithm 1 M2DP Descriptor

Input: P , b, q, l, h, α and β, according to Table 2.2.
Output: A descriptor vector d ∈ Rα+β .

1: P = mean(P ), obtaining the centroid of P .
2: P ← P − P , demeaning P .
3: Compute the PCA of P .
4: Align the x-axis and y-axis of P with the 1st and 2nd PCs, respectively.
5: Init(A, 0), initializing the signature matrix A ∈ Rα×β with zero values.
6: for θ = 0 to π do
7: for φ = 0 to π

2
do

8: Build a 2D plane X with normal vector v = [cos θ cosφ, cos θ sinφ, sin θ]T .
9: Project P onto X to produce PX , where each point pXi = pi−

pT
i v

||v||22
v.

10: Generate the bins on X using l and h.
11: Compute sX by counting the points pXi inside each bin.
12: Augment A by a row with sX .
13: φ+ π

2q
→ φ.

end for
14: θ + π

b
→ θ.

end for
15: A = USV T , run SVD on A.
16: d = [U1 V1]

T , where U1 and V1 are the first columns of U and V , respectively.
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Table 2.2: List of Symbols used for the M2DP descriptor
Symbol Meaning

P Point cloud representing a 3D environment, given by P = {p1,p2, . . . ,pn},
where n is the number of points, and pi ∈ R3 with pi being the position of the
i-th point, given in Cartesian coordinates [x, y, z]T .

X 2D Plane with normal vector v expressed as a function of θ and φ, i.e., v =
[cos θ cosφ, cos θ sinφ, sin θ]T .

PX Point cloud P projected into plane X , where each point pXi = pi− pTi v

||v||22
v.

sX Shape signature vector for projection PX .

b Number of azimuth angles θ.

q Number of elevation angles φ.

α Number of viewpoint angles in total, with α = b× q.
l Number of concentric circles.

h Number of shape divisions.

β Number of shape bins in total, with β = l × h.

A Signature matrix describing the input point cloud.

d Final descriptor vector.

r Radius of a concentric circle.

For each projection, the 2D plane is divided into l concentric circles centered

at the origin, generated with varying radii [r, 22r, . . . , l2r], where r is derived from the

maximum radius (l2r), which is the distance between the farthest point of the cloud and

the centroid. Each concentric circle is divided h times, generating l × h bins. Similar

to other descriptors (JOHNSON; HEBERT, 1999) that measure point distributions, the

number of points inside each bin is counted. Then, a signature vector sX that describes

the current 2D projection is computed, and the signature matrix A is augmented by a

row with sX . After the signatures were generated for every 2D projection of P , the

singular value decomposition (SVD) of the signature matrix A is computed, reducing its

dimensionality and obtaining a compact signature as result. Finally, the first left and right

singular vectors are concatenated and used as the M2DP descriptor.

Similar to other works (MILFORD; WYETH, 2012; BOSSE; ZLOT, 2013), M2DP

performance in loop closure detection is evaluated by measuring its achieved accuracy

during the correspondence search. Input point clouds are queried against a database of

M2DP descriptors computed during the trajectory, calculating the L2 norm between the

descriptors being matched. Loop closures are detected when the most similar of them

are found under a predefined threshold, which is later used by the authors to generate

precision-recall curves for accuracy evaluation.
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2.6 Related Work

Loop closure detection methods for point clouds often identify previously vis-

ited places by employing a similarity measure between descriptors computed from each

scene. For instance, the 3D Gestalt (BOSSE; ZLOT, 2013) is a local descriptor pro-

posed for detecting loop closures in LIDAR-based point clouds. Keypoints are randomly

selected from a downsampled point cloud. Bins are generated by radial and azimuthal

splits of a cylinder support. Then, both mean and height variance from the points are

computed within each bin. Additionally, the Neighbor-binary landmark density (NBLD)

(CIESLEWSKI et al., 2016) is a local descriptor inspired by 3D Gestalt, that is also

proposed for loop closure detection, but for sparse point clouds generated either by cam-

eras or LIDAR sensors. Instead of heights, NBLD measures point density within bins,

generated through radial, azimuthal and vertical splits of a cylinder support around each

landmark.

Point cloud descriptors are also employed in other surface matching approaches,

such as object recognition. For instance, the well-known local descriptor Signature of

Histograms of Orientations (SHOT) (TOMBARI; SALTI; STEFANO, 2010) defines an

spherical support grid around each keypoint, after establishing the local reference frame,

and splitting the sphere using radial, azimuth and elevation divisions. Then, local his-

tograms are built, accumulating the angle differences between surface normals within the

local support and the feature point.

Global point cloud descriptors, such as the Viewpoint Feature Histogram (VFH)

(RUSU et al., 2010) can also be applied for object recognition. For VFH, a histogram is

built by computing angles differences between estimated normals and the centroid direc-

tion. Point locations are not considered, which can lead to ambiguities between surface

normals estimated from different point clouds. Extending it, the Clustered Viewpoint

Feature Histogram (CVFH) (ALDOMA et al., 2011) removes points with high curvatures

that occur in edges or due to noise. Then, a region growing algorithm to identify stable

regions from the depth data is applied, in order to compute their angular information and

shape distribution. This extension is further improved in the Oriented, Unique and Re-

peatable Clustered Viewpoint Feature Histogram (OUR-CVFH) (ALDOMA et al., 2012),

that employs the same components from CVFH, but computes histograms of distances

between points in order to achieve more robustness.

Also worth mentioning, the Ensemble of Shapes (ESF) (WOHLKINGER; VINCZE,
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2011) is a global descriptor designed for object recognition in dense point clouds captured

through RGB-D sensors. Instead of surface normals, it uses a voxel grid to approximate

surfaces from the point cloud, iterating over point samples of the grid to compute shape

angles, distances and areas. The Global Fourier Histogram (GFH) (CHEN et al., 2014)

is inspired by the original Spin Images (JOHNSON; HEBERT, 1999), creating a object-

centered cylindrical coordinate system and establishing a reference frame. Points within

bins, generated through vertical, azimuthal and radial splits, are counted to compute a

histogram, which is then analyzed using a Fast Fourier Transform along the azimuth di-

mension.

Over the past years, the availability of 3D sensors that are able to capture color

information have increased, resulting in the development of point cloud descriptors that

combine both color and shape data, especially for object recognition applications. For

instance, Tombari, Salti and Stefano (2011) proposed an extension of the SHOT descriptor

that incorporates color along its original shape data. Named Color-SHOT (CSHOT), it

inherits SHOT original parameters but defines an additional vector for its color bins. Then,

CSHOT computes the sum of absolute differences between intensities of CIELab triplets,

associated to each point within the local support.

Additionally, the Colored Histograms of Spatial Concentric Surflet-Pairs (Co-

SPAIR) (LOGOGLU; KALKAN; TEMIZEL, 2016) is a local descriptor proposed for ob-

ject recognition, also built using shape and color. CoSPAIR splits its local support in

multiple concentric spheres. Histograms of surface normals angular relations and CIELab

channels are computed for each sphere. Recent descriptors specifically designed for RGB-

D sensors also combine color and shape, such as the Local Ordinal Intensity and Normal

Descriptor (LOIND) (FENG; LIU; LIAO, 2015), that computes angular relations between

surface normals inside a support circle around the detected keypoints, while also comput-

ing intensities in image pixel distributions of 2D circle patches on the same locations.

In Table 2.3 we summarize the related work, indicating whether they operate glob-

ally or locally, compute color information, and if they use surface normals to compute

shape data. As reported in object recognition works such as Tombari, Salti and Ste-

fano (2011) and Logoglu, Kalkan and Temizel (2016), incorporating color into a point

cloud descriptor can increase its descriptiveness, improving point cloud matching accu-

racy. However, detecting loop closures using point cloud descriptors that combine color

and shape information, such as our proposal, is still an insufficiently investigated topic.

Although the 3D Gestalt and NBLD descriptors were proposed for loop closure detection,
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they operate locally and compute only shape information from the cloud. Our proposal

share similarities with CSHOT and CoSPAIR, as both were also extensions that added

color information to descriptors that only computed shape originally. In the following

chapter we describe our proposed extension that incorporates color into the M2DP de-

scriptor (HE; WANG; ZHANG, 2016), and then we apply it to a loop closure detection

pipeline.

Table 2.3: Summary of the related work, indicating whether they operate globally or
locally, and their use of normals and color information.

Descriptor Reference Context Normals Color
VFH Rusu et al. (2010) Global Yes No

SHOT Tombari, Salti and Stefano (2010) Local Yes No

CSHOT Tombari, Salti and Stefano (2011) Local Yes Yes

ESF Wohlkinger and Vincze (2011) Global No No

CVFH Aldoma et al. (2011) Global Yes No

OUR-CVFH Aldoma et al. (2012) Global Yes No

3D Gestalt Bosse and Zlot (2013) Local No No

GFH Chen et al. (2014) Global No No

LOIND Feng, Liu and Liao (2015) Local Yes Yes

CoSPAIR Logoglu, Kalkan and Temizel (2016) Local Yes Yes

NBLD Cieslewski et al. (2016) Local No No

M2DP He, Wang and Zhang (2016) Global No No

c-M2DP Ours Global No Yes
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3 A FAST POINT CLOUD DESCRIPTOR WITH COLOR INFORMATION AND

ITS APPLICATION TO LOOP CLOSURE DETECTION

In this chapter we present our proposal, the c-M2DP descriptor, which is an ex-

tension that incorporates color information to the state-of-the-art M2DP descriptor. Also,

we present how the c-M2DP descriptor was applied in a loop closure detection pipeline

designed to evaluate its performance.

In Section 3.1, we introduce the c-M2DP descriptor with a overview, followed

by the description of its structure in Section 3.1.1, detailing each of the steps employed

in c-M2DP construction. At first, some of these steps remain unchanged in relation to

M2DP, such as the reference frame in Section 3.1.2, and the shape signatures in Section

3.1.3. The addition of the color signatures is detailed in Section 3.1.4, followed by how

both signatures are used to generate a compact descriptor in Section 3.1.5. Finally, a

description about the c-M2DP application to loop closure detection is presented in Section

3.2, with details on the dataset sequences employed for this application in 3.3.

3.1 c-M2DP: Color Multiview 2D Projection Descriptor

Point cloud descriptors that incorporate both color and shape information are of-

ten proposed as an extension of implementations that only consider shape. They have

shown increased descriptiveness in surface matching (TOMBARI; SALTI; STEFANO,

2011) and object recognition (LOGOGLU; KALKAN; TEMIZEL, 2016). However, their

application for loop closure detection it is still insufficiently investigated, despite the po-

tential improvements. For instance, we have noticed that the state-of-the-art M2DP de-

scriptor (HE; WANG; ZHANG, 2016) presents a design that can be easily extended to

also consider color information, without significantly compromising its conciseness and

efficiency.

The M2DP descriptor provides a compact description for a LIDAR-based point

cloud by projecting it into multiple 2D planes, and computing a shape signature from each

of these projections. Our proposal takes advantage of the existing structure to incorporate

the additional color signatures, which are also computed from each 2D projected point

cloud with associated color information.
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3.1.1 c-M2DP Algorithm

Algorithm 2 presents how the c-M2DP descriptor is computed, and was developed

by modifying M2DP’s Algorithm 1, extending it with the additional steps required to

compute color data. It inherits the parameters and variables from the original M2DP

descriptor, which are denoted in Table 2.2, while also requiring additional symbols that

are presented in Table 3.1.

In a brief summary, Algorithm 2 projects an input point cloud P with associated

color information onto multiple 2D planes, which are uniquely generated using a defined

2D plane X and distinct b azimuth angles and q elevation angles. Then, we compute both

the shape sX and our proposed color cX signatures from each projection PX , using them

to build the signature matrix A. Finally, we follow M2DP with a dimensionality reduction

step, computing the SVD of A and obtaining a compact descriptor as result. The first left

and right singular vectors of the signature matrix are used as the final c-M2DP descriptor.

Algorithm 2 c-M2DP Descriptor
Input: P , b, q, l, h, w, g, α, β, γ according to Tables 2.2 and 3.1.
Output: A descriptor vector d ∈ Rα+β+γ .

1: P = mean(P ), obtaining the centroid of P .
2: P ← P − P , demeaning P .
3: Compute the PCA of P .
4: Align the x-axis and y-axis of P with the 1st and 2nd PCs, respectively.
5: Init(A, 0), initializing the signature matrix A ∈ Rα×(β+γ) with zero values.
6: for θ = 0 to π do
7: for φ = 0 to π

2
do

8: Build a 2D plane X with normal vector v = [cos θ cosφ, cos θ sinφ, sin θ]T .
9: Project P onto X to produce PX , where each point pXi = pi−

pT
i v

||v||22
v.

10: Generate the shape bins on X using l and h.
11: Compute sX by counting the points pXi inside each shape bin.
12: Generate the color bins on each color channel using l, w and g.
13: Compute cX by concatenating color histograms of each concentric circle.
14: Augment A by a row with the concatenation of sX with cX .
15: φ+ π

2q
→ φ.

end for
16: θ + π

b
→ θ.

end for
17: A = USV T , run SVD on A.
18: d = [U1 V1]

T , where U1 and V1 are the first columns of U and V , respectively.
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Table 3.1: List of Additional Symbols used for the c-M2DP descriptor
Symbol Meaning

cX Color signature vector for projection PX .

w Number of color channels.

g Number of color space bins per color channel.

γ Number of color bins in total, with γ = l × w × g.

3.1.2 Reference Frame

The pre-processing steps are responsible for defining the c-M2DP reference frame

origin and alignment. These steps remain the same as originally proposed for the M2DP

descriptor, as they are essential to achieve rotation and shift invariance in 3D space, al-

lowing coarse alignments between point clouds that are being matched.

At first, the centroid of an input point cloud P is computed in order to demean P

(lines 1-2). Similar to other global descriptors (RUSU et al., 2010), the centroid is used

as the descriptor reference frame origin. Then, PCA is performed on P points, defining

both the first and second principal components respectively as the x-axis and y-axis of the

descriptor reference frame (lines 3-4).

Once the reference frame is established, we define a 2D plane X with the normal

vector v, with v being expressed as a function of its azimuth angle θ and elevation angle φ

(line 8). Centered at the origin,X represents a viewpoint defined by the pair of parameters

[θ, φ], which are used to generate multiple and unique 2D planes. Then, as seen in Fig.

3.1, we project P onto each of these generated planes (line 9), in order to compute shape

and color signatures from each 2D projection.

Figure 3.1: Projecting a point cloud P on multiple 2D planes.

. . .
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3.1.3 Shape Signature

As the M2DP descriptor has the ability to provide accurate shape descriptions,

that outperforms other state-of-the-art descriptors while maintaining a low computational

cost, we chose to maintain the same process, computing shape signatures from each 2D

projection of PX . Each 2D plane is split into l concentric circles centered at the ori-

gin. They are generated with varying radii [r, 22r, . . . , l2r], where r is derived from the

maximum radius (l2r), which is the distance between the farthest point of the cloud and

the centroid. Then, each concentric circle is divided in h bins, indexed by the x-axis,

generating a total of l × h shape bins (line 10), as shown in Fig. 3.2. Similar to other ap-

proaches (JOHNSON; HEBERT, 1999; CIESLEWSKI et al., 2016), the shape signature

sX is computed by counting the points that lie inside each shape bin (line 11).

Figure 3.2: A 2D plane with a point cloud P projected onto it. The plane is split into l
concentric circles, which in turn are divided in h shape bins to compute the shape

signature sX .

......

22r

r

l2r

sX :

According to He, Wang and Zang (2016), point distributions can provide an accu-

rate description of the point cloud geometric information, while being very efficient and

less prone to noise in comparison with other descriptors (TOMBARI; SALTI; STEFANO,

2010; RUSU et al., 2010) that are based on surface normals. Shape matching approaches

usually employ normals due to the rich information they can provide. However, estimat-

ing surface normals can be a costly process for large point clouds, often risking loss of

information by requiring a downsampling step to reduce the number of points.



39

3.1.4 Color Signature

Our proposal aims to extend the M2DP descriptor by incorporating color informa-

tion alongside the shape signatures. An intuitive approach is to build color signatures by

taking advantage of M2DP existing structure, computing the color data associated with

each point from the multiple 2D projections, in order to obtain color distributions through

the point cloud.

After splitting the 2D projected point cloud in multiple concentric circles and com-

puting the shape signature sX , we can employ a similar process to build a color signature,

by computing color histograms for each of the concentric circles, as illustrated in Fig. 3.3.

A similar technique is employed by the CoSPAIR descriptor (LOGOGLU; KALKAN;

TEMIZEL, 2016), which operates in a local 3D sphere support region split in multiple

concentric spheres, and computes histograms of the color channels in RGB space for

each concentric sphere for its color component.

Figure 3.3: A 2D plane with a point cloud P projected onto it. The plane is split into l
concentric circles. Color histograms are computed for each concentric circle and

concatenated into color signature cX .

......

22r

r

l2r

...

cX :

As implemented in Algorithm 2, once we have the 2D projection PX split into l

concentric circles, we divide each channel of the color space in g bins, generating a total

of l×w×g bins, where w is the number of channels (line 12). Then, for every concentric

circle, we compute histograms of the color channels and concatenate them into a single

color signature vector cX (line 13). After obtaining both shape and color signatures from

the 2D projected point cloud, we normalize and concatenate them into a single signature

vector, as shown in Fig. 3.4. Thus, we augment the signature matrix A by a row using

the concatenated vector (line 14).
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Figure 3.4: Concatenated shape and color signatures computed from projection PX .

sX :

cX :

sX cX{ {original ours

3.1.5 Dimensionality Reduction

Once both shape and color signatures are generated, concatenated and included

into the signature matrix A for every 2D projection, we begin the last steps to build the

c-M2DP descriptor. At this point, despite the multiple viewpoints from the point cloud

being represented in A, it still is not a suitable descriptor. Its high memory footprint can

be very costly for the storage requirements of an entire point cloud dataset. Also, due to its

size, the matching process between descriptors would be slow during the correspondence

search.

We maintain the same steps adopted by M2DP in order to achieve a compact de-

scriptor. By computing the SVD of signature matrix A, its dimensionality can be reduced

(line 17). The first left and right resulting singular vectors of A are concatenated in the

final step, producing the c-M2DP descriptor (line 18). As expected, in comparison with

the M2DP descriptor, c-M2DP requires an increase on its size due to the addition of color

signatures. However, as our proposal makes use of the existing structure to compute these

color signatures, we avoid an unnecessary increase in computational costs while being

able to represent more information from the point cloud.

3.2 Loop Closure Detection using c-M2DP

Besides the proposed point cloud descriptor, our proposal also involves applying

c-M2DP to the loop closure detection problem in order to evaluate its performance. Sim-

ilar to other visual and 3D LIDAR-based loop closure detection approaches (MILFORD;

WYETH, 2012; BOSSE; ZLOT, 2013; CIESLEWSKI et al., 2016; HE; WANG; ZHANG,

2016), we developed a pipeline that, in summary, receives a query frame, computes the

descriptor from it and uses the result to perform a correspondence search in a database.

Our first step comprise in loading the query set with the frames from a entire
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sequence. Each frame is an input point cloud with associated color information, generated

from the current sensors being employed for evaluation. As our goal is to detect loop

closures within a single trajectory, the database set is composed by c-M2DP descriptors

computed for each frame captured through the dataset sequence. Then, for every input

point cloud, a c-M2DP descriptor is computed and used as a query for the correspondence

search for loop closures is done within the descriptors database. In this process, loop

closure detection comes down to finding the most similar descriptors between different

point clouds.

We employed a simple brute-force approach for the search, with the matching

between two descriptors being done using the L2 norm. A match is determined as a loop

closure if the calculated L2 distance between two descriptors are under a confidence value

threshold υ, which is later used to generate our precision-recall curves for evaluation.

Also, in order to avoid self-queries between a query and its match during the matching

process, we set up an window to exclude adjacent frames from the query, considering a

minimal difference between the current query and its neighbors.

Before we are able to run the loop closure detection process, we need to perform

an offline pre-processing of the dataset sequences in order to generate the input point

clouds. Although there are several public available datasets (PANDEY; MCBRIDE; EU-

STICE, 2011; GEIGER; LENZ; URTASUN, 2012) recorded in distinct environments and

employing various sensors, such as 3D LIDARs and stereo cameras, point clouds with as-

sociated color information are not usually provided ready for use by them. However, they

can be generated through different techniques and tools, which we will further discuss in

the following section.

3.3 Dataset Sequences

We chose to evaluate the c-M2DP descriptor performance in the KITTI odometry

dataset 00, 05, 06 and 07 sequences (GEIGER; LENZ; URTASUN, 2012), as they were

also used for evaluating the M2DP descriptor. Additionally, the KITTI dataset have color

data available through its image frames, and provides an extensive documentation about

its resources and also have very useful tools for various tasks, such as generating colored

point clouds using its sensors.

The KITTI dataset sequences were recorded using a variety of sensors simultane-

ously, including a Velodyne LIDAR with a field-of-view (FoV) of 360◦ and a stereo Point
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Grey Flea color camera system facing forward, both providing synchronized frames at 10

Hz, with the images being rectified. With these sensors, we were able to generate colored

point clouds offline by either performing sensor fusion between the LIDAR and the left

color camera, or through depth estimation using the stereo camera. We generated both

for each sequence, as it enabled us to evaluate the c-M2DP performance on point clouds

generated from different types of sensors. The performance of M2DP, and consequently

c-M2DP, are still unknown on point clouds generated from stereo estimated depth, which

are subject to distinct point densities and noise when compared with the ones generated

from 3D LIDARs readings.

3.3.1 Camera-LIDAR Sensor Fusion

We used the kitti_lidar_camera1 ROS package, and generated the point clouds

using KITTI 3D LIDAR readings with associated color information captured by the left

color camera for all sequences. Although the 3D LIDAR provides a 360◦ scan, we had to

limit its readings due to the forward facing FoV of the color cameras, generating a subset

point cloud in order to perform the sensor fusion. After that, we converted the coordinate

system of the subset, projecting the 3D points into the 2D camera image, as shown in Fig.

3.5, by using the LIDAR-to-camera translation matrix provided by KITTI. Finally, using

the color data of the 2D projection, we associated each color value with their respective

3D point, producing a color enriched point cloud. It is also worth mentioning that the

subset point clouds generated without color were used in order to evaluate the M2DP

descriptor in similar conditions with our proposal.

Figure 3.5: 3D LIDAR points projected on 2D image. Frame from the KITTI odometry
dataset.

1https://github.com/LidarPerception/kitti_lidar_camera
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3.3.2 Stereo Depth Estimation

Besides generating point clouds through camera-LIDAR sensor fusion, we also

employed stereo depth estimation to generate point clouds with color information. The

stereo camera images are provided in grayscale as input for the image_undistort2 ROS

package, that in turn uses the block matching technique from OpenCV3 StereoBM al-

gorithm to perform depth estimation. We maintain the default parameters for depth es-

timation of KITTI dataset sequences, as it produces results such as shown in Fig. 3.6.

Finally, after having both the estimated depth and the color image, we are able to gener-

ate a colored point cloud using the scale and camera parameters provided by the KITTI

dataset.

Figure 3.6: Depth estimated from stereo camera. Frame from the KITTI odometry
dataset.

2https://github.com/ethz-asl/image_undistort
3https://opencv.org/
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4 EXPERIMENTS AND DISCUSSION

In this chapter, we describe how the proposed c-M2DP descriptor was experi-

mented and evaluated, discussing its performance results. In Section 4.1 we detail the

development process and the tools employed for our experiments. In Section 4.1.1, we

present the experiments settings, defining values for the descriptors and pipeline param-

eters. After that, in Section 4.1.2, we describe how the precision-recall curves were gen-

erated, and how the time efficiency was measured. Then, in Section 4.2 we perform an

evaluation of the c-M2DP descriptor using RGB, HSV and CIELab color spaces in order

to define the best color space to be used. In Section 4.3 we present the computing time

costs associated with each descriptor, showing difference in results between the camera-

LIDAR and stereo camera sequences. Additionally, in Section 4.4, we introduce our

experiments comparing c-M2DP with both M2DP and CSHOT descriptors on the four

KITTI dataset sequences. The precision-recall curves along with discussions about each

descriptor accuracy are presented both in Section 4.4.1, for sequences generated using

camera-LIDAR sensor fusion, and in Section 4.4.2, for sequences generated using stereo

estimated depth.

4.1 Development and Experiments Details

Our platform for development and running experiments was a laptop equipped

with an Intel i7 quad-core 2.00 GHz CPU and 8 GB RAM. Although the M2DP descriptor

is provided by its authors in MATLAB1 code, we chose to convert the code to C++ in

order to integrate it in a loop closure detection pipeline, develop our c-M2DP extension,

and compare both with another descriptor. For this conversion, we were able to use the

Point Cloud Library2 (PCL) 1.7 and the Eigen3 Library 3.2, and accomplished a similar

performance with equivalent results to the original MATLAB code. Also, our loop closure

detection pipeline was developed with C++, using OpenCV4 2.4.9 BruteForce algorithm

for descriptor matching.

With both the c-M2DP and M2DP descriptors implemented in the same environ-

ment, we were able to evaluate if there was an improvement on accuracy due to the addi-

1https://www.mathworks.com
2http://pointclouds.org
3http://eigen.tuxfamily.org/
4https://opencv.org/
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tion of color information over the shape only descriptor. Also, we were able to measure

average computing times of each descriptor in order evaluate their efficiency. Besides, we

chose to compare c-M2DP results against the CSHOT descriptor (TOMBARI; SALTI;

STEFANO, 2011), which also combines color and shape information computed from the

point cloud.

Sharing some similarities with our proposal, the CSHOT descriptor was also pro-

posed as an extension to incorporate color information into a shape-only descriptor. How-

ever, CSHOT was originally designed as a local method, being computed around multiple

keypoints detected in the point cloud. As previously mentioned, there are several differ-

ences between global and local descriptors in regard to their capabilities, dimensionality

and overall performance. A common approach (HE; WANG; ZHANG, 2016) for a com-

parison between them is to employ a global variant of the local method, if available. We

modified the C++ implementation provided by the PCL in order to use its global variant

for evaluation during our experiments. Instead of using the local neighborhood as support

of a reference point, the whole point cloud is used as support of the centroid to compute

the CSHOT descriptor.

4.1.1 Experiments Settings

Before we perform our experiments using the implemented descriptors in the loop

closure detection pipeline, we must determine the values of their respective parameters.

In the case of both M2DP and c-M2DP descriptors, these settings are used to build their

respective structures, defining the type and amount of splits done in their support regions,

which for global descriptors are the whole point cloud.

In their study, He, Wang and Zang (2016) defined the values of M2DP’s parame-

ters after performing a benchmark on one dataset sequence, evaluating both accuracy and

time efficiency during this process. As shown on Table 4.1, we adopted the same param-

eter values from the original work for both M2DP and c-M2DP descriptors in our exper-

iments. Also, we adopted the same definitions for the loop closure detection pipeline, by

employing a±50 frames window relative to the current query frame to avoid self-queries,

and by considering a detected loop closure correct, if the two matched point clouds are less

than 10m from each other in the ground truth trajectory provided by the KITTI dataset.

Additionally, the c-M2DP descriptor requires that the number of color bins for

each color channel to be determined. We arbitrarily set it as g = h, being the same
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number of shape bins per circle. Also, as only color spaces with 3 channels were used in

our experiments (i.e. RGB, HSV and CIELab), we fixed w = 3. With these parameters

and due to the dimensionality reduction, the c-M2DP descriptor vector ends up with 576

in length, compared to M2DP’s original vector length of 192.

Table 4.1: M2DP and c-M2DP parameters
Parameter M2DP c-M2DP
Azimuth angles (b) 4 4

Elevation angles (q) 16 16

Concentric circles (l) 8 8

Shape bins (h) 16 16

Color bins (g) - 16

In regards to the CSHOT descriptor, we maintain the default parameters of its PCL

implementation, which generates a vector with 1344 in length. It is also worth mention-

ing that CSHOT and other descriptors (TOMBARI; SALTI; STEFANO, 2010; RUSU et

al., 2010; LOGOGLU; KALKAN; TEMIZEL, 2016) that require surface normals, need a

radius parameter to be able to estimate them. This parameter is usually tuned considering

the point cloud density, in order to avoid reaching too many neighbor points and increas-

ing the computational costs, or being insufficient to reach its neighbors. For the CSHOT

descriptor, we adopted the same approach employed by He, Wang and Zang (2016) with

the SHOT descriptor. Before running each dataset sequence, we define this radius param-

eter as being 5 × ν, where ν is the point cloud resolution of the sequence’s first frame,

calculated by averaging the distance between each point and its nearest neighbor.

4.1.2 Evaluation Methods

As mentioned in Chapter 3, a match between two descriptors is considered a loop

closure if the L2 distance between them is under a threshold υ. Then, loop closures

detected correctly are considered True Positives (TP), while incorrect ones are False Pos-

itives (FP), and the loop closures wrongly discarded are False Negatives (FN). Similar to

other works (MILFORD; WYETH, 2012; BOSSE; ZLOT, 2013; GAWEL et al., 2016;

HE; WANG; ZHANG, 2016; LOWRY et al., 2016), we evaluated each descriptor accu-
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racy by using the relationship between their precision5 and recall6 metrics, generating the

precision-recall curves. We also evaluated the descriptors efficiency, measuring the time

consumed for computing them and during the matching process.

Similar to the precision-recall curves generated in SeqSLAM (MILFORD; WY-

ETH, 2012), we generate ours by varying the υ threshold value between all the different

L2 distances calculated during the matching process. Also, we present the descriptors re-

call rate at 100% precision, which is an important comparison for loop closure detection

methods. Any false positives (i.e. incorrect loop closures) can be disastrous, resulting in

map building inconsistencies that can lead a SLAM system into a irrecoverable state.

4.2 Color Spaces

For the first experiment, our goal was to determine which color space the c-M2DP

descriptor should use, by performing an evaluation of c-M2DP using the RGB, HSV and

CIELab color spaces, and verifying which shows a higher accuracy. A similar approach

was done by other descriptors that combined color and shape (TOMBARI; SALTI; STE-

FANO, 2011; LOGOGLU; KALKAN; TEMIZEL, 2016). For instance, the CSHOT de-

scriptor chose CIELab after a comparison with RGB, while CoSPAIR evaluated the same

three options as ours and also adopted CIELab for its histograms. For this experiment we

ran the loop closure detection process using c-M2DP with three different color spaces.

The KITTI 06 sequence was used, with point clouds generated by the fusion between LI-

DAR and camera. It is also worth mentioning that for the HSV and CIELab color spaces,

a step for converting the point clouds from RGB was implemented.

In Fig. 4.1 we plotted the precision-recall curves from the results of this experi-

ment. It shows that when using RGB, c-M2DP reaches a recall rate of 82.5% at precision

100%, after which it begins to drop, reaching a recall rate of 89.2% at 90% precision

and then dropping further. Other color spaces presented lower results, with HSV show-

ing a 71.4% recall with precision 100%, reaching 91.5% at 90% precision, and CIELab

performing poorly with a recall of 49.8% at precision 100%, reaching 86.8% at 90% pre-

cision. Therefore, due to RGB higher recall rate with precision 100%, we adopted it as

the color space used for the c-M2DP descriptor.

5Precision is the proportion of correctly detected loop closures (TP) among the total of detected loop
closures (TP+FP)

6Recall is the proportion of correctly detected loop closures (TP) among the actual loop closures in the
sequence (TP+FN)
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Figure 4.1: Precision-recall curves for KITTI 06 sequence comparing c-M2DP with
different color spaces.
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4.3 Time Efficiency

Maintaining a good balance between accuracy and efficiency is a challenging task

for any point cloud descriptor approach. During our loop closure detection experiments

using camera-LIDAR or stereo on KITTI sequences, we recorded both the time spent to

compute each descriptor, and the time spent by each query correspondence search within

the database. Our goal was to evaluate the time efficiency of each descriptor, investigating

the costs associated with c-M2DP additional color information in comparison with M2DP.

Also, we were able to compare their efficiency against the CSHOT descriptor, which can

be expensive to compute as it depends on estimating surface normals, especially consid-

ering the high density and noise of the stereo-based point clouds.

In Table 4.2 we present the average times spent for each descriptor when using

point clouds generated through camera-LIDAR sensor fusion. The average time to com-

pute c-M2DP is only 23.2% higher than M2DP. It is also worth noting that c-M2DP aver-

age computing time is 22.6% faster than CSHOT.

Table 4.2: Average times in seconds to compute a descriptor and matching on point
clouds generated using 3D LIDAR and color camera.

Descriptor Computing (s) Matching (s)
M2DP 0.0674± 0.0041 0.0043± 0.0004

c-M2DP (Ours) 0.0830± 0.0052 0.0051± 0.0006

CSHOT 0.1072± 0.0168 0.0059± 0.0005
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In Table 4.3 we present the average times spent for each descriptor when using

point clouds generated through stereo depth estimation. The increased point density of

these point clouds caused an overall increase in the average times computing the descrip-

tors. Similar to the previous experiment c-M2DP average time to compute is only 18.8%

higher than the M2DP descriptor. Also, it is important to highlight CSHOT’s heavy com-

putational burden. Estimating surface normals for a large number of points is a costly pro-

cess, which often requires a downsampling of the point cloud, risking accuracy loss. This

significantly affected CSHOT, with an average time of≈ 1.7711s against only≈ 0.4259s

taken by c-M2DP, i.e. 315.9% higher.

Table 4.3: Average times in seconds to compute a descriptor and matching on point
clouds generated using stereo camera.

Descriptor Computing (s) Matching (s)
M2DP 0.3584± 0.0816 0.0044± 0.0008

c-M2DP (Ours) 0.4259± 0.0956 0.0054± 0.0006

CSHOT 1.7711± 1.0159 0.0061± 0.0005

4.4 Descriptors Precision-Recall Curves

Our goal in the following experiments was the evaluation of c-M2DP descriptor

accuracy when applied in a loop closure detection approach. With these results, we were

able to investigate if the additional color information brought an improvement over the

original M2DP descriptor. Also, they allowed the performance comparison between the

c-M2DP and CSHOT descriptors. The KITTI odometry dataset sequences 00, 05, 06 and

07 were used for these experiments, allowing us to evaluate the descriptors behavior with

different points clouds, generated either by the sensor fusion between 3D LIDAR and a

color camera or estimated depth using a stereo camera.

4.4.1 Camera-LIDAR Sequences

At first, we ran the loop closure detection pipeline on point cloud sequences gener-

ated using camera-LIDAR sensor fusion. In Fig. 4.2 we plotted the precision-recall curves

from KITTI 06 sequence, a simple big loop with 1101 frames. While c-M2DP presents a

recall rate of 82.5% at 100% precision, reaching 89.2% at 90% precision, M2DP shows a
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lower recall rate in comparison, of 66.8% at 100% precision and reaching 82.1% at 90%

precision. Also with a lower recall, CSHOT shows 81.9% at 100% precision, reaching

90.6% at 90% precision.

Figure 4.2: Precision-recall curves on KITTI 06 camera-LIDAR sequence.
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In Fig. 4.3 we plotted the precision-recall curves from KITTI 05 sequence, with

2761 frames and a few loops. At 100% precision c-M2DP presented a recall rate of 70.9%,

reaching 76.5% at 90% precision. In comparison, M2DP performed poorly with a recall

rate of 40.9% at 100% precision, and reaching 78.2% at 90% precision. Also, CSHOT

shows a recall of 70.8% at 100% precision, reaching 83.5% at 90% precision.

Figure 4.3: Precision-recall curves on KITTI 05 camera-LIDAR sequence.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

M2DP
CSHOT
c-M2DP (Ours)

In Fig. 4.4 we plotted the precision-recall curves from KITTI 00 sequence. It

was the longest (4541 frames), and a challenging segment with dense vegetation. The
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c-M2DP descriptor shows a recall rate of 67.3% at 100% precision, reaching a recall

of 85.4% at 90% precision. As expected, M2DP shows a lower recall rate, with 57.4%

at 100% precision, and reaching 78.2% at 90% precision. However, CSHOT presents a

higher recall rate, reaching 79.2% at 100% precision, and up to 88.6% at 90% precision.

Figure 4.4: Precision-recall curves for KITTI 00 camera-LIDAR sequence.
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In Fig. 4.5 we plotted the precision-recall curves from KITTI 07, a short (1101

frames) but extremely challenging sequence, with two different segments having very

similar structures. Performing poorly, c-M2DP presents a recall rate of only 10.2% at

100% precision, after which it starts to drop dramatically. In comparison, M2DP was

unable to provide any recall at 100% precision, while CSHOT shows the better recall rate

of 17% at 100% precision, also dropping significantly after it.

Figure 4.5: Precision-recall curves on KITTI 07 camera-LIDAR sequence.
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The recall rates of each descriptor at 100% precision are summarized in Table 4.4.

As expected, using a forward facing 3D LIDAR reduced the descriptors overall accuracy

in comparison the results presented in the M2DP study, which uses a 360◦ FoV for the

same KITTI sequences. In general, c-M2DP results shows a significant improvement over

the original M2DP. For instance, on sequence 05 c-M2DP presented a recall of 70.9%

with no false positives against only 40.9% of M2DP. Also, on the challenging sequence

07, M2DP failed by always providing false positives. Competitive recall rates against the

CSHOT descriptor are achieved by c-M2DP on sequence 06, with a higher recall of 82.5%

at 100% precision. On sequence 05 both c-M2DP and CSHOT results are within a slight

difference at 100% precision, with their respective recall rates being at 70.9% and 70.8%.

However, on sequences 00 and 07 CSHOT presented better recall rates in comparison

with the other descriptors.

Table 4.4: Recall at 100% precision on KITTI camera-LIDAR sequences.
Sequence M2DP c-M2DP (Ours) CSHOT
KITTI06 0.668122 0.824701 0.818898

KITTI05 0.408935 0.708861 0.708108

KITTI00 0.574303 0.673295 0.791549

KITTI07 0 0.101695 0.169492

4.4.2 Stereo Camera Sequences

For the following experiments, we ran the pipeline using point clouds generated

from stereo estimated depth. As mentioned in Chapter 3, as far as we known this was

the first experiment with the M2DP descriptor using input from stereo cameras. In their

study, He, Wang and Zang (2016) commented on evaluating M2DP with this and other

types of sensors only as a possibility for a future work. We saw this as an opportunity

to evaluate c-M2DP in comparison with its performance on 3D LIDAR. On the other

hand, we expected CSHOT to show better accuracy than its previous 3D LIDAR results,

as it was originally proposed for surface matching of dense point clouds generated by

3D scanners. The higher point density of the stereo-based point clouds allows surface

normals to be more accurately estimated. However, due to the computational costs of this

estimation process, CSHOT is significantly slower than the previous experiments, as seen

in Section 4.3.

In Fig. 4.6 we plotted the precision-recall curves from the KITTI 06 sequence. In
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it, c-M2DP presents a recall rate of 50.2% at 100% precision, reaching a recall of 82.2%

at 90% precision. As expected, M2DP shows a lower recall rate, with 22.8% at 100%

precision, and reaches 54.5% with 90% precision. However, CSHOT presents the higher

recall rate of 82.3% at 100% precision, reaching up to 91.7% when at 90% precision.

Figure 4.6: Precision-recall curves on KITTI 06 stereo camera sequence.
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In Fig. 4.7 we plotted the precision-recall curves from the KITTI 05 sequence. At

100% precision c-M2DP shows a recall rate of 69.2%, reaching 79.2% before precision

dropping below 90%. In comparison, M2DP performed poorly with a recall rate of 35.3%

at 100% precision, reaching a recall of 64.9% at 90% precision. Again, CSHOT shows

the higher recall of 77.9% at 100% precision, and reaches 87% at 90% precision.

Figure 4.7: Precision-recall curves on KITTI 05 stereo camera sequence.
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In Fig. 4.8 we plotted the precision-recall curves from the KITTI 00 sequence. It
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shows that c-M2DP presents a recall rate of 69.8% at 100% precision, reaching 85.3% at

90% precision. In comparison, M2DP shows a lower recall rate of 27% at 100% precision,

keeping 50.2% at 99%, and reaching 63.2% at 90% precision. However, CSHOT shows a

higher recall rate, of 70.9% at 100% precision and reaches 92.2% at 90% precision.

Figure 4.8: Precision-recall curves on KITTI 00 stereo camera sequence.
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In Fig. 4.9 we plotted the precision-recall curves from the KITTI 07 sequence.

While c-M2DP shows a recall of 37.2% at 100% precision, dropping significantly after

it, M2DP presents a lower recall rate of 15.9% at 100% precision, and CSHOT shows a

higher recall of 44.2% at 100% precision, both also dropping dramatically after it.

Figure 4.9: Precision-recall curves on KITTI 07 stereo camera sequence.
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The recall rates of each descriptor at 100% precision are summarized in Table

4.5. For both M2DP and c-M2DP descriptors, the point clouds generated using estimated
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depth from a stereo camera revealed to be more challenging than the ones generated from

a 3D LIDAR. Still, c-M2DP additional color information proved to be a significant im-

provement over the original M2DP descriptor, as the shape signatures were more sensitive

to these point clouds with increased density and noise. For instance, c-M2DP shows a re-

call of 69.8% at 100% precision on sequence 00 against only 27% from M2DP. It is also

worth mentioning that on sequence 07, the higher amount of information from these point

clouds allowed better recall rates than the previous experiment on the same sequence

using camera-LIDAR.

Although the CSHOT descriptor shows better results in the four sequences, with

82.3% recall at 100% precision in comparison to only 50.2% of c-M2DP on sequence

06, our proposal achieved more competitive results against it on sequences 05, 07, and

especially in sequence 00, where the difference between the recall rates at 100% precision

is slightly above 1%. These are significant results for our descriptor, considering that

CSHOT accuracy comes at the cost of its time consumption increasing significantly, as

previously discussed in Section 4.3, being several times slower to compute than c-M2DP

due to the normal estimation on dense point clouds.

Table 4.5: Recall at 100% precision on KITTI stereo camera sequences.
Sequence M2DP c-M2DP (Ours) CSHOT
KITTI06 0.227488 0.502075 0.822835

KITTI05 0.353425 0.692308 0.778539

KITTI00 0.269663 0.697466 0.709402

KITTI07 0.158537 0.372340 0.442105
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5 CONCLUSION

In this thesis we proposed the c-M2DP descriptor, an extension that incorporates

color data into the global point cloud descriptor M2DP. Our proposal builds color signa-

tures by computing and concatenating color histograms from multiple 2D projections of

an input point cloud, while maintaining the efficient shape signatures from M2DP that are

also computed from each 2D projection. These color and shape signatures are concate-

nated, and then used to compose a signature matrix that describes the point cloud. Finally,

we employ M2DP’s last step to reduce dimensionality of the signature matrix, resulting

in a compact descriptor.

Additionally, we applied the c-M2DP descriptor to a loop closure detection pipeline

and compared its performance with M2DP, in order to evaluate if the additional color in-

formation enabled more precise results and how it affected the descriptor time efficiency.

Also, we compared c-M2DP performance with the CSHOT descriptor, that also combines

color and shape data but requires estimating surface normals, which can be costly to com-

pute. Our evaluation was done using point clouds generated from four KITTI dataset

sequences. During the experiments, we measured loop closures detected correctly and

incorrectly, along with the ones wrongly discarded, and used them to generate precision-

recall curves for each descriptor. Besides, the times spent for the correspondence search

and computing each descriptor were recorded to evaluate their efficiency.

Our first experiments were done with point clouds generated by performing sen-

sor fusion between 3D LIDAR and color camera. After comparing the precision-recall

curves generated using c-M2DP with three different color spaces, we selected the RGB

color space for use due its better results. After that, we generated the precision-recall

curves of each descriptor for the four KITTI sequences. An overall improvement on ac-

curacy is presented by the c-M2DP descriptor in comparison to M2DP, while avoiding

a significant increase in time consumption. Besides, c-M2DP results were competitive

with the CSHOT descriptor, while also being faster to compute and having a significantly

smaller vector length in comparison.

Our remaining experiments were done with point clouds generated from depth es-

timated using a stereo camera. It was, as far as we know, the first experiment with M2DP,

and consequently c-M2DP, on the denser point clouds generated from this type of sensor.

Although the CSHOT descriptor presented higher accuracy on these four sequences, it

came at the cost of being several times slower than c-M2DP. The shape component of
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CSHOT relies on estimating surface normals of the point cloud beforehand, requiring a

properly tuned radius parameter to perform the estimation. Surface normals can be es-

timated more accurately when the point clouds are more dense, but computing them are

a time consuming process due to the large amount of points. On the other hand, the c-

M2DP descriptor achieved very competitive results, and is significantly faster to compute,

as it uses the same low cost spatial density distributions of the original M2DP, along with

the additional color histograms.

Despite the presented good results that support our proposal, there is still several

aspects of the c-M2DP descriptor and its application to loop closure detection that can

be further investigated. For instance, an intuitive next step is to perform an evaluation of

c-M2DP while using colored point clouds generated with a FoV of 360◦, as available in

the Ford Campus dataset (PANDEY; MCBRIDE; EUSTICE, 2011). Different outdoor

environments, such as the Málaga urban dataset (BLANCO-CLARACO; MORENO-

DUEÑAS; GONZÁLEZ-JIMÉNEZ, 2014), or indoor environments could also be em-

ployed and evaluated in a future work.

Finally, as the point clouds generated through stereo depth estimation revealed to

be challenging for both M2DP and c-M2DP, further investigation could also be done on

improving their shape signatures for more dense point clouds. Sampling techniques can

be employed to reduce noise and high point densities (BOSSE; ZLOT, 2013; DUBÉ et

al., 2017), although there is a potential loss of information. Additionally, future works

could also investigate image pre-processing techniques used in visual methods (LOWRY

et al., 2016), in order to provide more robust color information and potentially improve

c-M2DP color signatures.
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