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Towards Shared Autonomy Applications
using Whole-body Control Formulations of Locomanipulation

Wolfgang Merkt, Vladimir Ivan, Yiming Yang, and Sethu Vijayakumar

Abstract— While widely studied in robotics for decades,
mobile manipulation has recently seen a surge in interest for
industrial applications due to increasing demands on flexibility
and agility alongside productivity, particularly in small and
medium enterprises. However, most mobile manipulation solu-
tions frequently decouple the navigation from the manipulation
problem effectively performing fixed-base manipulation using
a repositionable manipulator. This is not only inefficient, but
moreover limits the range of applications and disregards the
inherent redundancy of a mobile manipulation system.

In this work, we introduce a high-performance omnidirec-
tional mobile manipulation platform with integrated whole-
body control, real-time collision-free whole-body motion plan-
ning, and perception. We demonstrate its capability along with
application scenarios on technical demonstrators involving mov-
ing manipulation targets as well as whole-body manipulation in
simulation and hardware experiments. Finally, we deploy and
evaluate our solution in field trials on an industrial oil and gas
training facility on a sensor placement and manipulation task.

I. INTRODUCTION

Traditional industrial automation achieves productivity
gains through fast and precisely repeated pre-programmed
motions in controlled environments. Here, the robots are
firmly mounted to the ground allowing high-speed movement,
enclosed with security fencing, and attached to unlimited
shore power. These systems are custom designed at the
beginning of a product life cycle and amortize costs over a
large production volume with low individual variability (mass
manufacturing). The recent trend for customization, however,
is dominated by small batch sizes and short cycle times with
frequent reconfiguration of work cells. This requires flexibility
and agility to respond quickly to changes in demand, and are
a particular challenge for the competitiveness of small and
medium enterprises (SMEs).

As a solution, the integration of light-weight, collaborative
robots (cobots) into shared human-robot-assembly lines is
now widely being adopted. Cobots are safe to operate
near humans without extensive safety systems and can be
programmed/taught by demonstration [1]. However, as they
are mounted with a fixed base they are limited in their
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Fig. 1: Continuous manipulation using whole-body control: an industrial IoT
monitoring device is placed using live sensor feedback.

workspace reachability often requiring a large number of
cobots per plant and posing a challenge for redeployability
and versatility.

This motivates the use of mobile collaborative robots,
which, while opening up versatile deployment opportuni-
ties, require new considerations. While some manufactur-
ers propose mobile manipulation as the repositioning of
flexible workstations that automatically plug themselves to
shore power (e.g., FANUC Robotics1), many integrators
have combined autonomous ground vehicles (AGVs) with
differential or omnidirectional drive and collaborative robots
into commercially available mobile manipulators. This is of
interest to both traditional workshops looking to automate
tasks, e.g., machine tending in existing factory floors, as well
as in the development of flexible manufacturing concepts
such as matrix production.

While some of the recent developments are spurred by
the confluence of the maturity of the open source robotics
ecosystem (ROS) and the availability of mature, standardized
hardware platforms and software systems (e.g., ROS-Control
for hardware abstraction and MoveIt! for motion planning),
there is an increasing demand for industrial applications. At
present, mobile robots are widely deployed for logistics and
warehousing tasks such as moving shelves (e.g., Amazon/Kiva
Robotics) and in-facility logistics (e.g., in hospitals and on
factory floors). Manipulation tasks, on the other hand, are
often limited to demonstrations of pick-and-place and material
transport and are generally only applied to highly-specialized
scenarios due to limitations of workspace interoperability,
autonomy, battery runtime, and cost.

A. Related work

Autonomous mobile manipulation recently received a
renewed focus in research, with a number of high-profile
international competitions centered on service robotics (e.g.,

1Cf. https://youtu.be/rQBnZuby05s.

https://youtu.be/rQBnZuby05s


World Robot Challenge, RoboCup@Home, etc.), disaster
recovery (e.g., DARPA Robotics Challenge), or coordinated
manipulation tasks (e.g., Mohammed Bin Zayed International
Robotics Competition).

However, due to the complexity of planning locomanipula-
tion in real-time, locomotion/navigation and manipulation are
often treated as separate problems and joined and coordinated
by a high-level state machine [2], sequence planner, or
shared autonomy control interface [3], [4]. In this case, the
problems of optimal base placement [5], navigation to the
base placement, and fixed-base manipulation [6], [7] are
treated separately, limiting the applicability to static targets
and obstacles and disregarding the inherent redundancy of
high degree of freedom (DoF) systems. Yet, to achieve time-
and energy-optimal solutions, locomotion and manipulation
need to be considered jointly.

Early work to coordinate locomotion and manipulation
introduced the Mobile Manipulator Jacobian Transpose
(MMJT) [8] and demonstrated the ability to compensate
vehicle motion from passive suspension to stabilize end-
effector motions. [9] considered joint motion to maximize
manipulability of the end-effector while following a desired or
guided operational space trajectory. Similarly, [10] considered
both manipulation and locomotion during motion planning in
a joint optimization problem maximizing a directional manip-
ulability metric. However, while planning jointly, in order to
avoid errors from a lower-precision mobile base, the authors
enforced discrete repositioning and fixed-base manipulation.
[11] considered humanoid locomanipulation by planning in
task-space introducing virtual joints for footsteps and an
adaptive procedure to vary the number of foot placements.
Recent advances in semi- and fully-constrained collision-
free whole-body motion planning in time-configuration space
using sampling-[12] and optimization-based [13] approaches
allow synthesis of highly complex motion manipulating
moving targets in dynamic environments. [14] used a Hi-
erarchical Quadratic Programming (HQP)/Stack-of-Tasks
(SoT) approach on a holonomic mobile manipulator with
continuous task transition. In summary, [8], [9], [14] focused
on instantaneous whole-body control to coordinate and
compensate end-effector motion, while [10]–[13] focused on
locomanipulation planning over longer horizons as an input
into the former. In this work, we combine locomanipulation
planning with coordinated whole-body control for continuous
manipulation in complex environments.

Constrained optimization is a common tool for planning
and controlling motion of humanoid [3] and quadruped
robots [15], e.g., using trajectory optimization and task-
space inverse dynamics, respectively. The task is formally
described by constraints on controls, end-effector positions,
and other properties such as static balance derived from
inverted pendulum dynamics while control effort or other
cost terms are minimized. A variety of efficient quadratic
programming and nonlinear programming (NLP) solvers have
been developed to solve these problems. These formulations
are generic so that they can handle complex problem settings
required for optimizing the motion of highly dynamical

system, however, they can also be used to define tasks for
non-legged robots and for trajectory optimization in complex
environments instead.

B. Contribution

In this work, we introduce a high-performance manip-
ulation system using whole-body control for continuous
locomanipulation. We build on concepts and formulations
for operational space and whole-body control widely used
in legged robots and humanoid control and leverage it
for efficient, continuous mobile manipulation which also
allows whole-body visual servoing. We evaluate our pro-
posed system by demoing a chicken-head task showcasing
the decoupling of operational space manipulator motion
from base motion. We highlight planning and locomanip-
ulation capabilities in a simulated automotive fitting task
and demonstrate a sensor placement task for certification
of assets on an outdoor test site. Accompanying videos
are available at http://www.wolfgangmerkt.com/
continuous-manipulation.

II. SYSTEM OVERVIEW

Our system consists out of a high-performance (1.5m s−1)
and high-payload (500 kg to 800 kg) omnidirectional mobile
platform with a 6 degrees of freedom (DoF) collaborative
robot for a total of 9 DoF (Adabotics Ada500). The system
features a built-in 1 kHz whole-body control layer based
on ROS-Control, with the individual system components
shown in Figure 2. The platform uses two horizontal laser
rangefinders as well as an Intel Realsense D-435 RGB-
D sensor mounted on the wrist. It further contains two
on-board computers with one dedicated to control, motion
planning, and safety features and the other performing
perception tasks such as mapping and object identification and
tracking. The system further comes with a remote control user
interface available from any phone or tablet computer and is
equipped with battery capacity for a full-shift autonomous
operation (8 h to 10 h). In order to maximize operation with
limited on-board power, we consider energy efficiency in
our motion optimization and target continuous, non-stop
manipulation through execution of whole-body trajectories
using coordinated, whole-body control. We continuously
monitor the environment for conflicting changes and respond
using a combination of real-time planning and reverting to
operator input via shared autonomy.

III. PROBLEM FORMULATION

The configuration for a robot manipulator with N DoF
is commonly defined as qmanipulator ∈ RN . The state
xt = (qt, q̇t) is directly and accurately measured, and it can
be directly controlled via position control, velocity control,
admittance control, impedance control, or torque control.
Furthermore, the state and the controls ut are usually bounded
(e.g., by joint position, velocity, acceleration, current, or
torque limits) which limits the scope of motion planning
and the working envelope in which we may want to avoid
collisions or seek contacts. On the other hand, the state of

http://www.wolfgangmerkt.com/continuous-manipulation
http://www.wolfgangmerkt.com/continuous-manipulation
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Fig. 2: Overview of the deployed system: All components are modular and
can be replaced due to the specification of commonly adopted interfaces,
e.g., ROS-Control. In this work, we heavily rely on the whole-body control
and perception systems.

a mobile platform moving on a surface is often defined
as xbase ∈ SE(2). This space has the topology of the
Special Euclidean group and it is unbounded, i.e., it has
no translation and rotation limits. Additionally, some mobile
platform designs are non-holonomic, which means that the
state cannot be directly controlled in all directions. However,
we will not address this issue in this paper and utilize a
holonomic hardware platform instead.

Despite these differences, our goal is to express the state
of the whole robot as x = [xbase;xmanipulator], where x
describes the state of a system with 3 +N DoF. This choice
has significant impact on the design of the controller. We
will now formulate the combined locomanipulation problem
as a whole-body control problem.

A. Whole-body control

We formulate the whole-body control problem as the one-
step look-ahead minimization of an optimization problem
subject to all bound, linear and nonlinear inequality and
equality constraints and account for modeled actuation delays:

arg min
x,u

f(x,u) (1)

s.t.: h(x,u) = 0 (2)
g(x,u) ≤ 0 (3)

clb ≤ Ax+Bu ≤ cub (4)

Here, the upper and lower bounds of the decision variables
are updated based on current state, timestep, and proximity
to higher-order limits through integration similar to [16]. The
equality constraints h(x,u) = 0 and inequality constraints
g(x,u) ≤ 0 are a set of nonlinear functions of state and/or
the control. Linear equality, inequality, and bound constraints
(e.g., joint position and velocity limit) are encoded using A
and B. We use a different set of constraints for each control
mode. For example, we use general equality constraints on the
end-effector position to trace a path with the tool, and we use
general inequality constraints for limiting the tool speed. We
can formalize a large variety of control modes using the same
generic framework by combining different sets of constraints.
We do the same with the optimality criteria f(x,u), which
often takes the form a weighted sum of squared error terms.

As we are solving a limited size problem initialized from
the present state, we obtain fast convergence for control

using a nonlinear optimization problem. While traditionally
quadratic programming-based formulations are chosen for
whole-body control in legged platforms, e.g. in [17], the
comparatively small size of a mobile manipulation problem
(9-17 DoF) allows us to leverage nonlinear optimization to
include much more expressive cost and constraint terms.
An overview of how this solver is embedded into the full
framework is shown in Figure 3.

B. State estimation

The state estimation module is based on sensor fusion
of the wheel odometry, the on-board inertial measurement
unit (IMU), and exteroceptive sensors (e.g., visual odome-
try/SLAM from monocular, stereo vision, or RGB-D sensors,
laser localization, GPS, etc.). Here, we use the Unscented
Kalman Filter (UKF) with the sensing modalities configured
in two stages: local odometry frame and global frame. The
odometry frame is a smooth signal updated at a high frequency
and with high accuracy over short periods of time. However,
this state estimate accumulates error over time. The global
frame stays consistent over long periods of time but its updates
are less frequent, often more costly, they are less accurate,
and the global frame states are not smooth over time.

We use the the odometry frame estimates for control due
to its smoothness and local consistency. We then use the
global frame estimate for planning and for slow corrections
of trajectories over time.

C. Whole-body locomanipulation planning

In order to achieve fast motion synthesis for longer horizon
planning which includes locomotion and manipulation in the
presence of moving targets and obstacles, we formulate a
trajectory optimization problem in time-configuration space.
Each timestep hereby preserves the same formulation and
expressiveness in cost and constraints as described in Sec-
tion III-A for the one timestep look-ahead control, with further
constraints introduced for dynamic consistency and smooth
transition between states, similar to [18], [19]. However,
due to the inherent non-convexity of nonlinear optimization,
solvers are not guaranteed to converge to a valid solution
in a given time budget – or at all – unless provided with
a suitable initialization seed. This is especially the case
when considering collision avoidance in complex, unknown
environments. In known environments, suitable warm-start
solutions can be encoded in a trajectory library [20]. In order
to operate in unseen environments, we employ fast, global
sampling-based planners to provide a feasible initialization to
the trajectory optimization. Random sampling-based planners,
however, are not suited to satisfy general constraints.2 As
thus, we use constraint relaxation as well as a framework
to solve constrained time-configuration space problems by
decomposition [12] for initialization. We formulate both
the real-time control optimization as well as the nonlinear
locomanipulation problem in the open source Extensible
Optimization Toolset EXOTica [22].

2Readers are referred to [21] for a review of approaches for sampling-based
planning in presence of constraints.
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Fig. 3: Overview of the nonlinear optimization-based whole-body control framework: Commands can be issued either as whole-body trajectories or from
operational space targets in a streaming mode, where individual commands/targets are sent to the controller at every time step. The controller satisfies all
applicable bound constraints as well as general nonlinear safety constraints (e.g., self-collision avoidance).

IV. EVALUATION

A. Whole-body control evaluation on chicken-head task

We evaluate the performance of the implemented whole-
body control scheme by maintaining an operational space
target for the end-effector while commanding a desired
target for the base controller (commonly referred to as the
chicken-head problem). In a laboratory setting, we increase
the velocity of the base command (to track a circle on
the ground) while tracking ground truth using a VICON
camera system. We have formulated the tracking problem as
unconstrained minimization of the end-effector position in the
global frame over the base position and the arm configuration
and used the Levenberg-Marquardt [23] algorithm to solve
this problem. Note, this is a relaxation of Equations (1)-(4)
as the manipulator may pass through singular configurations
resulting in a violation of real-time requirements. The results
are depicted in Figure 4 validating the relaxation to be
suitable, and snapshots of an applicable real-world task
experiment depicted in Figure 6. We show the end-effector
error against ground truth from a VICON motion capture
system in Figure 5. This task is very simplistic but this
formulation enables us to handle tracking moving targets in
arbitrary frames of reference, which opens up our framework
to a multitude of practical applications.
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Fig. 4: Visualization of the robot internal state and ground truth for both the
end-effector and base frames while carrying out the chicken-head task: This
experiments demonstrates the ability of the whole-body control scheme to
decouple the end-effector from the base motion and coordinate both at the
same time.
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Fig. 5: Visualization of the task space error of the end-effector while the
base is following a circular motion using solely odometry (no sensor fusion
with IMU): both x and y drift, where the error in z is due to stiff suspension
on an uneven floor.

B. Automotive assembly fitting simulation

A frequent task for the deployment of collaborative robots
is the fitting of insulation, adhesives, and subassemblies in
automotive manufacturing (e.g., sealants on doors). These
tasks are correlated with a high risk for repetitive strain injury.

In this scenario, a mobile collaborative robot carries
out manipulation tasks on a moving assembly part by
coordinating whole-body motion. We formulate a whole-
body constrained nonlinear optimization problem to minimize
control effort in the presence of moving targets and solve it
using the commercial solver SNOPT [24]. In particular, the
manipulation motions (e.g., drilling and fitting trajectories)
are encoded as semi-constrained end-effector paths (3-DoF
position, 2-DoF axis alignment) with further constraints on
continuous collision avoidance using the approach from [13].

We have used the whole-body controller in the trajectory
mode for executing the motion. This is sufficient in simulation
(cf. Figure 7), however, a real-world deployment requires
active sensing, tracking of the assembly, and other steps
correcting the synchronization of the robot motion with the
environment. We address these issues in our next experiment.

C. Sensor placement

Off-shore assets such as oil and gas platforms are structures
that are designed to operate for decades in harsh environments.
Sea water, wind, and temperature changes cause material



Fig. 6: The chicken-head task on a rough outdoor surface carrying out a proposed scenario: manipulation of a static end-effector affordance while responding
to disturbance with the redundancy of the omnidirectional base following a high velocity figure-eight target.

Fig. 7: Assembly tasks on a car body structure using a mobile manipulator: While the assembly line is moving at 0.5m s−1, the manipulator carries out
two collision-free manipulation actions for 4 s each while following the moving target.

deterioration and failure that can be prevented by regular
maintenance and monitoring. Our industrial partners3 have
identified the need for automating these tasks. They are
currently executed by humans, which is both costly and
potentially dangerous for the workers. A large amount of
monitoring can be done remotely, as long as the moni-
tored structure can be equipped with sensors. The Limpet
sensor [25] was designed for these applications in harsh
environments, limited power, remote operation with long
distance communication, and real-time monitoring capability.
We have applied our whole-body control framework to
place these sensors semi-autonomously. The user remotely
specifies the sensor location while the planning and control
framework ensures accurate placement of the sensor. This
process requires minimal data bandwidth and it is therefore
suitable for applications where teleoperation is not possible
due to communication quality.

In our experiment, we placed a container with the Limpet
sensors on top of the robot. The user then specifies the target
location. For repeatability and easy visual confirmation, we
mark and track the target locations with AprilTag [26] fiducial
markers. However, the target detection and tracking can be
done using any combination of visual and depth features, such
as in [27]. The execution then used a finite state machine to
switch between sensor pick-up, sensor placement using visual
servoing, and arm parking motion. The sensor placement was
triggered by the sensing module detecting the target marker.

In the first phase, we have constructed a motion planning
problem for computing a collision-free pick-up trajectory for
the robot arm using the RRT-Connect [28]. The trajectory
was executed using our controller in the trajectory mode.
Once the target was detected the tracker provides updates
of the target position. These were fed into the controller
in the streaming mode. The controller solves the inverse
kinematics formulated as an unconstrained NLP problem (see
Section III-A) using the Levenberg-Marquardt [23] algorithm.
The solution was then used to command the arm position in
real-time to compensate for the relative target motion. We have
also superimposed a short place, hold, and release trajectory

3Through the ORCA Hub, we engage with a variety of industrial partners
such as Total, BP, and their sub-contractors, cf. https://orcahub.org.

over the target position. This ensures that the gripper has
enough time open. The parking motion is then planned using
RRT-Connect and executed in the trajectory mode, same as
the sensor pick-up motion in the first phase.

This experiment was executed both in the lab environment
(see Fig. 8) and in an outdoors mock oil rig designed for
fire fighter training (see Fig. 1). The task can be easily
modified for similar scenarios by modifying the state machine
or changing any of the sub-problems to fit the needs.
The advantage of using the whole-body controller in this
scenario is that the framework can handle all the different
operation modes, which allowed us to execute the whole task
continuously, without stopping. This is possible due to the
inherent synchronization of the base and arm movement.

V. DISCUSSION

We have presented an architecture for whole-body control
and planning of collaborative mobile manipulators. This
system exploits a generic formulation of the task as a
constrained nonlinear program and it integrates inputs from
state estimation, perception, and the user to generate complex
collision-free motion plans. The control architecture then
minimizes the tracking error while satisfying the task specific
constraints. The formulation of the problem allows us to
formulate a wide variety of motion planning tasks and match
them with customized controllers.

Our evaluation on the chicken-head task validates the
architecture. The tracking results then show the overall
performance of the system on our hardware platform. The
results demonstrate the performance of the controller and of
the platform itself in a controlled environment as well as
in an outdoors trial. Using the controller implementation in
EXOTica, we achieve a 100Hz control rate on an Intel i7-
7567U CPU with peak performance at 500Hz. The bottleneck
of the controller is the state estimation. The accuracy of
the end-effector tracking depends largely on the quality of
the state estimate that is used for closing the control loop.
Drift, delays, and position error all contribute to this issue.
Delays can be computed and accounted for, e.g., using model
predictive control (MPC), as for instance in [29]. Drift can be
eliminated by exploiting exteroceptive sensors and computing
the global reference as described in Section III-B.

https://orcahub.org


Fig. 8: Sensor deployment trials in a laboratory: The robot proceeds to the next placement task in the stack and after acquiring the target carries out a
whole-body visual servoing task without stopping the navigation/base motion. The accuracy of the sensor placement task with respect to the target can be
seen from the over-head camera.

We have also used the generic problem formulation for
solving a motion planning problem in the automotive industry.
The versatility of this formulation allowed us to do trajectory
optimization with collision avoidance. This is a notoriously
difficult problem due to the non-convexity and nonlinearity of
the collision constraint. We have exploited the state-of-the-art
collision term formulation presented in [13]. The whole-body
paradigm then allowed us to use a relatively small robot and
extend its range without sacrificing the optimality of the task.
This experiment did not consider any control errors nor any
control delays since a simulator was used.

In our last experiment, we deployed our system on the real
robot to perform a non-stop pick-and-place task. While we
used a visual marker to track the target location, the perception
method can be easily swapped for a more advanced technique
that does not require any fiducial information. We have also
relied on the soft housing of the sensor when making contact
during the placement. If the sensor did not provide a soft
interface between the robot and the solid wall structure, we
would consider using compliant control using a force torque
sensor at the end-effector.

Each industrial application requires a specific set of sensing,
planning, and control solutions. The architecture we proposed
opens possibilities for designing these techniques using
well defined building blocks. Such an approach can rapidly
accelerate the development and deployment of robotic systems
in automotive manufacturing, off-shore asset maintenance,
and many other fields.
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