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Abstract— Cloud computing has attracted significant attention 

due to the increasing demand for low-cost, high performance, 
and energy-efficient computing. In this large-scale, 
heterogeneous, multi-user environment of a cloud system, profit 
maximization for the cloud service provider (CSP) is a key 
objective. In this paper, the problem of global optimization of the 
cloud system operation (in the sense of lowering operation costs 
by maximizing energy efficiency, while satisfying user deadlines 
defined in the Service Level Agreements) is addressed from the 
perspective of the CSP.  

The modeling of the workload dictates viable approaches 
toward cloud operation optimization. Of the two current models: 
independent batch requests and task graphs with dependencies, 
we adopt the later. This fine-grained treatment of workloads 
provides many opportunities for energy and performance 
optimizations, thus enabling the CSP to meet user deadlines at 
lower operation costs. However, these optimizations require 
additional efforts in terms of resource provisioning, virtual 
machine placement, and task scheduling. Such issues are 
addressed in a holistic fashion in the proposed framework.  

In this cloud environment, users can construct their own 
services and applications based on the available set of virtual 
machines, but are relieved from the burden of resource 
provisioning and task scheduling. The CSP will then capitalize on 
the data parallelisms in each user workload, effectively manage 
the collective user requests, and apply custom optimizations to 
create a global energy cost and deadline-aware cloud platform. 

I. INTRODUCTION 

Cloud computing has been envisioned as the next-
generation computing paradigm for its advantages in on-
demand service, ubiquitous network access, location 
independent resource pooling, and transference of risk [1]. 
Cloud computing shifts the computation and storage resources 
from the network edges to a "Cloud" from which users are 
able to access them from anywhere in the world on demand [2, 
3, 4]. Cloud service providers (CSPs) that own large data 
centers and server clusters are incentivized by the profits of 
charging the end users for service access. Users are attracted 
by the opportunity of reducing or eliminating the costs 
associated with implementing these services "in-house".  

The virtualization technology [5], which is one important 
impetus of cloud computing, structures the server and data 
center resources (e.g., CPU, memory, etc.) into virtual 
platforms called virtual machines (VMs). VM is the basic 
deployment and management unit in cloud computing. Users 
rent VMs from the CSP to construct their own services and/or 
applications, whereas the CSP determines how to allocate the 
physical resources to host the VMs and where to place the 
VMs provided to various users. 

There are inherent conflicts between the objectives of the 
users and the CSP. The CSP is profit driven: it aims to 

minimize the operation cost, or equivalently, maximize the 
operation efficiency, while attracting as many customers as 
possible. It is well known that the bulk of the CSP operating 
cost stems from energy consumption [4, 6], both dynamic and 
static. Large servers consume up to 50% of their peak power 
when idle [7]. Hence energy consumption must be minimized 
through (i) selectively shutting down servers, and (ii) 
balancing the resource utilization for all active servers.  

The users, on the other hand, demand performance for their 
submitted workloads. To bridge the gap between the users and 
the CSP, the Service Level Agreement (SLA) is in place to 
document the mutually agreed service quality, including 
deadlines, privacy and security specifications. When multiple 
users coexist in the public cloud, the CSP has to satisfy their 
individual needs, while managing the vast, heterogeneous and 
elastic cloud resources to maximize energy efficiency. When 
developing a systematic approach to achieve this goal, we 
follow a set of principles that we coin as the "3A Guideline": 

 Accurate modeling of the cloud platform 
The cloud platform modeling should only consider the 

aspects of the physical environment that are crucial to the 
optimization, so as to reduce the computation complexity 
while retaining adequate model accuracy. 

 Appropriate modeling of the user workloads 
The modeling of the user workloads determines the 

optimization process invoked by the CSP. Currently there are 
two types of workload models in cloud computing that target 
different application sets, with one key differentiation factor: 
the inclusion of task dependencies [8]. First, at a coarse 
granularity, each user workload can be represented as an 
atomic task, which is independent of other tasks. The entire 
collection of tasks forms a task batch. Such an abstraction is 
suitable for certain hosting services. It also greatly lowers the 
CSP scheduling complexity, which can be attributed to the 
statistical estimations of workloads, such as Poisson arrival 
rates and response times [9, 10]. In the second model, each 
user workload is viewed at a finer granularity as a task graph 
with output dependencies. This formulation mainly targets 
large scientific and engineering applications [11, 12, 13]. The 
authors in [8] conveniently name the scheduling frameworks 
under the two workload models "batch mode scheduling" and 
"dependency mode scheduling", and provide a survey of the 
related work. 

 Acceptable complexity 
The CSP should ensure that the optimization process itself 

does not incur large runtime or power overheads that offset the 
actual benefits gained from the extensive optimization effort, 
especially for dependency mode scheduling. 



 

In this paper, we adopt the task graph workload model and 
propose a novel cloud resource provisioning, task scheduling 
and energy cost optimization framework for the CSP, which 
has the following properties:  

(1) Workloads are modeled as a collection of multiple task 
graphs with output dependencies. Other cloud system 
optimization frameworks that also operate on a similar 
task graph based workload model include: Nephele [12], 
Pegasus [14], VGrADS [15], Particle Swarm 
Optimization (PSO) based frameworks [16, 17], Surfer 
[13], DisNet [18], Dryad [11] and BC/Azure [19]. 

(2) The cloud platform is modeled as a weighted graph, 
which is capable of representing heterogeneous servers 
with varied resource capacities, power efficiencies and 
communication bottlenecks. 

(3) Users request VMs in a pay-as-you-go billing agreement 
(as in Amazon EC2 [20]), but are relieved from the 
burden of resource provisioning and task scheduling.  

(4) The CSP addresses deadline-aware resource provisioning, 
VM placement, task scheduling and energy cost 
optimization in a holistic fashion. 

(5) The scheduling algorithm itself is fully parallelizable to 
take advantage of the cloud resources. 

 
Fig. 1 Overview of the cloud environment 

The cloud environment is illustrated in Fig. 1. Task 
scheduling is performed by the CSP. The ultimate goal of CSP 
is to first selectively accept workload requests through the 
admission control policy, and then allocate appropriate 
amount of VMs for each workload request, place those VMs 
on physical servers, consolidate VMs when necessary, and 
finally schedule all the accepted requests to meet SLA 
deadlines, drop requests when necessary, while minimizing the 
global energy cost. It harnesses the task parallelism benefits 
from task graph based workloads, while also taking advantage 
of global optimizations that to the best of our knowledge, 
currently only exist in batch mode scheduling frameworks. 
Our algorithm operates offline, but it can be easily 
transformed into an adaptive online algorithm through 
recursive triggering upon the entrance of new users. 

II. RELATED WORK 

For the CSP, the first step in cloud operation optimization 
is resource provisioning, which is essentially allocating 
appropriate amount of computing resources (in the form of 
physical servers and VMs) to satisfy user demands. This 
problem can be formulated and solved differently according to 
how the cloud platform is modeled. In its simplest form, the 
cloud platform can be envisioned as disjoint, homogenous 
servers, while workloads are independent requests with given 
arrival rates. Under these assumptions, resource allocation can 
be solved through modified bin packing [6, 21] or custom 
workload prediction algorithms inspired by queuing theory [9, 
10, 22]. A more accurate modeling of the hardware would 
involve communication capacities. In [23] the authors adopt a 
graph model for a service enriched cloud environment, and 
solve the problem of server provisioning and message routing 
through MILP (mixed integer linear programming). Other 
variants are also introduced, such as bundled VM requests 
[24], VM performance variability [25, 26], multiple server 
sleep states [27], or price auctions [28]. 

Subsequent to resource provisioning is the mapping of 
applications or VMs to physical servers. One goal of this 
process is to sustain near-optimal utilization levels for each 
server in order to achieve high energy efficiency [6]. This 
problem is similar to the classical load balancing problem in 
internet services [7], which can be concurrently solved during 
resource allocation for independent workloads. For example, 
the bin packing algorithm in [6] not only minimizes the total 
number of servers deployed, but also prevents servers from 
being starved or overburdened. Reference [29] formulates the 
problems of VM provisioning and placement as a constraint 
satisfaction function. Other classical solutions, such as MCMF 
(minimum cost maximum flow) [30], can be used. When 
workloads are not known a priori, dynamic workload 
migration [31] or VM reallocation [32, 33] becomes very 
beneficial. The temporal and/or spatial variations in electricity 
pricing make load balancing in the cloud unique. Related 
approaches include MILP [34], primal-dual [35], bargaining 
games [36], and probabilistic predictions [37].  

Scheduling task graph based workloads with dependencies 
is very different from batch scheduling in cloud computing 
systems. At a high level, this problem loosely resembles chip 
multiprocessor (CMP) scheduling from the parallel/cluster 
computing community [38, 39, 40]. Unfortunately, techniques 
developed there are not directly applicable for cloud users, 
mainly due to the opaqueness of the public cloud [12]; they 
are not suitable for the CSP either, due to the co-existence of 
multiple competing users and more importantly the elasticity 
of the underlying cloud computing hardware. Improved 
scheduling frameworks such as Nephele [12] and Pegasus [13] 
fully embrace the dynamic nature of the computing resources 
in cloud systems, but perform optimizations from the 
perspective of individual users. With a lack of awareness of 
other competing users and the entire cloud resource map, they 
cannot capture global CSP management opportunities such as 
admission control, VM placement and consolidation, which 
are normally only considered in batch mode scheduling. Their 
results are evaluated based on completion times and resource 
utilizations for a single user, not global energy consumption. 
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III. USER WORKLOAD MODEL 

User Workload Requests 
We use directed acyclic graphs (DAGs) to model user 

workload requests. The entire workload is represented as a 
collection of N disjoint DAGs: {G1(V1, E1), G2(V2, E2), ..., 
GN(VN, EN)}. Each DAG Ga (1 ≤ a ≤ N) represents a workload 
request, and each vertex   

  (1 ≤ i ≤ |Va|) in Ga embodies a 
task. Without the loss of generality, we assume that each 
workload request is an application that belongs to a separate 
user. Hence in this paper, an application (e.g. the 100GB 
integer sort program in [12]) is equivalent to a user workload 
request. 

An edge from   
  to   

  in Ga denotes that   
  is dependent 

on the output of   
 . The weight of the edge     

  represents the 

amount of data that needs to be passed from the predecessor 
task (  

 ) to the successor task (  
 ). Fig. 2 provides an 

example illustration of a group of N applications. 

 
Fig. 2 Application Model 

Task Characteristics 
Tasks are run on virtual machines (VMs). VMs are 

categorized into K distinct types: {VM1, VM2, ..., VMK}, each 
VMg (1 ≤ g ≤ K) is coupled with a  two-tuple integer set that 

specifies the resource requirement for a VM of type g: {    
 

, 

    
 

}.     
 

 and     
 

 represent the required amount of CPU 

and memory resources to host a VMg, respectively [20]. 

Each task   
  is also coupled with a two-tuple integer set 

{  
 ,   

 }.   
  represents the type of VM on which   

  can only 
execute. This information can be provided externally as job 
descriptions, or deduced internally through collected statistics 
[12].   

  is the worst case execution time (WCET) of   
  when 

it is executed on a VM of type   
 . Both   

  and   
  are inputs 

to the optimization algorithm. We acknowledge the fact that 
WCET analysis is a common problem that affects the practical 
implementation of almost all scheduling algorithms. The team 
behind the Nephele project envisions a learning mechanism 
that enables the cloud operator to estimate execution times 
from past traces. 

Resource Requests 
Besides its workload request, a user must also request for 

computation resources from the CSP. Naturally, the CSP 
should charge users based on their resource requests according 
to a predetermined billing contract. Similar to [24], in our 
cloud system resource requests come in the form of bundles of 
VM types. Each user only specifies the types of VMs that are 
needed, but not the quantity of each requested VM type. 
Therefore the users need not be concerned with the details of 
resource allocation. We assumed that each user have set their 
respective resource requests according to their financial 
budgets. Note that currently, commercial cloud systems have 
not yet standardized the resource request format; our 

assumption is based on past research, and designed in a way so 
that the elasticity of cloud hardware can be fully exploited. 

VM requests are expressed in the following fashion: each 
application (Ga) is associated with a binary array U

a
 of K 

members (recall that K is the total number of VM types): {  
 , 

  
 , …,   

 }, where   
    (1 ≤ g ≤ K) indicates that VMg is 

requested by User a, and   
    otherwise. U

a
 must 

guarantee that no task is mapped to an unrequested VM type, 
that is if     

 , then it must follow that VMg ∈ {VM1, ..., 

VMK} and   
   .  

Each user application is then fully defined by its workload 
request (Ga) and VM type request (U

a
), but scheduling will not 

be carried out by the user. The reasoning behind this is 
threefold: (i) the cloud platform is opaque to the user [12], (ii) 
the users may not possess the necessary computing power, and 
(iii) the CSP can achieve higher efficiency with total 
scheduling freedom.  

Deadlines 
Although users can neither request more VMs of the same 

type, nor schedule their own workload, they can still gain 
control their workload performance by specifying deadlines in 
the SLA. The deadline for the workload request from User a 
(Ga) is denoted as          

 . In this paper all deadlines are 
considered as hard deadlines. 

Generally, when User a gives a more aggressive deadline, 
the CSP will allocate more VM resources for Ga, so that tasks 
in Ga can be executed in parallel and complete execution 
sooner. However, user workloads are subject to the admission 
control policy detailed at the end of the next chapter, so those 
applications with unsatisfiable tight deadlines will be rejected 
prior to scheduling or dropped during scheduling. 

IV. CLOUD PLATFORM MODEL 

The cloud consists of a set of M servers: {D1, D2, ..., DM}, 
and is modeled as a undirected graph of M vertices, each 
representing a server. The weight of each edge (Dx, Dy),     , 

represents the communication capacity between Dx and Dy.  

Several neighboring servers may form a server farm with 
local connections. Server farms can communicate with each 
other through high speed channels. The distance between 
servers and channel bandwidths will be reflected in the      

values. By default      = ∞, i.e. tasks executing on the same 

server do not incur any communication overhead. Also, we 
assume a path exists between any two servers, either through a 
direct link or through multi-hops. A multi-hop path will be 
abstracted as a connecting edge with a low      value. Fig. 3 

provides an example illustration of a cloud platform consisting 
of nine servers clustered into two server farms, one with six 
servers and the other with three servers. Note that local 
connections may also be heterogeneous, and for clarity not all 
server connections are shown. 

 
Fig. 3 Example server distribution 
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Virtual Machine Configurations 
During operation, each server Dx is associated with an 

integer array Q
x
 of K members: {  

 ,   
 , …,   

 }, where   
  

indicates that   
  number of type g VMs (VMg) are hosted on 

Dx. Q
x
 is dynamic since the it may change over time due to 

VM tear downs and reconfigurations initiated by the CSP. We 
denote the Q

x
 configuration at time t as Q

x
(t). Each server Dx 

contains finite amount of resources, namely     
  and     

  
amount of CPU and memory, respectively. Clearly, the VM 
configuration of Dx must abide to the total amount of resources 

at all times, i.e. ∀ t we have ∑   
 ( )    

  
        

  and 

∑   
 ( )    

  
        

 . 

Energy Consumption 
The power consumption of Dx at time t includes the static 

power consumption        
 ( )  and the dynamic power 

consumption         
 ( ) . Both are correlated with the 

utilization rate of Dx at time t:      ( ). We evaluate      ( ) 
by considering only the CPU requirements of the hosted VMs 
indicated in Q

x
(t), and do not differentiate between VMs that 

are running tasks and idle VMs, since background CPU 
activities are needed even during idle periods. 

     ( )  
∑   

 ( )      
  

   

    
      

 
  

       
 ( ) is constant when Utilx(t) > 0, 0 otherwise. The 

relationship between         
 ( )  and Utilx(t) is much more 

complex. Servers have optimal utilization level in terms of 
performance-per-watt [6], which we define as Optx for Dx. It is 
commonly accepted that for modern servers Optx ≈ 0.7, and 
the increase in power consumption beyond this operating point 
is more drastic than when Utilx(t) < Optx [4, 7]. Even for 
identical utilization levels, the energy efficiency of different 
servers may vary [41]. This is captured by the coefficients αx 
and βx, representing the power consumption increase of Dx 
when Utilx(t) < Optx and Utilx(t) ≥ Optx, respectively. 

        
 ( ) is then calculated as: 

{
     ( )    

        (     ( )      )
    

   
(     ( )      ) 

(     ( )      )

 
  

We would like to point out that the exact formulations of 

        
 ( )  do not undermine our analysis, as long as its 

increase is faster when Utilx(t) ≥ Optx than when Utilx(t) < Optx. 

Fig. 4 plots         
 ( ) for Dx when αx = 0.5, βx = 10 and Optx 

= 0.7 under different CPU utilization levels. 

 
Fig. 4. Dynamic power increase with respect to server utilization 

Suppose the upper bound of the maximum schedule length 
of all applications is Lmax. The total energy consumption 
(COSP) is the sum of the power consumption across all 
servers throughout the operation timeline: 

     ∑ ( ∑ (       
 ( )          

 ( ))

    

   

)

 

   

 
  

Since minimizing energy consumption is equivalent to 
minimizing energy cost, in this paper we will use the two 
phrases energy cost and energy consumption interchangeably. 

Admission Control 
The purpose of admission control is to identify and 

eliminate user workloads that are overly resource hungry. 
These users require extensive VM reservations that can 
potentially cause resource hogging, creating scheduling 
difficulties for other users and increasing global power 
consumption. In this paper we adopt a two pass admission 
control policy that sifts users based on their deadline 
specifications. 

Prior to scheduling, each application will be examined to 
see whether it can be scheduled under the specified deadline 
given infinite amount of resources. Unlike the core scheduling 
procedure, this "schedulability" analysis can be performed in 
linear time. If the deadline is violated, then the workload 
request will be rejected.  

During scheduling, users compete for VM resources under 
the regulation of the CSP, as a result some deadlines may not 
be met due to constrained resources. If the deadline violations 
persist after considerable optimization efforts, the associated 
workload requests will be dropped.  

V. CLOUD OPERATION 

In this section we identify the key processes during cloud 
operation and the tradeoffs in cloud operation optimization. 

Virtual Machine Provisioning and Placement 
The CSP decides the VM allocations and placement of 

tasks on these VMs. Although the CSP would prefer VMs to 
be time-shared by all users, we conservatively bind each VM 
to a specific user to promote user context preservation, 
security and privacy. As a result, any VM will be dedicated to 
a single user until the VM is torn down by the CSP.  

Temporal Scheduling of Tasks 
We define a ready task as a task with its dependencies 

satisfied. Suppose for a ready task   
  we have   

   . If   
  

were to be scheduled in a type g VM located in Dx, two 
conditions should be met: (i) the destination VM is available 
and is dedicated to User a, and (ii) all necessary output data 
transfers have been completed. Communication will only be 
needed when one or more predecessors of    

  completed 
execution on a server other than Dx. Suppose a predecessor 
task of   

 ,      ( )
 , resides on Dy (x ≠ y), then the output data 

transmission time is given by      ( )  
     ⁄ .  

Schedule Evaluation 
The quality of a schedule is determined by two factors: (i) 

the global energy cost (COSP) and (ii) the number of dropped 
requests due to deadline violations. A schedule may be energy 
efficient, but ultimately infeasible due to excessive deadline 
violations. When adjusting this schedule to satisfy deadlines 
and minimize the number of dropped requests, energy 
efficiency is often sacrificed. We elaborate with a simple 
example below. Assume the CSP is servicing two users, the 
workload information are presented in Table I. 
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Table I. Task graph and task latency 
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If the workloads are treated as atomic independent entities, 
then the obvious schedule is to place both applications on the 
most energy-efficient server, say Server 5 (D5), as long as the 
allocated VMs (two Type 1 VMs) will not push Util5(t) past 
Opt5. The result is shown in Fig. 5a, the length of the schedule 

is 19 time units. If          
           

     (indicated by 
the dotted red line), then this schedule violates deadlines for 
both users. For the sake of discussion, we calculate the energy 
cost of this schedule before both user requests are dropped: 

      (
     

 

    
            

 )      

To meet the deadline for both users, the CSP can exploit 
data parallelisms within G1 and G2, an opportunity that is not 
available to batch scheduling. There are several alternatives 
when doing so, leading to different solutions with different 
energy costs. A greedy approach would produce the schedule 
in Fig. 5b, where all VMs are hosted on D5. The reduced 
completion time for both users come from the migration of   

  
and   

  to newly allocated VMs, which may overburden D5. If 
     ( ) now surpassed      because of the two new VMs, 
then the energy cost of this schedule would be: 

      [        (
     

 

    
      )

 

           
 ]      

The schedule in Fig. 5b can potentially be further refined 
into the schedule in Fig. 5c. While straightforward in concept, 
there are actually a series of actions related to this refinement, 
namely the tear down of the Type 1 VM reserved for User 1 at 
t = 9, followed by a configuration of a Type 1 VM reserved for 
User 2. We do not delve into the technicalities regarding this 
process, but accept its overhead. The energy cost of this 
schedule in Fig. 5c is: 

      [        (
     

 

    
      )

 

           
 ]      

Another solution is to explore other servers, say Server 6 
(D6). The CSP can offset an entire user to D6, so that neither 
D5 nor D6 will be overburdened. The schedule in Fig. 5d chose 
User 2 to move to D6. D6 is not necessarily in the same server 
farm as D5. The energy cost of this schedule is: 

      [(
     

 

    
            

 )  (
     

 

    
            

 )]

     

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Example schedules 

In Fig. 6 we illustrate how server energy efficiency can 

affect scheduling decisions. Suppose     
  = 1,     

  =     
  = 

4,    =    = 0.5,    =    = 10,      =      = 0.7, and the 

value of        
  and        

  is varied. For simplicity, we 

assume         =        
  =        

 . COSPa is generally the best 
schedule if only energy consumption is concerned. COSPb and 
COSPd are all greater than COSPa, and the comparison 
between these two values depends on the Pstatic value. It also 
depends on other parameters such as β5/β6, which is not shown 
here. If the packing in Fig. 5c can be realized (which is a rare 
occasion when multiple users with large task graphs are 
considered), then COSPc is very promising since it satisfies all 
deadlines with an energy cost even lower than COSPa. 

 
Fig. 6. The COSP evaluation 
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The key takeaways from this case study are: 

 Accelerating application execution through additional VM 
allocations and parallel execution will often incur energy 
cost overheads for the CSP.  

 Many possible schedules exist when performing VM 
allocations and task migrations, among which a schedule 
with no deadline violations and a low energy cost is 
preferred. The best allocation and migration scheme 
depends on the characteristics of the cloud platform and 
the workloads. The scheduling framework described in 
the next section will undertake those challenges. 

VI. THE GMaP FRAMEWORK 

In this section we illustrate our "Guided Migrate and Pack" 
(GMaP) scheduling and optimization framework for the CSP 
phase by phase. GMaP is based on beam search in order for it 
to be fully parallelizable, which is crucial when the CSP is 
utilizing the cloud resources at its disposal to run GMaP.   

 
Fig. 7 Abstraction of the GMaP algorithm 

Fig. 7 provides an abstraction of the GMaP algorithm. The 
basic idea of GMaP is to start with schedules that are deadline 
oblivious but energy efficient. It will then co-optimize latency 
for the deadline violating applications and the global energy 
cost. First, seed schedules for each application are generated in 
parallel, and assembled into the Preliminary Schedule Set 
(PSS). Then treating each preliminary schedule in the PSS as 
root, the main body of GMaP is executed in parallel, 
eventually producing multiple result schedules from which the 
best schedule will be promoted to be the solution. At first, 
GMaP will be energy aware but deadline oriented. Once all 
deadlines have been met, then GMaP will only focus on the 
energy cost, unless new deadline violations appear.  

A valid argument would be that the scheduling process 
itself may become overly power hungry or time consuming. 
Fortunately, the resource requirement and run time of the 
GMaP can be adjusted based on the power portfolio of the 
target cloud environment in two ways: (i) the number of roots 
can be sized to any natural number and (ii) each search tree 
size can be individually tuned. 

Phase 1: Seed Schedule Generation 
The seed schedule for User a is the schedule for Ga based 

on U
a
, while assuming only one VM is instantiated for each 

requested VM type. Also, all VMs are mapped to a single 
imaginary server. The seed schedules can be derived in 
parallel for all applications through any scheduling algorithm 
[38]. In this paper we used a modified greedy algorithm. 

Phase 2: Application Characterization 
In this phase, each application is affiliated with different 

characterizing parameters to aid the following phase. The first 
parameter is the seed schedule length for Ga, given as      

 . 
The second parameter is the deadline slack SLACKa = 
         
  -      

 . Applications with larger slack can better 
cope with energy cost minimization maneuvers by the CSP. 

Finally, PARa, is calculated as      
  subtracted by the length 

of a schedule for Ga under the assumption of infinite VM 
resources. Three sorted lists of applications based on these 
parameters in ascending order will be produced: Lseed[↑], 
PAR[↑] and SLACK[↑]. 

Phase 3: Preliminary Schedule Generation 
In this phase, we generate the PSS by overlaying the seed 

schedules onto the servers. Fig. 5a is an example of a 
preliminary schedule. Below is the high level pseudo code. 

Procedure P3: Preliminary Schedule Set (PSS) Generation 

D[↑] = sort_servers(α+β); /*Sort servers by energy efficiency*/ 
list_total = { n1{Lseed[↑]}, n2{PAR[↑]}, n3{SLACK[↑]}, n4{shuffle[]} }; 
/*shuffle[] contains a shuffled list of applications*/ 
j = 0; 
while (list_total ≠ Ø) 
   list = pop(list_total) ; 
   clear(pre_schedule(j)); 
   while (list ≠ Ø) 
      a = pop(list); 
      for (i = 0; i < |D[↑]|; i++) 

         if (∑     
 

                     
 ∑    

    ( )      
    

 && 

              ∑     
 

                     
 ∑    

    ( )      
    

) 

            if (∑     
 

                     
 ∑    

    ( )      
    

    ) 

               if (match_probability(p1)) 
                  map(       ); 
                  break; 
   output(prelminary_schedule(j));  
   j++; 

Phase 4: Optimization 
The beam search based optimization process is the main 

body of GMaP. In concept, this phase will transfer suitable 
tasks from one VM to another, in attempt to satisfy deadlines 
or maximize energy efficiency. In most cases, these two 
objectives are contradictory. 

GMaP is "guided" in the sense that exploration is steered 
by empirical observations. GMaP also borrows concepts from 
evolutionary algorithms to break away from local optima. 
Each iterative optimization pass goes through two steps: 
migrate and pack. The pseudo code is presented below. 

Procedure P4: Optimization 

for (all preliminary schedules in the PSS), do in parallel 
   S = load(preliminary_schedule); 
   initialize(Explore_Depth); 
   if (evaluate(energy) < saved_ref_energy) 
      saved_ref_energy = evaluate(energy); 
      Explore_Depth = Explore_Depth * Depth_Scale; 
   for (i = 0; i < Explore_Depth; i++) 
      if (check_deadline_violations() == 1) 
         A = pop_dealine_violated_application(); 
      else 
         A = choose_application({G1, G2, ..., Gx}); 
      T = choose_task(A, PAR[↑], SLACK[↑], Lseed[↑]); 
      if (match_probability(p2)) 
         D = pop(mapped_servers(A)); 
      else 
         D = choose_sever(D[↑], mapped_server_farm(A)); 
      S = migrate(A: T → D); S = adjust(S); 
      evaluate(energy, length); 
      if (match_probability(p3, energy, length)); 
         accept_move(A: T → D); 
      else 
         reject_move(A: T → D); 
         restore_schedule(); 
   pack(S); 
   evaluate(energy, length); 
   if (energy < energy_evaluate(solution_schedule)) 
      update(solution_schedule) 

... ... ... 

Preliminary Schedule 

Result Schedule 

Intermediate Schedule 

(Deadline Violating) 

Intermediate Schedule 

(Deadline Met) 

... ... ... ... 
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The function migrate(), as the name suggests, will migrate 
a single task   

  from its current type g VM (source VM) in Dx 
(source server) to another VM of the same type (destination 
VM) in Dy (destination server). The source and destination 
servers may not be the same, but in most cases they are within 
the same server farm to avoid high communication latencies.  

Each migration attempt makes three important decisions 
that will collectively dictate the solution quality, namely: 

 Which user should be selected for migration? 

 Which task should be selected for migration? 

 Which server should the task migrate to? 
The CSP should select tasks that bottleneck application 
latencies, and move them to servers that will not incur high 
energy overheads, while considering the repercussions to other 
applications. The decision process will typically cross check 
Lseed[↑], PAR[↑] and SLACK[↑] to select the application that 
has a negative SLACK value and high Lseed and PAR values for 
migration, because this application has violated the deadline 
resulting in a negative slack, but since it has a high PAR value, 
there is great potential for length reduction through parallel 
execution. The destination server will be selected based on the 
utilization levels and task dependencies. But the server on 
which the predecessor successor tasks reside will be selected 
with a high probability since the current priority is to satisfy 
the deadline, and communications across servers should be 
minimized. When the deadlines have been met for most 
applications, GMaP will be more flexible towards 
manipulating applications with high SLACK values to 
minimize energy consumption, such as moving tasks to less 
crowded servers. After migration, the schedule in the source 
server may need to be adjusted, as well as the schedule in 
servers where tasks that are direct or indirect successors to the 
migrated task reside. 

Migration may overprovision VMs, which is why the 
packing step ensues to compress the schedule. Packing is 
similar to VM consolidation [26].  

VII. EXPERIMENTAL RESULTS 

We demonstrate the effectiveness of the GMaP via Monte 
Carlo simulations for randomly generated large scale task 
graphs.  

Experiments on Large Scale Workloads 
In this subsection we demonstrate the effectiveness of 

GMaP through experiments on large scale cloud platforms 
with large scale workload inputs. For each experiment, the 
inputs will be generated differently and the cloud platform 
scaled accordingly. Table II provides the upper and lower 
bounds of some key parameters. 

Table II. Modeling parameters summary 

Cloud Platform 
Parameters 

User Workload 
Characteristics 

Algorithm Search 
Space 

Servers 
Server 
Farms 

Total 
Users 

Tasks 
per User 

Task 
Latency 

Roots in 
the PSS 

Nodes 
per Tree 

10 - 30 2 - 6 30 - 100 20 - 100 1 - 10 50 5000 

We first compare the final solution schedule with the "Best 
Deadline Oblivious Preliminary Schedule" (BDOPS), i.e. the 
best achievable schedule when regarding workload requests as 
atomic entities and ignoring all deadlines. BDOPS is ideal for 
energy efficiency but contain many deadline violations. We 

purposely draft the SLA so that 30% - 80% of the users in 
BDOPS have their respective deadlines violated. BDOPS is 
the reference for energy cost overhead calculations.  

Second, we compare the solution with the baseline, which 
is derived from GMaP minus the energy efficiency 
optimizations. In other words, the baseline schedules are 
energy cost oblivious. 

Table III. Results for large scale and very large scale workload inputs 

In
d

e
x
 

Number of Users  
Energy Cost 
Improvement 

Allocated 
VMs in 
BDOPS 

Allocated 
VMs in 
Solution Total Rejected BDOPS Baseline 
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0
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30 0 0.77% 13.04% 35 72 

2 30 0 -0.02% 36.76% 34 94 

3 30 0 -12.41% 29.35% 33 118 

4 30 0 -1.25% 27.49% 32 94 

5 35 6 -0.47% 27.70% 30 112 

6 35 6 4.34% 28.84% 30 116 

7 35 5 -29.89% 33.35% 32 121 

8 35 0 -10.17% 14.54% 35 127 

9 40 0 -34.02% 27.21% 40 147 

10 40 0 -18.93% 20.21% 40 134 

11 40 0 -28.04% 17.29% 40 163 

12 45 2 -7.98% 18.83% 43 126 

13 45 2 -4.73% 17.08% 43 195 

14 50 7 -54.85% 18.80% 43 222 

Average (Large) -14.12% 23.61% 36.4 131.5 

15 
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6
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 1

0
0
 U

se
r
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 60 0 -9.09% 6.70% 60 176 

16 65 0 -27.30% 16.34% 65 260 

17 75 1 -25.55% 19.44% 74 227 

18 75 3 -2.53% 16.66% 72 129 

19 75 0 -35.88% 13.36% 75 270 

20 85 0 -111.19% 8.67% 85 467 

21 85 0 -94.04% 8.14% 85 310 

22 85 0 -22.42% 14.52% 85 317 

23 85 0 -14.91% 8.88% 85 318 

24 95 0 -110.47% 0.12% 95 496 

25 100 2 -58.25% 6.64% 98 296 

26 100 2 -45.72% 4.24% 98 309 

27 100 5 -74.06% 10.08% 95 302 

28 100 0 -44.11% 8.50% 100 258 

Average (Very Large) -49.72% 9.35% 83.7 295.4 

Results are shown in Table III. For large scale inputs (30 - 
50 users), energy cost improvement compared to the BDOPS 
is on average -14.12%, in other words, the energy cost 
overhead is on average 14.12%. This overhead is inevitable, 
since it is caused by the additional VM allocations used to 
accelerate deadline violating applications. The CSP allocates 
appropriate amount of VMs to each user based on their 
demands, Fig. 8 illustrates the VM distribution for Experiment 
6. Compared to the baseline the energy cost improvement is 
on average 23.61%, which is a very promising result. 

To achieve the same level of solution quality for very large 
scale inputs (60 - 100 users), the algorithm search space 
should be expanded to match the increase in input size. 
However for the sake of consistency, we fixed the size of the 
search space as indicated in Table II. Consequently, there is 
considerable increase in energy cost overheads to 49.72% on 
average. The average energy costs improvements with respect 
to the baseline decreased to 9.35%. From these statistics we 
can infer that the search space of 50 roots and 5000 nodes per 
search tree is sufficient for 30 - 50 user workloads, but lacking 
for 60 - 100 user workloads. In the next subsection we will 
expand the search space and rerun the experiments for very 
large scale workload inputs. Nevertheless, GMaP always 



 

terminates with a solution schedule with no deadline violations 
and positive energy cost improvements over the baseline. 

 
Fig. 8. VM allocations for each user from Experiment 6 

Now we show how GMaP balances workloads among 
servers while allocating additional VMs. Fig. 9 plots the Util(t) 
for all ten servers observed during Experiment 6 in Table III. 
We sorted the servers according to their energy efficiency 
ratings, with Server 0 being the most energy efficient. We can 
see fundamental differences in scheduling decisions between 
the BDOPS and the solution schedule. For the BDOPS, all 
applications are placed in the most energy efficiency servers, 
namely Servers 0 - 4, leaving Servers 5 - 9 unused. Although it 
achieves near optimal energy efficiency, out of the 29 
accepted workload requests, 12 violated their deadlines. 

For the solution schedule, Servers 0 - 4 saw a utilization 
percentage increase, which is a result of GMaP allocating 
additional VMs. Servers 5 - 9 which are less energy-efficient 
have been brought online to host the new VMs. Their Util(t) 
values appears to be high at t = 0, but these values only 
remained high for a short period of time before they dropped.  

  

  

  

  

  
Fig. 9. Server utilization rates for Experiment 6 

Impact of Search Space Analysis 
Similar to other evolutionary algorithms, for GMaP longer 

run times will expand the algorithm search space and produce 
better solutions. But a larger search space needs to be 
supported by increased computation time, which will lead to 
increased energy consumption and time of running GMaP. We 
provide some insights on how to balance the benefits gained 
from deploying GMaP versus the cost of GMaP itself, by 
evaluating the improvement in solution quality with respect to 
expanded algorithm search space.  

First we rerun Experiment 15 - 18 from Table III with an 
expanded search space, namely 50 roots in the PSS and 10

4
 

nodes per search tree, results are presented in Table IV. 

Table IV. Results for expanded search space 
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Number of Users  
Energy Cost 
Improvement 

Allocated 
VMs in 
BDOPS 

Allocated 
VMs in 
Solution Total Rejected BDOPS Baseline 

15 
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 60 0 -7.78% 8.15% 60 211 

16 65 0 -18.94% 20.23% 65 273 

17 75 1 -27.78% 19.92% 74 292 

18 75 3 -2.43% 12.14% 72 171 

19 75 0 -21.14% 22.69% 75 281 

20 85 0 -66.33% 29.05% 85 572 

21 85 0 -61.50% 21.24% 85 347 

22 85 0 -22.42% 14.52% 85 386 

23 85 0 -5.71% 14.24% 85 373 

24 95 0 -65.29% 17.20% 95 634 

25 100 2 -43.39% 16.90% 98 364 

26 100 2 -35.99% 9.75% 98 405 

27 100 5 -52.16% 14.78% 95 309 

28 100 0 -81.38% 15.06% 100 459 

Average (Very Large) -36.59% 16.85% 83.7 362.6 

As expected, when the search space is doubled, GMaP 
produced better results than those presented in Table III, 
almost doubling the average energy cost improvement from 
9.35% in Table III to 16.85% in Table IV. 

Next we examine a detailed case study with 20 accepted 
users on a fixed cloud platform. There will always be 50 roots 
in the PSS, but we gradually grow the search tree sizes 
exponentially from 10

2
 nodes to 10

5
 nodes. Results are shown 

in Table V. 
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Table V. Impact of algorithm runtime analysis 

Index 
Search Tree Size 
(Number of Nodes) 

Energy Cost 
Improvement 

Allocated 
VMs in 
BDOPS 

Allocated 
VMs in 
Solution BDOPS Baseline 

29 
a 

102  
-17.77% -1.38% 20 38 

b -17.53% -0.84% 20 35 

30 
a 

103  
-4.91% 13.20% 20 67 

b -0.03% 7.46% 20 53 

31 
a 

104  
12.30% 23.79% 20 91 

b 14.30% 25.35% 20 96 

32 
a 

105 
16.34% 23.82% 20 93 

b 16.78% 28.94% 20 99 

It is clear that as the search tree grows, GMaP terminates 
with superior solutions. More importantly, GMaP suffers from 
the common phenomena of diminished returns. The right 
sizing of the search trees and the PSS is highly dependent on 
the actual operating context. Currently, GMaP can only offer 
the flexibility in molding the search space. In the future we 
intend to develop an adaptive search space sizing procedure. 

Impact of Deadline Aggressiveness Analysis 
The aggressiveness of deadlines in the SLA has impact on 

the solution qualities. In this subsection, we investigate a 
single experiment with a fixed cloud platform of 15 servers in 
two server farms and a fixed set of 40 workload requests. The 
deadline of each application is a fraction of the length of its 
seed schedule:          

         
  ∀ . If μ ≥ 1, then the 

BDOPS would satisfy all deadlines, and immediately becomes 
the baseline schedule. When μ < 1 GMaP is needed to 
eliminate deadline violations. Since μ controls the deadline for 
all applications, a small decrease in μ will greatly increase the 
overall deadline aggressiveness. If μ is too small, then many 
requests will be dropped. To be consistent in our analysis, in 
Table VI we only focus on cases with no dropped requests. 

Table VI. Impact of deadline aggressiveness analysis 

Index 
μ  
(Deadline 
Aggressiveness) 

Energy Cost 
Improvement 

Allocated 
VMs in 
BDOPS 

Allocated 
VMs in 
Solution BDOPS Baseline 

33 

a 1.00 20.32% 20.32% 40 54 

b 0.95 -8.94% 20.13% 40 177 

c 0.90 -20.55% 37.82% 40 192 

d 0.85 -20.55% 37.82% 40 192 

e 0.80 -46.50% 38.24% 40 205 

f 0.75 -29.19% 39.27% 40 202 

g 0.70 -53.27% 37.08% 40 192 

When μ = 1, we can see that GMaP can devote the entire 
optimization process to energy cost minimizations, achieving 
20.32% improvement over the BDOPS. When μ drops below 
1, GMaP becomes constrained by the hard requirement of 
deadline satisfactions, hence the solution schedules no longer 
outperform the BDOPS. As the value of μ decreases, the 
baseline schedule will perform many VM allocations and task 
migrations that may be detrimental to the energy cost. GMaP 
successfully recovers near 40% of the loss in energy costs. 

VIII. CONCLUSION 
In this paper, we consider the problem of global operation 

optimization in cloud computing from the perspective of the 
cloud service provider (CSP). Our goal is to provide the CSP 
with a versatile scheduling and optimization framework that 
aims to simultaneously maximize energy efficiency and meet 
all user deadlines, which is also powerful enough to handle 
multi-user large scale workloads in large scale cloud platforms. 

Two types of workload models have been adopted in cloud 
computing systems: independent batch requests and task 
graphs with dependencies. In this paper we model the 
workloads from multiple users as a collection of disjoint task 
graphs. As for the cloud platform model, it is fully capable of 
reflecting server resource capacity and energy efficiency 
heterogeneities. Server communication bottlenecks are also 
taken into account. This fine-grained treatment of the 
hardware resources and user workloads provides opportunities 
for deadline-oriented application acceleration via parallel 
execution and global energy cost minimization, but also 
requires additional effort in admission control, resource 
provisioning, virtual machine placement and task scheduling. 
In this paper we propose "Guided Migrate and Pack" (GMaP) 
as a unified scheduling and optimization framework for the 
CSP that addresses these issues in a holistic fashion. GMaP is 
also flexible in search space sizing and algorithm run time 
control. Experimental results show that when GMaP is 
deployed for the CSP, global energy consumption costs 
improves by over 23% when servicing 30 - 50 users, and over 
16% when servicing 60 - 100 users. 
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