
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing Alternate Modes of Teleoperation for Constrained
Tasks
Citation for published version:
Mower, CE, Merkt, W, Davies, A & Vijayakumar, S 2019, Comparing Alternate Modes of Teleoperation for
Constrained Tasks. in 2019 IEEE 14th International Conference on Automation Science and Engineering
(CASE). Institute of Electrical and Electronics Engineers (IEEE), pp. 1497-1504, 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE), Vancouver, British Columbia,
Canada, 22/08/19. https://doi.org/10.1109/COASE.2019.8843265

Digital Object Identifier (DOI):
10.1109/COASE.2019.8843265

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE 14th International Conference on Automation Science and Engineering (CASE)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1109/COASE.2019.8843265
https://doi.org/10.1109/COASE.2019.8843265
https://www.research.ed.ac.uk/en/publications/0a30149a-a7dc-4391-ae8b-c6668c99b6e8


Comparing Alternate Modes of Teleoperation for Constrained Tasks

Christopher E. Mower1, Wolfgang Merkt1, Aled Davies2, and Sethu Vijayakumar1

Abstract— Teleoperation of heavy machinery in industry
often requires operators to be in close proximity to the plant
and issue commands on a per-actuator level using multiple
joystick input devices. However, this is non-intuitive and makes
achieving desired job properties a challenging task requiring
operators to complete costly and extensive training. Despite
this, operator fatigue is common with implications for personal
safety, project timeliness, cost, and job quality. While full
automation is not yet achievable due to unpredictability and
the dynamic nature of the environment and task, shared control
paradigms allow operators to issue high-level commands in an
intuitive, task-informed control space while having the robot
optimize for achieving desired job properties.

In this paper, we compare a number of modes of tele-
operation, exploring both the number of dimensions of the
control input as well as the most intuitive control spaces.
Our experimental evaluations of the performance metrics were
based on quantifying the difficulty of tasks based on the well
known Fitts’ law as well as a measure of how well constraints
affecting the task performance were met. Our experiments
show that higher performance is achieved when humans submit
commands in low-dimensional task spaces as opposed to joint
space manipulations.

I. INTRODUCTION

Teleoperation of industrial manipulators is generally repet-
itive and requires high levels of concentration and manual
dexterity. Excessive cognitive loads invariably lead to fatigue
that can become dangerous. This danger is prevalent in
the construction sector seen by having the highest levels
of incidents involving fatalities per annum in the United
Kingdom [1].

An example of such a task is concrete spraying as shown
in Fig. 1. Here, a skilled human operator manipulates the
device via some interface to spray a lining of wet concrete
onto a excavated tunnel surface. The tunnel surface is often
unstructured, due to excavation, and the operators visibility
is restricted by high amounts of dust. Despite these restric-
tions, operators are required to manipulate these devices so
that they (1) ensure job-site safety, (2) achieve high task
performance, and (3) minimize costs [2]. Simultaneously
accounting for safety and task performance in teleoperation
tasks is required in a variety of applications: nuclear waste
disposal [3], space robotics [4], and subsea [5].

Devices, such as the concrete sprayer systems, are gener-
ally controlled by a human operator on a per-actuator level
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Fig. 1: Shotcrete application in a freshly excavated tunnel
using a 5-DoF concrete spraying unit. Image provided by
Costain Laing O’Rourke Joint Venture.

and consequently these control architectures do not lend
themselves to easy operation since they force the operator to
submit commands directly in the joint space. Since humans
typically model tasks in the three-dimensional Cartesian
space they must naturally learn an inverse kinematic mapping
imposing high monetary costs and time for specialized
training. In the literature, methods such as the inverse-
kinematics method [6] and optimization techniques [7] have
been developed that allow control commands to be submitted
in alternative control spaces. A number of works leveraging
these advancements have developed assistive techniques for
teleoperation, for example, virtual fixtures [8], shared control
frameworks that merge human input and autonomy [3],
and human supervisory capabilities implementing sliding
autonomy [9]. However, for assistive techniques, in general,
the issue of sub-task allocation between the human and the
device remains one of the main challenges [10].

In this work, we investigate the allocation of sub-tasks
in the context of control spaces for target acquisition tasks.
That is, we ask which control spaces should a human
operator submit commands in order to achieve high task
performance? Our main source of inspiration comes from
the concrete spraying example [11] however our investigation
can be generalized to other tasks such as paint spraying [12],
semi-autonomous grasping [13], and wiping [14]. We have
designed an experiment incorporating the well-known Fitts’
law, that quantifies task difficulty, in order to compare
and contrast different modes of teleoperation. This paper
identifies intuitive and effective control spaces for teleop-
eration and shared control that will allow for more grounded
formulations. Our main contributions are listed as follows:

1) Analysis of the sub-task allocation for target acquisi-
tion tasks through an empirically driven investigation.

2) An extensive data set of results that contains objective



and subjective metrics.
3) A comparison between two subsets of our participants

based on the participants personal habits that we iden-
tified to effect performance.

4) Two generalized performance metrics for Fitts’ law
relating to teleoperated target acquisition tasks.

The resulting data support several conclusions about con-
trol, user preferences, and how habitual traits may effect
task performance. Our analysis indicates that there is a
relation between control space-dimensionality and perfor-
mance. It has been seen in our experiments that lower-
dimensional task spaces, in general, elicit highest perfor-
mance and these are generally preferred by users. Users
who were identified to play video games on a regular
basis were generally able to complete tasks quicker than
those who do not. However, those who do not play video
games were seen to maintain other performance metrics to
a higher standard. An accompanying video is available at
https://youtu.be/OLev3yawHqE.

II. RELATED WORK

Prior work has explored techniques that guide robots
motions via synthesized constraints, i.e., potential fields
and virtual fixtures. Potential fields, originally developed by
Khatib [15], guide a user towards or away from a goal
or obstacle [16]. Virtual fixtures create guidance and/or
forbidden regions in task space [8]. Later work [17] has
developed methods for on-the-fly virtual fixture synthesis
with real-time sensory data.

The work of Dragan and Srinivasa [18], [19] formalizes
assistive teleoperation under a framework of policy blending.
The system, grounded in inverse reinforcement learning,
attempts to predict the intentions of the human operator
in order to arbitrate the operator and the predicted robot
control policies. Other learning-based methods have also
been developed by Abi-Farraj et al. [20] and attempt to
refine unskilled operator input based on skilled operator
input learned by exploiting learning from demonstration
techniques.

From the concrete spraying literature, a task space control
framework was developed by Honegger and Codourey [21]
based on the inverse-kinematics method. The system allows
the operator to control the end-effector of the concrete
spraying unit using a 6-DoF space mouse. Later work by
Girmscheid and Moser [11] developed a sliding autonomy
approach for a high-DoF concrete spraying unit. They define
three levels of autonomy: (1) a manual mode, consisting of
no autonomy and implementing common joint-level control,
(2) a semi-automated mode that, using a pre-collected laser
scan of a tunnel cavity and computed geometry, allows
the operator to command only a target position along the
wall whilst the system accounts for motion constraints, and
(3) an automated mode that plans and executes an entire
trajectory. The fully automated mode, they note, is only
in development for tunnel-boring machine projects where
the excavated tunnel surface is regular and very smooth.
Modes of teleoperation compared in this work are inspired

by these control techniques developed for concrete spraying
applications.

A number of strategies with varying levels of assistance
were compared by You and Hauser [22] for a reach-to-
target task that must deal with collision avoidance, dynamic
constraints, and erroneous input. Their user study showed
participants preferred those strategies with higher levels of
autonomy. Kim et al. [23] compared manual and autonomous
control modes for a pick-and-place task. The results of their
experiments concluded that in-fact participants preferred less
autonomy. A study by Leeper et al. [24] compares a number
of strategies for assisted and non-assisted remote robot
grasping. These studies compare various methods for varying
levels of autonomy and interface designs. The conflicting
results for pick-and-place tasks provides motivation for our
work on related tasks (i.e., target acquisition tasks). An
investigation and analysis to provide an explanation for these
contradictory results is warranted, however this is out-of-
scope of this work.

To the best of our knowledge, there has not been work in
educing control spaces that are intuitive and elicit high task
performance for unskilled operators. In this work, we use the
well-known Fitts’ law to quantify task difficulty in order to
systematically compare the performance of several modes of
teleoperation.

III. METHODOLOGY

A. General formulation

We assume a teleoperation setting akin to Fig. 1, i.e., a
human operates a manipulation system via some interface to
achieve some task. Let us model the process of teleoperation
by the functional

xt+1 = f(xt, ht) (1)

where xt ∈ Cn represents joint configuration for an n-DoF
manipulator, ht ∈ Hm are inputs from an m-dimensional
interface, and t denotes time. Note, we assume Cn and Hm
are closed sub-spaces, with control inputs scaled to the range
[−1, 1]. Assuming a known initial state x0, all future state
can thus be computed using (1). It is also assumed that
the function f can be computed fast enough for real-time
actuation.

The chosen value for m coupled with the space in which
commands ht are submitted categorizes what we define as
the mode of teleoperation.

B. Hypotheses

In this section we state our hypotheses. As mentioned in
Section I, humans typically model tasks in three-dimensional
Cartesian spaces as opposed to the manipulator joint config-
uration space and thus, intuitively, we expect that modes of
teleoperation that allow control commands to be submitted
in task spaces will achieve higher performance. Therefore,
we base our hypotheses upon this intuition.

Hypothesis 1 (H1): Modes of teleoperation with lower di-
mensions will see higher performance.



Hypothesis 2 (H2): Modes of teleoperation that submit
commands in the manipulator task space will see higher
performance.

Hypothesis 3 (H3): Participants will rate higher those
modes of teleoperation with fewer dimensions.

Hypothesis 4 (H4): Participants will rate higher those
modes of teleoperation that submit commands in the ma-
nipulator task space.

C. Modes of teleoperation

1) Full joint mode (FJ): Industrial manipulators are op-
erated on a per-actuator level. That is, there exists a one-
to-one mapping between each joystick axis and manipulator
actuator. Thus, this mode of teleoperation can be modeled
using

f(xt, ht) := xt + ∆tAht (2)

where A is a diagonal matrix such that the n entries are
maximum joint velocities, and ∆t is the control loop time
step. Joint limits are handled by checking (2) prior to sending
actuation signals to the joints and clipping the computed
values if necessary.

2) Reduced joint mode (RJ): Here, we relieve the control
of a number of joints from the human and assign these as
a task constraint. Let xt = [x

(1)
t , x

(2)
t ]T where x(1)t ∈ Cm

denote the joints under human control, and x
(2)
t ∈ Cn−m

denote the autonomous joints. As an example and inspired
by the concrete spraying task, joints x(2)t could be assigned
the task of end-effector alignment with the surface normal
with respect to some pre-collected model of the environment
e. We model the mode using

f(xt, ht) :=

[
f (1)

(
x
(1)
t , ht

)
, f (2)

(
x
(2)
t ; e

)]T
(3)

where f (1) represents the next joint state for joints 1:m and
similarly for f (2). The human controlled joints are computed
in the same way as in the full joint control mode and thus,
f (1) takes the same form as (2). The functional form for f (2)

is found using an unconstrained optimization expressed by

f (2)
(
x
(2)
t ; e

)
:= arg min

x(2)∈Cn−m

∥∥∥∥φ(x(2))− y∗(e)∥∥∥∥2 (4)

where φ(·) is a mapping from the configuration space to
the k-dimensional task space, and ‖·‖ denotes the Euclidean
norm, y∗ represents the task space goal.

3) Full task mode (FT): An alternative class of modes is
defined when the human instead submits commands to the
manipulator task space rather than the joint space. For spray-
ing, the manipulator task space comprises three translational
and two rotational dimensions of the end-effector. This mode
is thus expressed by

f(xt, ht) := arg min
x∈Cn

∥∥φ(x)− ht
∥∥2 (5)

where φ(·) is the mapping from the configuration space to
the translational and angular task space.
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Fig. 2: Participant field habitual traits.

4) Reduced task mode (RT): Humans typically model
manipulation tasks in the task space. In this mode, we relieve
control of a number of task space dimensions from the
human and allow these to be moderated by the autonomy. In
order for the autonomy to perform this moderation, however,
we must, again, assume some pre-collected model of the
environment e. For example, a spraying task requires five
task space dimensions, however, to a human this can be
considered a two-dimensional task, i.e., the position on the
wall to spray. In this example, we can thus allow the human
to control a target position defined on a two-dimensional
surface (i.e. the spraying surface that we assume is modeled
by e) and pass control of the three remaining dimensions to
the robot. We model this mode by

f(xt, ht) := arg min
x∈Cn

‖φ(x)− y∗(ht; e)‖2 (6)

where y∗ = y∗(ht; e) ∈ Rk is some k-dimensional task
space goal computed using the m-dimensional input from
the human such that m < k. As in the spraying example,
the computed value of y∗ can be used to encode ideals such
as perpendicularity to the spraying plane and a given stand-
off distance from the surface.

IV. EXPERIMENTS

A. Participant selection

We have obtained results in this study by evaluating the
performance of 21 participants (16 male, 5 female). The age
distribution of the participants were 7 (21-25), 11 (26-30), 2
(31-35), and 1 (36+).

During preliminary investigations a difference in perfor-
mance was noticed for participants who regularly played
video games. During the final experiments, we asked par-
ticipants to provide a rating on how often they play video
games†. They were asked “How often do you play video
games (e.g., Xbox, PS4, PC)? [1 Never], [2 Bi-monthly],
[3 Monthly], [4 Bi-weekly], [5 Weekly], [6 Regularly (but
not daily)], [7 Daily]”. The responses are shown in Fig. 2.
A participant was considered a gamer if they gave a rating
greater than or equal to 4, and a non-gamer otherwise.

B. Experimental design

Fitts’ law is widely considered to be a robust measure of
performance for target acquisition (pointing) tasks making

†Note, those who participated in the preliminary investigation were
barred from the final experiments to avoid skill transfer.



the analogy between movement time and transmission of
information [25]. A common usage of Fitts’ law from the
human-computer interaction literature is to compare the
usability of computer input devices (e.g. a mouse, trackball,
and a stylus with a tablet) [26]. The law makes two under-
lying assumptions: (1) task difficulty is linearly correlated
with performance, and (2) a complete move is performed
through a number of iterations of feedback-guided corrective
sub-movements, i.e., the deterministic iterative-corrections
model [27]. In this work, we use Fitts’ law as a method to
specify task difficulty.

Fitts’ established the information capacity of the human
motor system by deriving a model for the index of perfor-
mance Ip (in bit s−1) expressed by

Ip = Id/T (7)

where Id is the index of difficulty (in bit) and T (in seconds)
is the average movement time. The index of performance
is a metric that quantifies task performance; higher values
for Ip indicate better performance. The index of difficulty
is a metric that defines the task difficulty; higher values for
Id imply the task is more difficult. Under the deterministic
iterative-corrections model and by analogy with Shannon’s
Theorem 17 [28] a formula for Id is derived, see [27] for
details, given by

Id = log2(2D/W ) (8)

where D is the distance to a target and W is the width of the
target, see Fig. 3b. Define a condition by the tuple (W,D).
A difficult task (i.e. high Id) can be seen when, for example,
W is small and D is large, and an easy task (i.e. small Id)
when W is large and D is small.

Operators in industry must maintain a number of motion
constraints to achieve high task performance. Inspired from
the concrete spraying task, we define two additional perfor-
mance metrics that generalize Fitts’ law.

Define the angular length La as the total change in θt for
a complete move and expressed by

La =
1

T

∫ T

0

θtdt (9)

where θt as in Fig. 3d. This quantity describes how well a
user is able to maintain perpendicularity to the wall during
transitioning between one target and the next.

Define the delta length denoted Lδ as the least absolute
deviation in the stand-off distance with respect to a given
ideal stand-off distance δ∗ over the duration of a complete
move and expressed by

Lδ :=
1

T

∫ T

0

|δt − δ∗|dt (10)

where δt is the stand-off distance as in Fig. 3d.
For each mode of teleoperation, participants completed 17

conditions: 16 have been generated by scaling the condition
values used in Fitts’ original work [25] while one has been
hand-tuned to add spread to the Id values. The conditions

used in this study are shown in Tab. I representing the range
Id∈[1.3219, 5.9069].

TABLE I: Condition values used in experiments.

W (m) D (m)
0.0125 0.0469, 0.0938, 0.1875, 0.3750
0.0500 0.0938, 0.3750, 0.7500
0.0250 0.0469, 0.0938, 0.1875, 0.7500
0.1000 0.1875, 0.3750, 0.7500
0.1500 0.1875, 0.3750, 0.7500

C. System description

We have implemented each mode of teleoperation de-
scribed in Sec. III-C using an open-loop position control
framework on a 7-DoF KUKA LWR robot arm. The operator
interfaced with the system using an F710 Logitech gamepad.
In Fig. 4, we show the mappings between the interface and
robot for each mode. Each experiment was initiated by the
user clicking a button on the gamepad. As a safety feature, in
order to stream control commands to the system the user held
down the top-left shoulder button akin to, but less straining,
than a dead-man switch on a teleoperated machine. Inter-
process communication is handled by the Robot Operating
System (ROS) [29] and modes requiring numerical opti-
mization were computed using the Extensible Optimization
Toolkit (EXOTica) [30]. Goal joint positions were streamed
at 100 Hz. Targets and the focus point were displayed on a
1.65 m cross-diagonal display placed specifically such that
the transform between the robot base and the television
screen was known. Targets were scaled to the real world and
the position of the focus point was found using the robot
forward kinematics.

An ideal stand-off distance of δ∗ = 0.55 m was chosen,
justified as follows. In industry, the MEYCO Oruga (Fig.
1) has an approximate maximum reach of rO = 6 m and
the ideal stand-off distance is δ∗O = 2 m. The KUKA LWR
arm has an approximate maximum reach of rK = 1.5 m. We
thus find δ∗K by balancing the ratios and adding a ten percent
safety distance.

D. Experimental protocol

Participants were tasked with teleoperating a KUKA LWR
robot arm to reach-and-point to a number of circular targets,
indicated in red, arranged in a circle as in Fig. 3b. Targets
were displayed on a screen in a known position and ori-
entation with respect to the robot base, see Fig. 3a. For
each condition, targets were presented in the order as in
Fig. 3c. Conditions were randomized for every participant
to minimize skill transfer. The participants were instructed
to use as many controllable dimensions available to them in
order to manipulate the robot in such a way that completes
the task as fast as possible while maintaining the angular
and delta length constraints; i.e., simultaneously minimize
T , Lα, and Lδ to the best of their ability.

Participants were allowed to move around the laboratory
during the experiment, akin to concrete sprayer operators.
For safety, they were not allowed within 1.5m of the robot.

Targets and conditions were presented to the participant
in succession. As one target was deemed acquired the next



(a) An operator controlling the
KUKA LWR arm.

(b) Multi-directional task. (c) Target order of appear-
ance for a single condition.

(d) Angle to the plane θt and stand-off
distance δt used to compute performance
metrics.

Fig. 3: Experimental setup. Whilst condition order of appearance is randomized, target order was always kept the same as in
(c). The black line indicates an example path of the focus point during manipulation; the path was not shown to participants,
only the focus point indicated by the green dot.

(a) Full joint space control. (b) Reduced joint space control. (c) Full task space control. (d) Reduced task space control.

Fig. 4: Gamepad mappings for the modes of teleoperation implemented in experiments. Markings indicate where the human
interacts with on the gamepad and where that interaction is perceived to be on the robot model.

immediately followed and as one condition was completed
(i.e., one full cycle of targets in the order shown in Fig. 3c)
the next immediately followed. Target acquisition is when
the focus point (i.e., the point on the display screen the
robot is pointing) comes into contact with the target. At the
start of every mode the robot was reset to the same starting
configuration. Following each mode participants were asked
to fill out a questionnaire (Sec. IV-E).

E. Questionnaire

Participants were asked to provide a rating for each mode
on their speed perception, accuracy perception, fatigue, and
the mental capacity required. The questionnaire, shown in
Tab. II, was devised from the ISO 9241 standard and work
by Douglas et al. [31]. Questions 1-5 use a 7-point scale and
6-7 are open-ended.

TABLE II: Questionnaire used in investigation.

Questions: Rating: 1 7
1) The mental effort required for operation was . . high low
2) Accurate pointing was . . . . . . . . . . . . . . . . . . . . . . . difficult easy
3) Operation speed was . . . . . . . . . . . . . . . . . . . . . . . . . fast slow
4) Finger fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . high none
5) Overall, the mode of teleoperation was . . . . . . . . difficult easy
6) Did you have any trouble with this mode of

teleoperation?
7) Do you have any comments in general about

using this mode of teleoperation?

V. RESULTS

A. Low-dimensional task space elicits high performance

Data for 21 participants was collected for 17 conditions
with 9 targets for each condition. In order to compute our
performance metrics we collected target acquisition times-
tamps and joint states.

We have filtered the data based on one criteria. Data for
the first target of every condition was ignored since when
transitioning between one condition and the next the data
is not representative of skill in either condition. We have
collected an extensive database of results constituting, in
total, 8882 data points. Using each metric (time, angular
length, and delta length) and the index of difficulty we
compute an index of performance for every metric and for
each point in our data set. The distributions of log(Ip) is
shown in Fig. 5. Using this data we have been able to perform
a one-sided paired-sampled t-test to test our hypotheses.

Precisely the same conclusions for time and delta length
metrics have been observed. We see H1 is accepted as
expected for reducing control space-dimensionality, except
the FJ-RJ comparison. For the angular length H1 is accepted;
this is unsurprising since RJ supports end-effector alignment.
For cross-modes, e.g. FJ-RT, we see that H1 is accepted.

When comparing task space modes and joint space modes
we see that H2 has been accepted. An interesting point
to note for the time metric and delta length metric is that
H2 is accepted when comparing the RJ and FT modes.
This suggests that low-dimensional joint spaces in some
cases elicit worse performance than higher-dimensional task
spaces. We postulate that the RJ mode may fight intuition
resulting in the machine performing motions that do not
match the operators innate model of the system dynamics.

B. Habitual traits effect performance

During preliminary investigations, it was noted that par-
ticipants who were known to play video games regularly
seemed to give higher performance than those that did not.
In our final experimental design we decided to include this
comparison as part of our multivariate analysis. As described
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in Sec. IV-A, we asked each participant to indicate their
gaming regularity and made the distinction between gamers
and non-gamers. Using this we split our data set into two
subsets.

By the assumption that difficulty and performance are
linearly correlated we are able to compare across the various
modes of teleoperation using linear regression. In order
to compare the general performance for each trait we use
an estimate of throughput [25]. The throughput is another
indicator of overall performance. For the time metric, the
throughput Th is estimated by the reciprocal of a scalar b
where a, b are regression parameters such that a+ bId = T ;
so Th = 1/b. For the angular length and delta length,
throughput for each has been estimated in the same fashion.
Throughput estimates for our full data set and the gamer/non-
gamer subsets are shown in Fig. 6.

Regarding time performance, in general, excluding the re-
sult for the RJ mode, a similar pattern is seen when compared
to the results in Fig. 5; the RT mode has highest throughput
in general and task space modes have higher throughput than
joint space. For each mode of teleoperation we observe a
higher throughput for gamers than the non-gamers. We noted
that gamers generally seemed more familiar using two analog
joysticks at once as opposed to the non-gamers. We posit,
due to this ability, gamers were able to achieve faster times.

Regarding angular length performance, we see the general

trend in performance as discussed in the previous section.
Gamers have higher throughput than non-gamers for each
mode except the FT mode. It should be noted that the corre-
lation coefficients for these are generally low which renders
these results as potentially spurious. Drawing conclusions
from these results may be unreliable. The throughput results
for the delta length suffer from similar issues and so reliable
conclusions unfortunately cannot be made for these either.

C. Participants approve low-dimensional task spaces

The results of the questionnaire are shown in Tab. II. The
mean and standard deviation of the responses on questions
1-6 are shown above a paired-sampled t-test to determine
the responses’ statistical significance.

The results for question 1 show that participants felt the
FJ mode required the highest amount of mental effort. There
seems to be no statistical difference between the RJ and
FT modes. Participants indicated the RT required the least
amount of mental effort.

Overall, participants indicated the task space modes were
the easiest to point accurately. There is no statistical dif-
ference between FJ and RJ modes both having ratings
indicating that participants felt these were the most difficult
to accurately point. The results of the t-test indicate we reject
H3/H4 when comparing FJ, RJ, and FT modes. However,
whilst H3/H4 are accepted when comparing between RT and
the joint space modes, H3 is rejected when comparing the



TABLE III: Results of the questionnaire and paired-sampled
t-test (α = 0.05). Bold indicates the one-sided hypothesis
H3/H4 is accepted. *Note, since Q3 does not evaluate the
users preference (highlighted in bold) indicates the result of
a two-sided significance test.

Question FJ RJ FT RT
1 1.81 ± 1.33 3.29 ± 1.59 3.57 ± 1.57 5.05 ± 1.36
2 2.57 ± 1.66 2.90 ± 1.73 3.14 ± 1.39 2.95 ± 1.69
3* 4.62 ± 0.92 4.71 ± 1.06 3.81 ± 1.08 4.29 ± 1.15
4 3.29 ± 2.00 3.62 ± 1.88 4.67 ± 1.43 4.90 ± 1.37
5 3.10 ± 1.55 4.24 ± 1.26 4.86 ± 1.28 5.95 ± 1.07
Question RJ FT RT

1
FJ 0.0048 (3) 0.0009 (3) 5.2e-7 (3/4)
RJ - 0.5867 0.0003 (3/4)
FT - - 0.0011 (3)

2
FJ 0.5538 0.1435 0.0281 (3/4)
RJ - 0.6339 0.0104 (3/4)
FT - - 0.0727

3*
FJ 0.7245 0.0202 0.2596
RJ - 0.0068 0.1428
FT - - 0.1158

4
FJ 0.4907 0.0120 (3) 0.0044 (3/4)
RJ - 0.0100 (4) 0.0005 (3/4)
FT - - 0.3086

5
FJ 0.0244 (3) 0.0009 (3) 3.3e-6 (3/4)
RJ - 0.1198 1.0e-5 (3/4)
FT - - 0.0047 (3)

task space modes. The p-value for the RJ-FT comparison
is reasonably high and the FJ-FT comparison is higher than
the p-value for the FT-RT comparison. Comparing the results
of this question to the responses given for questions 6 and
7 (shown below), we suggest that, despite the computed p-
value, accepting H3 for the FT-RT comparison has potential
grounding as a conclusion.

During our experiments, maximum joint velocities were
reduced to a conservative range for safety. Question 3
attempted to ascertain whether the participants felt the robot
motion was too slow or indeed too fast. Mean values indicate
participants felt the operation speed was neither too fast nor
too slow. There are not significant differences between the
results apart from the FT mode compared to the joint space
modes.

The results for question 4 indicate the participants expe-
rienced the least finger fatigue for task space control modes
with no statistical difference between the two. The joint space
modes caused the most fatigue.

For question 5, participants rated the RT mode as the
easiest to use and the FJ the most difficult. There is no
significant difference between the FT and RJ modes.

We summarize common responses to questions 6 and 7.

Full joint mode:

6) “Wrist joints felt slower than base joint.”
“Joint mappings felt inverted and was easy to get into strange
configurations.”

7) “Hard to maintain constraints.”
“Only used two joints at a time.”

Reduced joint mode:

6) “Attention was directed to focus point, not robot, making operation
very difficult.”
“Often requiring to re-adjust.”

7) “Slightly better than full joint mode.”
“Easy for small D values.”

Full task mode:

6) “Unexpected motions at times.”
“Maintaining delta length was effectively impossible. Perhaps with
more practice this mode would be more efficient.”

7) “Felt it was possible to go faster.”
“Favored over both joint space control modes; intuitive, mostly easy
to use.”

Reduced task control mode:

6) “Some unexpected motions.”
“Sometimes felt too slow.”

7) “Very intuitive and easy to use.”

Upon observation, the responses generally correlate with
the answers to questions (1)-(5). The mappings for both
joint modes were identified as inverted by many of the
participants. The direction the joint moved under these modes
was matched with the joystick direction. For example, for
the FJ mode, pushing forward on the left joystick moved
joint 2 in the direction such that the end-effector and focus
point moved downwards. Participants felt the robot end-
effector and focus point should instead move upwards. An
issue for some participants for the task space modes is
that the robot would make unexpected motions in certain
configurations. The source of this issue is that at times a
target configuration was computed requiring a joint velocity
surpassing the maximum; an unfortunate consequence of
unconstrained optimization. Whilst these issues were, at
times, observed they did not render the task impossible to
complete.

VI. CONCLUSIONS

In this paper, we developed, implemented, and carried out
a study to determine which modes of teleoperation elicit
high task performance for unskilled human operators on a
task inspired by concrete spraying in industry. A Fitts’ law
paradigm was used to quantify difficulty and performance
of each mode. We have generalized Fitts’ law for two
additional performance metrics and an extensive data set
was collected from our experiments. The results and analysis
performed support several conclusions regarding control,
sub-task allocation between human and autonomy, and how
habitual traits can effect performance.

A reduced task space control mode has been shown
to outperform all three other modes of teleoperation with
regards to three performance metrics; time, angular length,
and delta length. The results of the questionnaire support this
conclusion as the RT mode was generally favored the highest.
The RT mode is the closest model that directly regulates
the performance parameters. Given that our hypotheses were
accepted this opens new avenues for shared control design.
Based on these results, we posit that there exists a positive
correlation between cognitive load and number of human
controllable dimensions for task space control modes. Both
joint space modes were not favored by participants in this
study with some noting that the reduced joint space control
felt like having the “worst of both worlds” with regards to
joint space and task space control.

This work assumed unskilled participants and so the long-
term learning effects on performance are not considered here.



In future work, we intend to study the effect on the partici-
pants learning curve in order to predict average learning time.
The ability of the participants classed as gamers to achieve
higher performance than non-gamers may be a consequence
of their familiarity with the game pad controller used as
the interface in our experiments. Future investigations will
take into account the effect the interface used by comparing
other interfaces such as a joystick, 6-DoF space mouse, and
a combination of a computer mouse and keyboard. Metrics
quantifying cognitive load will be explored and compared
against the number of controllable dimensions in-order to
investigate our proposition of a positive correlation between
the two quantities.

We designed our experiment using a flat plane to repre-
sent a spraying surface. This design choice was necessary
in our experimental setup which used a television screen.
Otherwise, a realistic setup would be very challenging (e.g.
displaying visuals on a curved surface). An alternative was
to conduct the experiments in a simulated environment,
however this would then provide the limitation that the user
could not choose their viewpoint as in the concrete spraying
example. Additionally, not allowing the user to adjust their
viewpoint would bring into question the applicability of the
angular and delta length metrics.

This study indicates the mode specification highly impacts
the design and performance of shared control systems. We
intend to use the knowledge acquired here to inform the
development of new formulations for shared autonomous and
collaborative methods that adapt dynamic motion constraints
on-the-fly using multi-modal sensory data.
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