
  


 

Abstract— Determining the optimal initial dose for warfarin 
is a critically important task. Several factors have an impact on 
the therapeutic dose for individual patients, such as patients’ 
physical attributes (Age, Height, etc.), medication profile, co-
morbidities, and metabolic genotypes (CYP2C9 and VKORC1). 
These wide range factors influencing therapeutic dose, create a 
complex environment for clinicians to determine the optimal 
initial dose. Using a sample of 4,237 patients, we have proposed 
a companion classification model to one of the most popular 
dosing algorithms (International Warfarin Pharmacogenetics 
Consortium (IWPC) clinical model), which identifies the 
appropriate cohort of patients for applying this model. The 
proposed model functions as a clinical decision support system 
which assists clinicians in dosing. We have developed a 
classification model using Support Vector Machines, with a 
polynomial kernel function to determine if applying the dose 
prediction model is appropriate for a given patient. The IWPC 
clinical model will only be used if the patient is classified as “Safe 
for model”. By using the proposed methodology, the dosing 
model’s prediction accuracy increases by 15% in terms of Root 
Mean Squared Error and 17% in terms of Mean Absolute Error 
in dose estimates of patients classified as "Safe for model". 
 

I. INTRODUCTION 

Warfarin is one of the most commonly prescribed drugs in 
the united states [1]. Warfarin is prescribed as an anticoagulant 
to treat and prevent thromboembolic diseases.  Determination 
of the optimal dose for this drug is quite challenging 
considering its narrow therapeutic index and the substantial 
inter-patient variability in dose requirements to attain ideal 
anticoagulation [2]. This means that mis-dosing 
(overdosing/under dosing) puts patients at risk of thrombosis, 
such as deep vein thrombosis or pulmonary emboli for under 
dosing, and bleeding for overdosing. Moreover, this drug 
ranks as the principal drug-related cause of adverse effects 
resulting in hospitalization among the elderly [3]. Warfarin 
dose is determined based on a blood test called an international 
normalized ratio (INR), which measures anticoagulation 
activity [4]. An INR of 2 to 3 is targeted for most indications. 
If the INR surpasses 3, the patient is at higher risk for bleeding 
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[5]. If the INR falls below 2, the patient is at increased risk for 
thrombosis [6]. The risk of bleeding or thrombosis with 
warfarin is highest during the initial months of treatment [2]. 
There are several factors affecting the activity of warfarin, 
including age, body size, co-morbidities, and genetic variants 
in the drug metabolizing enzyme, CYP2C9, and the drug 
target, VKORC1. Using these factors, several mathematical 
models have been developed to predict the optimal starting 
dose. These mathematical models work as dosing clinical 
decision support (CDS). 

These models have several key differences. First, the 
models have been derived using the data from patients from a 
particular geographic and ethnic cohort. Second, some models 
contain only clinical variables (Clinical models) while others 
contain both clinical and genetic variables (Pharmacogenetic 
models). The major limitations of these approaches are that 
they are based on the availability of genetic data, which is not 
universally utilized at present.  Therefore, in this paper, we 
concentrated on developing a classification model using only 
clinical factors. 

The proposed model functions as a companion 
classification model to one of the most popular clinical models 
in the literature developed by IWPC (International Warfarin 
Pharmacogenetics Consortium) team known as the IWPC 
Clinical (IWPC Cl) model. Using the multi-ethnic data set 
collected by IWPC, we have developed a classification model 
by Support Vector Machines (SVM) with a polynomial kernel 
function to determine whether IWPC Cl model is appropriate 
for a given patient or not. Hence, the model will get applied 
for a patient only if the classification model has classified 
him/her as ‘Safe for the model’. The major contribution of this 
paper is to propose complementary models to one of the most 
widely used dose prediction model and to determine the 
correct group of patients for whom the model is well-suited for 
application. 

Several mathematical models are proposed in the literature 
to assist the clinicians in determining the initial dose. Two 
linear regression models (one clinical and one 
Pharmacogenetic) are proposed by Gage et al. in 2008. The 
variables that were applied in the proposed model were BSA 
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(Body Surface Area), target INR, Smoking status, Age, and 
VTE treatment indication [7]. In addition, two linear 
regression models were developed by the IWPC research team 
[8]. The data set that was used for modeling is known as the 
multiethnic data set since it was collected in 9 countries by 21 
research teams. The regression models were proposed after 
investigating several machine learning models, such as 
regression trees and support vector regression. Despite the 
model suggested by Gage et al., they used the Age-decade 
instead of the actual value of Age in their model and claimed 
that the clinical model is appropriate for patients requiring 
doses less than or equal to 21 or more than or equal to 49 
mg/week. According to ‘Clinical Pharmacogenetics 
Implementation Consortium Guidelines for CYP2C9 and 
VKORC1 Genotypes and Warfarin Dosing’, the models 
proposed by Gage and IWPC are the most suggested 
mathematical models in practice [8]. Additionally, several 
prediction models have been proposed which have used more 
advanced machine learning methods such as Cosgun et al.[9], 
Zambon et al. [10], and Sharabiani et al. [11] [12]. 

Some models were developed to target patients of different 
ethnicities. For instance, a clinical model was developed by 
Sharabiani et al.  in 2013 for African-American (AA) patients 
[13]. The proposed model yielded more accurate prediction 
results than IWPC and Gage models. A Pharmacogenetic 
model for AA patients was proposed by Hernandez et al. [14]. 
The developed model outperformed both IWPC models in 
terms of prediction accuracy. Also, in 2018, Li et al. used back-
propagation neural network to create a warfarin maintenance 
dose prediction model for Chinese patients who have 
undergone heart valve replacement [15]. Recently, Tao et al. 
developed an evolutionary ensemble model to improve 
warfarin dose prediction accuracy for Chinese patients [16]. 
Moreover, Gaikwad et al. generated a model to predict stable 
warfarin dose for Indian patients [17]. In addition to the 
aforementioned models, some models were suggested for 
children such as Nowak-Göttl et al. [18], Moreau et al. [19], 
Biss et al. [20], Nguyen et al. [21], and Kato et al. [22]. 

Although some of the prediction models contained genetic 
variables, the application of this data is still a controversial 
issue. Not only does acquiring this data require genetic testing, 
which limits the applicability range of the models for most 
clinicians, it is also not guaranteed that involving these genetic 
variables in the models leads to improvement in clinical 
endpoints such as time in therapeutic range. Sohrabi and Tajik 
in 2017, proposed a multi-objective feature approach to select 
important clinical and genetic characteristics for warfarin dose 
prediction [23]. 

In a study known as ‘Marshfield Clinic Research 
Foundation (MCRF)’, Burmester et al. investigated the time to 
reach the therapeutic dose on two patient cohorts. They proved 
that Pharmacogenetic factors did not accelerate the process of 
reaching the therapeutic dose [24]. Several research teams in 
Europe also investigated the impact of applying 
Pharmacogenetic factors in practice, such as CoumaGen [25], 
CoumaGen-II [26], Clarification of Optimal Anticoagulation 
Through Genetics (COAG) [27], and European 
Pharmacogenetics of Anticoagulant Therapy (EU-PACT) 
[28]. No robust conclusions were achieved from these studies 
regarding the involvement of Pharmacogenetic factors on 

Warfarin dosing. Detailed investigation of the above-
mentioned studies are presented in some reviews [29] and [30]. 

Considering the predominant uncertainty in using the 
Pharmacogenetic models in practice, in this paper we 
concentrated on one of the most popular and generally used 
clinical models; the IWPC Cl model. Although, it has been 
reported that this model performs the best for patients with 
therapeutic range of less than or equal to 21 to more than or 
equal to 49 mg/week, since the therapeutic dose is not evident 
in early stages of the treatment, a companion classification 
model is proposed to help the clinicians to identify the patients 
whom are compatible with this dosing model. The proposed 
model is developed in the framework of support vector 
machines (SVM) with a polynomial kernel. The remaining 
sections of this article are as follows: In the next section, first 
the data set which is used, will be described, then the 
mathematical background for SVM family models is 
presented. The modeling and system development procedure 
will be presented in Section 3. Section 4 will hold the results 
and finally, conclusion will be presented in Section 5. 

  

II. METHODS 

A. The Data Set 

In this paper, we used the IWPC data set. This data set is 
publicly available [31] and has been used previously [32]. The 
data of 4237 patients whose INR was between 2 and 3 were 
applied for modeling. The imputation method for handling the 
missing data was to use the average value of the complete 
cases for the continuous variables and for the categorical 
variables, using the most-frequent-value of the complete cases. 
The variables that were available in the dataset are presented 
in Tables 1,2, and 3 in Appendix Section. 

We randomly selected 50% of the data points to the 
training set (derivation cohort) and the remaining 50% to the 
testing set (validation cohort). The points in the training set 
were applied for developing the classification model. In the 
preprocessing phase, the binary variables which were 
significantly unbalanced (one category contained less than 
10% of the points) such as Fluvastatin and rifampicin which 
are now very uncommonly used, and Enzyme (which is short 
for Enzyme Inducer Status takes the value of 1 if the patient 
takes carbamazepine, phenytoin, rifampin, and takes the value 
of 0 the patient does not take any of them) were removed from 
the data set. Therefore, out of all the variables in the dataset, 
13 variables were chosen for the modeling. In the next section, 
the classification method that is developed in this paper is 
presented. 

B. Support Vector Machines 

In a classification problem, the data set consists of several 
features X1, X2, ..., XL and one or several label variables C1, C2, 

..., Cp representing the classes that the points belong to. The 
goal is to develop a function to classify the points to their 
correct classes. Numerous powerful classification models are 
proposed in Machine Learning literature, such as Decision 
Trees and Artificial Neural Networks. One of the most 
powerful classification methods is Support Vector Machine 
(SVM) which was developed by Vapnik in 1992 [33]. 



  

In a binary classification problem (C1 and C2), the objective 
is to use the N data points in the training set 𝑥   to 

develop a classifier ( ; ) ( )Ty x w w x b   or 

1

( ; ) ( )
M

i i
i

y x w w x b


  (1) where w ∈ RM  is the weight 

vector, b ∈ R is the constant and (.)  is called  the 
transformation function. The estimated labels are zn ∈ {−1,1}, 
n = 1, ...,N. 

Using the sgn(.) function; sgn(y(x)) the points will be 
assigned to their predicted classes. If the data space is linearly 
separable, in order to defining the separating hyper plane, the 
optimal values for w(w*) and b(b*) must get estimated. The 
following definitions are necessary for introducing SVMs. 

Definition 1: A hyperplane supports a class if it is parallel 
to a decision surface and all points of its respective class are 
either above or below. Such hyperplane is known as a 
supporting hyperplane. 

Definition 2: The distance between the two supporting 
hyperplanes is called a margin. 

Definition 3: A decision surface is optimal if it is 
equidistant from the two supporting hyperplanes and 
maximizes their margin. 

 
Figure 1. Maximum Margin Classifiers 

 

This optimal hyperplane is called the decision boundary 
(D). The predicted labels for the data points and the value of 
y(xn) has the same sign; ( zny(xn) > 0;  ∀xn ∈ RD and zn ∈ 
{−1,1}). 

The minimum distance of the points in the training set to 
D is called the margin which is computed using 

min
∈ ,…., | |

 ; ||ꞏ|| is the L2- norm. 

Fig. 1 shows the maximum margin classifiers. The 
objective in SVM is choosing the values for w and b which 
maximizes the margin. The values for w* and b* will be yielded 
by solving the following optimization problem 

max
 ∈ ℝ ,    ∈ ℝ ‖ ‖

min
 ∈ ,….,

𝑧 𝑤 𝜙 𝑥 𝑏 .    (2) 

C. The Kernel Trick 

When the data space is not linearly separable, SVMs use a 
suitable mapping 〈Φ〉 of the input data values to a higher 
dimensional feature space which will be regulated by the 
kernel function. The data set will be linearly separable in the 
transformed space. The kernel function returns the inner 
product of two images of x and x , i.e., k (x, x’) 
=〈Φ x , Φ x 〉. Based on the nature of the data set, different 
kernel functions can be most effective: i.e. the polynomial 
kernel K x, x 〈x, x′〉 1 , Multi-Layer Perceptron 
 K x, x tanh 〈x, x 〉 ϑ , Gaussian RBF Kernel 

K x, x exp
| |

, ANOVA kernel K x, x

∑ Exp σ x x′  , etc. The kernel function that 
provided the highest performance in this paper was the 
polynomial kernel. In the next section the process of selection 
and training of this model is presented. 
 

III. MODELLING AND SYSTEM DEVELOPMENT PROCEDURE 

A. Prediction Model 

As mentioned in the previous section, the prediction model 
which we applied in the system development process is the 
IWPC clinical model. The variables, their corresponding 
coefficients, and their units are presented in Table 4. 

Table 4. IWPC Clinical Model Coefficients (The predicted dose using 
this model is the square root of weekly warfarin dose) 

Coefficient Variable Unit 

4.0376 Intercept  

-0.2546 Age In decades 

+0.0118 Height In cm 
+0.0134 Weight In kg 
-0.6752 Asian 0/1 
+0.406 Black 0/1 

+0.0443 Missing 0/1 
+1.2799 Enzyme 0/1 
-0.5695 Amiodarone 0/1 

 

 
Figure 2. The proposed methodology for using the IWPC clinical model 

 

For all patients in the data set, the dose prediction value 
using the IWPC model was generated. If the percentage 
difference between the prediction value and the therapeutic 
dose (Therapeutic Dose, IWPC Clinical) is more than 15%, the 
patient will be labeled as ‘High-risk’ (3252 instances) 



  

otherwise he/she will be labeled as ‘Safe for the model’ (985 
instances). The objective is to develop a classification model 
to detect the High-risk patients. Fig. 2 presents the proposed 
methodology for classification problem. 

For establishing a reliable model and test its performance 
against the out-of-sample data points, the data set was assigned 
to Learning (50%) and Testing (50%) sets. The choice of 15% 
as a threshold was yielded through the consultation with the 
subject matter experts. Several classification models were 
examined using K-fold cross validation with k=10 on the 
learning set. The sensitivity, specificity and accuracy were 
used in comparing the classification models. The tools used for 
this project were Python 2.7 (Scikit-Learn 0.18.1) and 
RapidMiner (7.0). 

After developing the model, it can be applied to determine 
if the patient is compatible with IWPC Cl model or not and use 
the dosing model only if he/she is classified as ‘Safe for the 
model’. After labeling the patients using the classification 
model, if the patient is classified as “Safe for the model”, the 
clinician has a choice to apply IWPC Cl. 

B. Evaluation Measures 

There are several methods to evaluate a classification 
method or a clinical prediction model. We chose to look at the 
Accuracy, Sensitivity, and Specificity according to the 
following traditional definitions; 

True positives (TP): number of positive examples that were 
predicted correctly 

False positives (FP): number of negative examples that 
were predicted incorrectly (Type I error) 

True negatives (TN): number of negative examples that 
were predicted correctly 

False negatives (FN): number of positive examples that 
were predicted incorrectly (Type II error) 

Accuracy =         (3) 

Sensitivity =                   (4) 

Specificity =                    (5) 

IV. RESULTS 

Several classification methods were examined using the 
test data set and were compared based on their Accuracy, 
Sensitivity, and Specificity. The classification methods are 
Decision Trees (DT) with several parameter settings for 
minimum size for leaves, depth of the tree and minimum 
branch size, Artificial Neural networks, SVM with linear 
kernel, SVM with Gaussian kernel, and SVM with a 
polynomial kernel. The classification results are presented in 
Table 5. The SVM with polynomial kernel performed 
acceptably by having the highest Sensitivity (76.07) and 
specificity (26.94). 

Table 5. Comparing the performance of different classification models on 
the Test set 

Model Accuracy Sensitivity Specificity 
Decision 
Trees 

DT (2,25,4) 62.84 75.06 22.24 
DT (2,20,4) 63.83 75.29 22.89 

DT (2,30,4) 62.09 74.91 21.88 
Neural 
Networks 

Neural Nets 72.14 75.8 25.8 

Support 
Vector 
Machines 

SVM 
(Linear) 

68.89 75.6 23.7 

SVM 
(Sigmoid) 

69.3 75.05 18.69 

SVM 
(Polynomial) 

69.7 76.07 26.94 

 

The SVM with a polynomial Kernel was applied to the 
patients in the test set to classify patients as either ‘Safe for 
model’ or ’High-risk’. Once the patients were classified as 
’High-risk’, they were eliminated from the test set. For the 
remaining patients (Shrunken test set), the IWPC clinical 
model was used to predict the initial dose. 

 

Table 6. Comparing the prediction accuracy of the IWPC CL model 
on original and shrunken test 
Test Set  Original Test Set  Shrunken Test Set 
Error (RMSE)  12.66  10.82 
Error (MAE)  10.71  8.87 

 

In Table 6, the prediction accuracy of the IWPC clinical 
model was compared between the original test set and the 
shrunken test set based on: 

RMSE (Root Mean Squared Error) =  
𝑚𝑒𝑎𝑛 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒  (6) 

MAE (Mean Absolute Error) = mean (|𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 |) (7) 

After applying the proposed classification of "high risk" or 
"safe for model", the model’s prediction error improved from 
12.6 to 10.8 (1.8 absolute, 15% relative) for RMSE and 
similarly for the MAE method, improved from 10.7 to 8.8 (1.9 
absolute, 17% relative). The proportion of patients that would 
be considered “high-risk” in any new set of patients cannot be 
determined prospectively and this is something that would 
need to be watched if this system were to be used on a new 
cohort of patients. 

Clinically the knowledge of whether the patient was 
classified as "safe for model" or "high-risk" can be used to help 
decide on the use of clinical pharmacists, which are often a 
limited resource in healthcare settings. The "high-risk" 
patients may be the ones that a limited number of pharmacists 
are assigned to help with anticoagulation. Most patients being 
started on warfarin do not require continued admission until 
the INR is stable due to the use of low molecular weight 
heparin (LMWH). Knowledge of stratification of patients as 
“high-risk” for a poor dose could potentially be used to help 
for deciding the delay from discharge to the first visit for 
ambulatory monitoring of INR. 

V. CONCLUSION 

In this paper, a novel methodology for identifying patients 
appropriate for the IWPC clinical model is proposed, 
functioning as a companion to IWPC clinical model. The 
multi-ethnicity (IWPC) data set was used to develop, examine, 
and ultimately select the best classification model to identify 



  

the ‘Safe for model’ patients; the patients for whom the 
percentage difference between the prediction by IWPC clinical 
model and their therapeutic dose is less than 15%, and ‘High-
risk’ patients; the patients for whom the difference between the 
prediction by IWPC clinical model and their therapeutic dose 
is more than 15%. A support vector machine with a 
polynomial kernel function was found to be the best 
performing classification model. The patients classified as 
‘High-risk’ were eliminated from the test set. For the 
remaining patients, the IWPC clinical model is used for 
predicting the initial dose. The performance of the approach 
was tested using RMSE (Root Mean Squared Error) and MAE 
(Mean Absolute Error) comparisons on the original test set and 
the shrunken test set. The RMSE value improved by 15% and 
the MAE value by 17%. The application of the proposed 
methodology can be extended to the prediction models which 
are developed for specific ethnic groups and children. 

The objective of this research is not to create a new hybrid 
predictive model (SVM assisted IWPC model) as a new 
competing dosing technique to the models mentioned in the 
Introduction. Our objective mainly is to propose the idea of 
developing companion classifiers for the dose predication 
models and identify the appropriate cohort of patients for any 
dosing model. This idea can serve as a template for other 
popular dosing techniques. Regardless of the clinician’s 
preference in the dosing technique, a companion classifier can 
reduce the risk of its application. 

The ability of this system to predict which patients may be 
appropriate or inappropriate for the IWPC model may have 
many clinical applications. This system could be used to help 
decide on the use of clinical pharmacists in assistance with 
warfarin dosing. The "high-risk" patients may be the chosen 
as requiring pharmacy assistance in a situation with limited 
clinical pharmacists. In addition, stratification of patients as 
“high-risk” for a poor dose could potentially be used to help 
decide the delay from discharge to the first visit for 
ambulatory monitoring of INR. 

 

APPENDIX 
Table 1. Data set description- Categorical variables* 

Var. V F % Var. V F % 

Amiodarone 
0 3434 81 

Gender 
0 1822 43 

1 228 5 1 2415 57 
M 575 14 M 0 0 

Aspirin 
0 2667 63 

Lovastatin 
0 2203 52 

1 905 21 1 38 1 
M 665 16 M 1996 47 

Atorvastatin 
0 2028 48 

Macrolide 
0 2227 53 

1 233 5 1 6 0 
M 1976 47 M 2004 47 

Congestive 
Heart Failure 

0 2453 58 
Phenytoin 

0 2210 52 
1 484 11 1 24 1 
M 1300 31 M 2003 47 

Carbamazepine 
0 2210 52 

Pravastatin 
0 2175 51 

1 29 1 1 66 2 
M 1998 47 M 1996 47 

Current Smoker 
0 2554 60 

Rifampin 
0 2230 53 

1 384 9 1 3 0 
M 1299 31 M 2004 47 

DVT/PE 
0 3846 91 

Rosuvastatin 
0 2220 52 

1 391 9 1 14 0 

M 0 0 M 2003 47 

Diabetes 
0 2337 55 

Simvastatin 
0 3035 72 

1 543 13 1 558 13 
M 1357 32 M 644 15 

Enzyme 
0 4150 98 

Sulfonamide 
0 2223 52 

1 87 2 1 11 0 
M 0 0 M 2003 47 

Fluvastatin 
0 2350 55 

VR 
0 2175 51 

1 10 0 1 645 15 
M 1877 44 M 1417 33 

*Var. means variable, V, and F mean the values and frequency of the 
parameter, respectively. Also, M means the Missing values. DVT/PE is 
“Deep Vein Thrombosis and Pulmonary Embolism” variable and VR is 
“Valve Replacement” variable. 
 
 

Table 2. Data set description- Categorical variables (Age and Race) * 

Variable Values Frequency Percent 

Age 

1 9 0% 
2 94 2% 
3 189 4% 
4 441 10% 
5 803 19% 
6 1020 24% 
7 1129 27% 
8 510 12% 
9 28 1% 
Missing 14 0% 

Race 

1 2663 63% 
2 656 15% 
3 918 22% 
Missing 0 0% 

* The variable Gender takes 0 for Female patients and 1 for Male patients. 
The variable Race takes 1 for White, 2 for African-American, and 3 for Asian 
patients. Consumption of any drug or possession of any disease is indicated 
with 1 and 0 otherwise. The variable Age is coded in Age-decade format (1 
represents 10-19 years old, 2 represents 20-29 etc.).  
 
 
 

Table 3. Data set description- Continuous variables 

Parameter/ 
Variable 

Height 
(Cm) 

Weight 
(Kg) 

INR 
(International 
Normalized 

Ratio) 

Target 
INR 

Dose 

Missing 696 163 0 0 0 
mean 169.7 81.3 2.5 2.5 33.6 
Std 10.6 22.7 0.3 0.1 17.4 
min 127 34 2 1.8 2.5 
max 202 237.7 3 3.5 315 
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