
An Energy and Deadline Aware Resource Provisioning,
Scheduling and Optimization Framework for Cloud Systems

Yue Gao Yanzhi Wang Sandeep K. Gupta Massoud Pedram
Ming Hsieh Department of Electrical Engineering

University of Southern California

Los Angeles, USA

yuegao@usc.edu, yanzhiwa@usc.edu, sandeep@usc.edu, pedram@usc.edu

Abstract— Cloud computing has attracted significant attention

due to the increasing demand for low-cost, high performance,
and energy-efficient computing. In this large-scale,
heterogeneous, multi-user environment of a cloud system, profit
maximization for the cloud service provider (CSP) is a key
objective. In this paper, the problem of global optimization of the
cloud system operation (in the sense of lowering operation costs
by maximizing energy efficiency, while satisfying user deadlines
defined in the Service Level Agreements) is addressed from the
perspective of the CSP.

The modeling of the workload dictates viable approaches
toward cloud operation optimization. Of the two current models:
independent batch requests and task graphs with dependencies,
we adopt the later. This fine-grained treatment of workloads
provides many opportunities for energy and performance
optimizations, thus enabling the CSP to meet user deadlines at
lower operation costs. However, these optimizations require
additional efforts in terms of resource provisioning, virtual
machine placement, and task scheduling. Such issues are
addressed in a holistic fashion in the proposed framework.

In this cloud environment, users can construct their own
services and applications based on the available set of virtual
machines, but are relieved from the burden of resource
provisioning and task scheduling. The CSP will then capitalize on
the data parallelisms in each user workload, effectively manage
the collective user requests, and apply custom optimizations to
create a global energy cost and deadline-aware cloud platform.

I. INTRODUCTION

Cloud computing has been envisioned as the next-
generation computing paradigm for its advantages in on-
demand service, ubiquitous network access, location
independent resource pooling, and transference of risk [1].
Cloud computing shifts the computation and storage resources
from the network edges to a "Cloud" from which users are
able to access them from anywhere in the world on demand [2,
3, 4]. Cloud service providers (CSPs) that own large data
centers and server clusters are incentivized by the profits of
charging the end users for service access. Users are attracted
by the opportunity of reducing or eliminating the costs
associated with implementing these services "in-house".

The virtualization technology [5], which is one important
impetus of cloud computing, structures the server and data
center resources (e.g., CPU, memory, etc.) into virtual
platforms called virtual machines (VMs). VM is the basic
deployment and management unit in cloud computing. Users
rent VMs from the CSP to construct their own services and/or
applications, whereas the CSP determines how to allocate the
physical resources to host the VMs and where to place the
VMs provided to various users.

There are inherent conflicts between the objectives of the
users and the CSP. The CSP is profit driven: it aims to

minimize the operation cost, or equivalently, maximize the
operation efficiency, while attracting as many customers as
possible. It is well known that the bulk of the CSP operating
cost stems from energy consumption [4, 6], both dynamic and
static. Large servers consume up to 50% of their peak power
when idle [7]. Hence energy consumption must be minimized
through (i) selectively shutting down servers, and (ii)
balancing the resource utilization for all active servers.

The users, on the other hand, demand performance for their
submitted workloads. To bridge the gap between the users and
the CSP, the Service Level Agreement (SLA) is in place to
document the mutually agreed service quality, including
deadlines, privacy and security specifications. When multiple
users coexist in the public cloud, the CSP has to satisfy their
individual needs, while managing the vast, heterogeneous and
elastic cloud resources to maximize energy efficiency. When
developing a systematic approach to achieve this goal, we
follow a set of principles that we coin as the "3A Guideline":

 Accurate modeling of the cloud platform
The cloud platform modeling should only consider the

aspects of the physical environment that are crucial to the
optimization, so as to reduce the computation complexity
while retaining adequate model accuracy.

 Appropriate modeling of the user workloads
The modeling of the user workloads determines the

optimization process invoked by the CSP. Currently there are
two types of workload models in cloud computing that target
different application sets, with one key differentiation factor:
the inclusion of task dependencies [8]. First, at a coarse
granularity, each user workload can be represented as an
atomic task, which is independent of other tasks. The entire
collection of tasks forms a task batch. Such an abstraction is
suitable for certain hosting services. It also greatly lowers the
CSP scheduling complexity, which can be attributed to the
statistical estimations of workloads, such as Poisson arrival
rates and response times [9, 10]. In the second model, each
user workload is viewed at a finer granularity as a task graph
with output dependencies. This formulation mainly targets
large scientific and engineering applications [11, 12, 13]. The
authors in [8] conveniently name the scheduling frameworks
under the two workload models "batch mode scheduling" and
"dependency mode scheduling", and provide a survey of the
related work.

 Acceptable complexity
The CSP should ensure that the optimization process itself

does not incur large runtime or power overheads that offset the
actual benefits gained from the extensive optimization effort,
especially for dependency mode scheduling.

In this paper, we adopt the task graph workload model and
propose a novel cloud resource provisioning, task scheduling
and energy cost optimization framework for the CSP, which
has the following properties:

(1) Workloads are modeled as a collection of multiple task
graphs with output dependencies. Other cloud system
optimization frameworks that also operate on a similar
task graph based workload model include: Nephele [12],
Pegasus [14], VGrADS [15], Particle Swarm
Optimization (PSO) based frameworks [16, 17], Surfer
[13], DisNet [18], Dryad [11] and BC/Azure [19].

(2) The cloud platform is modeled as a weighted graph,
which is capable of representing heterogeneous servers
with varied resource capacities, power efficiencies and
communication bottlenecks.

(3) Users request VMs in a pay-as-you-go billing agreement
(as in Amazon EC2 [20]), but are relieved from the
burden of resource provisioning and task scheduling.

(4) The CSP addresses deadline-aware resource provisioning,
VM placement, task scheduling and energy cost
optimization in a holistic fashion.

(5) The scheduling algorithm itself is fully parallelizable to
take advantage of the cloud resources.

Fig. 1 Overview of the cloud environment

The cloud environment is illustrated in Fig. 1. Task
scheduling is performed by the CSP. The ultimate goal of CSP
is to first selectively accept workload requests through the
admission control policy, and then allocate appropriate
amount of VMs for each workload request, place those VMs
on physical servers, consolidate VMs when necessary, and
finally schedule all the accepted requests to meet SLA
deadlines, drop requests when necessary, while minimizing the
global energy cost. It harnesses the task parallelism benefits
from task graph based workloads, while also taking advantage
of global optimizations that to the best of our knowledge,
currently only exist in batch mode scheduling frameworks.
Our algorithm operates offline, but it can be easily
transformed into an adaptive online algorithm through
recursive triggering upon the entrance of new users.

II. RELATED WORK

For the CSP, the first step in cloud operation optimization
is resource provisioning, which is essentially allocating
appropriate amount of computing resources (in the form of
physical servers and VMs) to satisfy user demands. This
problem can be formulated and solved differently according to
how the cloud platform is modeled. In its simplest form, the
cloud platform can be envisioned as disjoint, homogenous
servers, while workloads are independent requests with given
arrival rates. Under these assumptions, resource allocation can
be solved through modified bin packing [6, 21] or custom
workload prediction algorithms inspired by queuing theory [9,
10, 22]. A more accurate modeling of the hardware would
involve communication capacities. In [23] the authors adopt a
graph model for a service enriched cloud environment, and
solve the problem of server provisioning and message routing
through MILP (mixed integer linear programming). Other
variants are also introduced, such as bundled VM requests
[24], VM performance variability [25, 26], multiple server
sleep states [27], or price auctions [28].

Subsequent to resource provisioning is the mapping of
applications or VMs to physical servers. One goal of this
process is to sustain near-optimal utilization levels for each
server in order to achieve high energy efficiency [6]. This
problem is similar to the classical load balancing problem in
internet services [7], which can be concurrently solved during
resource allocation for independent workloads. For example,
the bin packing algorithm in [6] not only minimizes the total
number of servers deployed, but also prevents servers from
being starved or overburdened. Reference [29] formulates the
problems of VM provisioning and placement as a constraint
satisfaction function. Other classical solutions, such as MCMF
(minimum cost maximum flow) [30], can be used. When
workloads are not known a priori, dynamic workload
migration [31] or VM reallocation [32, 33] becomes very
beneficial. The temporal and/or spatial variations in electricity
pricing make load balancing in the cloud unique. Related
approaches include MILP [34], primal-dual [35], bargaining
games [36], and probabilistic predictions [37].

Scheduling task graph based workloads with dependencies
is very different from batch scheduling in cloud computing
systems. At a high level, this problem loosely resembles chip
multiprocessor (CMP) scheduling from the parallel/cluster
computing community [38, 39, 40]. Unfortunately, techniques
developed there are not directly applicable for cloud users,
mainly due to the opaqueness of the public cloud [12]; they
are not suitable for the CSP either, due to the co-existence of
multiple competing users and more importantly the elasticity
of the underlying cloud computing hardware. Improved
scheduling frameworks such as Nephele [12] and Pegasus [13]
fully embrace the dynamic nature of the computing resources
in cloud systems, but perform optimizations from the
perspective of individual users. With a lack of awareness of
other competing users and the entire cloud resource map, they
cannot capture global CSP management opportunities such as
admission control, VM placement and consolidation, which
are normally only considered in batch mode scheduling. Their
results are evaluated based on completion times and resource
utilizations for a single user, not global energy consumption.

Users

…

Admission Control Policy

Workload
Modeling

Collection of task graphs

…

Rejected
Requests

Scheduling Algorithm
Dropped
Requests

Server Farm 1

Server Farm 2

Server Farm 3

Resource Provisioning
VM Type Requests

III. USER WORKLOAD MODEL

User Workload Requests
We use directed acyclic graphs (DAGs) to model user

workload requests. The entire workload is represented as a
collection of N disjoint DAGs: {G1(V1, E1), G2(V2, E2), ...,
GN(VN, EN)}. Each DAG Ga (1 ≤ a ≤ N) represents a workload
request, and each vertex

 (1 ≤ i ≤ |Va|) in Ga embodies a
task. Without the loss of generality, we assume that each
workload request is an application that belongs to a separate
user. Hence in this paper, an application (e.g. the 100GB
integer sort program in [12]) is equivalent to a user workload
request.

An edge from
 to

 in Ga denotes that
 is dependent

on the output of
 . The weight of the edge

 represents the

amount of data that needs to be passed from the predecessor
task (

) to the successor task (
). Fig. 2 provides an

example illustration of a group of N applications.

Fig. 2 Application Model

Task Characteristics
Tasks are run on virtual machines (VMs). VMs are

categorized into K distinct types: {VM1, VM2, ..., VMK}, each
VMg (1 ≤ g ≤ K) is coupled with a two-tuple integer set that

specifies the resource requirement for a VM of type g: {

,

}.

 and

 represent the required amount of CPU

and memory resources to host a VMg, respectively [20].

Each task
 is also coupled with a two-tuple integer set

{
 ,

 }.
 represents the type of VM on which

 can only
execute. This information can be provided externally as job
descriptions, or deduced internally through collected statistics
[12].

 is the worst case execution time (WCET) of
 when

it is executed on a VM of type
 . Both

 and
 are inputs

to the optimization algorithm. We acknowledge the fact that
WCET analysis is a common problem that affects the practical
implementation of almost all scheduling algorithms. The team
behind the Nephele project envisions a learning mechanism
that enables the cloud operator to estimate execution times
from past traces.

Resource Requests
Besides its workload request, a user must also request for

computation resources from the CSP. Naturally, the CSP
should charge users based on their resource requests according
to a predetermined billing contract. Similar to [24], in our
cloud system resource requests come in the form of bundles of
VM types. Each user only specifies the types of VMs that are
needed, but not the quantity of each requested VM type.
Therefore the users need not be concerned with the details of
resource allocation. We assumed that each user have set their
respective resource requests according to their financial
budgets. Note that currently, commercial cloud systems have
not yet standardized the resource request format; our

assumption is based on past research, and designed in a way so
that the elasticity of cloud hardware can be fully exploited.

VM requests are expressed in the following fashion: each
application (Ga) is associated with a binary array U

a
 of K

members (recall that K is the total number of VM types): {
 ,

 , …,

 }, where
 (1 ≤ g ≤ K) indicates that VMg is

requested by User a, and
 otherwise. U

a
 must

guarantee that no task is mapped to an unrequested VM type,
that is if

 , then it must follow that VMg ∈ {VM1, ...,

VMK} and
 .

Each user application is then fully defined by its workload
request (Ga) and VM type request (U

a
), but scheduling will not

be carried out by the user. The reasoning behind this is
threefold: (i) the cloud platform is opaque to the user [12], (ii)
the users may not possess the necessary computing power, and
(iii) the CSP can achieve higher efficiency with total
scheduling freedom.

Deadlines
Although users can neither request more VMs of the same

type, nor schedule their own workload, they can still gain
control their workload performance by specifying deadlines in
the SLA. The deadline for the workload request from User a
(Ga) is denoted as

 . In this paper all deadlines are
considered as hard deadlines.

Generally, when User a gives a more aggressive deadline,
the CSP will allocate more VM resources for Ga, so that tasks
in Ga can be executed in parallel and complete execution
sooner. However, user workloads are subject to the admission
control policy detailed at the end of the next chapter, so those
applications with unsatisfiable tight deadlines will be rejected
prior to scheduling or dropped during scheduling.

IV. CLOUD PLATFORM MODEL

The cloud consists of a set of M servers: {D1, D2, ..., DM},
and is modeled as a undirected graph of M vertices, each
representing a server. The weight of each edge (Dx, Dy), ,

represents the communication capacity between Dx and Dy.

Several neighboring servers may form a server farm with
local connections. Server farms can communicate with each
other through high speed channels. The distance between
servers and channel bandwidths will be reflected in the

values. By default = ∞, i.e. tasks executing on the same

server do not incur any communication overhead. Also, we
assume a path exists between any two servers, either through a
direct link or through multi-hops. A multi-hop path will be
abstracted as a connecting edge with a low value. Fig. 3

provides an example illustration of a cloud platform consisting
of nine servers clustered into two server farms, one with six
servers and the other with three servers. Note that local
connections may also be heterogeneous, and for clarity not all
server connections are shown.

Fig. 3 Example server distribution

D1

D4

D2

D5

D3

D6

D7

D8 D9

Server Farm 1 Server Farm 2

High Speed

Channel

Application/User 1

Application/User 2

Application/User N

...

Virtual Machine Configurations
During operation, each server Dx is associated with an

integer array Q
x
 of K members: {

 ,
 , …,

 }, where

indicates that
 number of type g VMs (VMg) are hosted on

Dx. Q
x
 is dynamic since the it may change over time due to

VM tear downs and reconfigurations initiated by the CSP. We
denote the Q

x
 configuration at time t as Q

x
(t). Each server Dx

contains finite amount of resources, namely
 and

amount of CPU and memory, respectively. Clearly, the VM
configuration of Dx must abide to the total amount of resources

at all times, i.e. ∀ t we have ∑
 ()

 and

∑
 ()

 .

Energy Consumption
The power consumption of Dx at time t includes the static

power consumption
 () and the dynamic power

consumption
 () . Both are correlated with the

utilization rate of Dx at time t: (). We evaluate ()
by considering only the CPU requirements of the hosted VMs
indicated in Q

x
(t), and do not differentiate between VMs that

are running tasks and idle VMs, since background CPU
activities are needed even during idle periods.

 ()
∑

 ()

 () is constant when Utilx(t) > 0, 0 otherwise. The

relationship between
 () and Utilx(t) is much more

complex. Servers have optimal utilization level in terms of
performance-per-watt [6], which we define as Optx for Dx. It is
commonly accepted that for modern servers Optx ≈ 0.7, and
the increase in power consumption beyond this operating point
is more drastic than when Utilx(t) < Optx [4, 7]. Even for
identical utilization levels, the energy efficiency of different
servers may vary [41]. This is captured by the coefficients αx
and βx, representing the power consumption increase of Dx
when Utilx(t) < Optx and Utilx(t) ≥ Optx, respectively.

 () is then calculated as:

{
 ()

 (())

(())

(())

We would like to point out that the exact formulations of

 () do not undermine our analysis, as long as its

increase is faster when Utilx(t) ≥ Optx than when Utilx(t) < Optx.

Fig. 4 plots
 () for Dx when αx = 0.5, βx = 10 and Optx

= 0.7 under different CPU utilization levels.

Fig. 4. Dynamic power increase with respect to server utilization

Suppose the upper bound of the maximum schedule length
of all applications is Lmax. The total energy consumption
(COSP) is the sum of the power consumption across all
servers throughout the operation timeline:

 ∑ (∑ (
 ()

 ())

)

Since minimizing energy consumption is equivalent to
minimizing energy cost, in this paper we will use the two
phrases energy cost and energy consumption interchangeably.

Admission Control
The purpose of admission control is to identify and

eliminate user workloads that are overly resource hungry.
These users require extensive VM reservations that can
potentially cause resource hogging, creating scheduling
difficulties for other users and increasing global power
consumption. In this paper we adopt a two pass admission
control policy that sifts users based on their deadline
specifications.

Prior to scheduling, each application will be examined to
see whether it can be scheduled under the specified deadline
given infinite amount of resources. Unlike the core scheduling
procedure, this "schedulability" analysis can be performed in
linear time. If the deadline is violated, then the workload
request will be rejected.

During scheduling, users compete for VM resources under
the regulation of the CSP, as a result some deadlines may not
be met due to constrained resources. If the deadline violations
persist after considerable optimization efforts, the associated
workload requests will be dropped.

V. CLOUD OPERATION

In this section we identify the key processes during cloud
operation and the tradeoffs in cloud operation optimization.

Virtual Machine Provisioning and Placement
The CSP decides the VM allocations and placement of

tasks on these VMs. Although the CSP would prefer VMs to
be time-shared by all users, we conservatively bind each VM
to a specific user to promote user context preservation,
security and privacy. As a result, any VM will be dedicated to
a single user until the VM is torn down by the CSP.

Temporal Scheduling of Tasks
We define a ready task as a task with its dependencies

satisfied. Suppose for a ready task
 we have

 . If

were to be scheduled in a type g VM located in Dx, two
conditions should be met: (i) the destination VM is available
and is dedicated to User a, and (ii) all necessary output data
transfers have been completed. Communication will only be
needed when one or more predecessors of

 completed
execution on a server other than Dx. Suppose a predecessor
task of

 , ()
 , resides on Dy (x ≠ y), then the output data

transmission time is given by ()
 ⁄ .

Schedule Evaluation
The quality of a schedule is determined by two factors: (i)

the global energy cost (COSP) and (ii) the number of dropped
requests due to deadline violations. A schedule may be energy
efficient, but ultimately infeasible due to excessive deadline
violations. When adjusting this schedule to satisfy deadlines
and minimize the number of dropped requests, energy
efficiency is often sacrificed. We elaborate with a simple
example below. Assume the CSP is servicing two users, the
workload information are presented in Table I.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0% 20% 40% 60% 80% 100%

D
y

n
a

m
ic

 P
o

w
er

 C
o

n
su

m
p

ti
o

n

CPU Utilization Rate

Linear

Increase

Nonlinear

Increase

Table I. Task graph and task latency
U

se
r
 1

Task (T)
Latency

(L)
VM

Mapping (θ)

 6 1

 3 1

 3 1

 6 1

 1 1

U
se

r
 2

Task (T)
Latency

(L)
VM

Mapping (θ)

 6 1

 6 1

 3 1

 3 1

 1 1

If the workloads are treated as atomic independent entities,
then the obvious schedule is to place both applications on the
most energy-efficient server, say Server 5 (D5), as long as the
allocated VMs (two Type 1 VMs) will not push Util5(t) past
Opt5. The result is shown in Fig. 5a, the length of the schedule

is 19 time units. If

 (indicated by
the dotted red line), then this schedule violates deadlines for
both users. For the sake of discussion, we calculate the energy
cost of this schedule before both user requests are dropped:

 (

)

To meet the deadline for both users, the CSP can exploit
data parallelisms within G1 and G2, an opportunity that is not
available to batch scheduling. There are several alternatives
when doing so, leading to different solutions with different
energy costs. A greedy approach would produce the schedule
in Fig. 5b, where all VMs are hosted on D5. The reduced
completion time for both users come from the migration of

and

 to newly allocated VMs, which may overburden D5. If
 () now surpassed because of the two new VMs,
then the energy cost of this schedule would be:

 [(

)

]

The schedule in Fig. 5b can potentially be further refined
into the schedule in Fig. 5c. While straightforward in concept,
there are actually a series of actions related to this refinement,
namely the tear down of the Type 1 VM reserved for User 1 at
t = 9, followed by a configuration of a Type 1 VM reserved for
User 2. We do not delve into the technicalities regarding this
process, but accept its overhead. The energy cost of this
schedule in Fig. 5c is:

 [(

)

]

Another solution is to explore other servers, say Server 6
(D6). The CSP can offset an entire user to D6, so that neither
D5 nor D6 will be overburdened. The schedule in Fig. 5d chose
User 2 to move to D6. D6 is not necessarily in the same server
farm as D5. The energy cost of this schedule is:

 [(

) (

)]

(a)

(b)

(c)

(d)

Fig. 5 Example schedules

In Fig. 6 we illustrate how server energy efficiency can

affect scheduling decisions. Suppose
 = 1,

 =
 =

4, = = 0.5, = = 10, = = 0.7, and the

value of
 and

 is varied. For simplicity, we

assume =
 =

 . COSPa is generally the best
schedule if only energy consumption is concerned. COSPb and
COSPd are all greater than COSPa, and the comparison
between these two values depends on the Pstatic value. It also
depends on other parameters such as β5/β6, which is not shown
here. If the packing in Fig. 5c can be realized (which is a rare
occasion when multiple users with large task graphs are
considered), then COSPc is very promising since it satisfies all
deadlines with an energy cost even lower than COSPa.

Fig. 6. The COSP evaluation

10

15

20

25

30

35

40

0.5 0.6 0.7 0.8 0.9 1

E
n

er
g

y
 C

o
su

m
p

ti
o

n

Pstatic

COSPa COSPb COSPc COSPd

S
e
r
v
e
r

5
 VM1

VM1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t
S

e
r
v
e
r

6
 VM1

VM1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

VM1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

S
e
r
v
e
r

5

VM1

VM1

VM tear down and reconfiguration period

VM1

VM1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

S
e
r
v
e
r

5

VM1

VM1

S
e
r
v
e
r

5
 VM1

VM1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

Application/User 2

Application/User 1

The key takeaways from this case study are:

 Accelerating application execution through additional VM
allocations and parallel execution will often incur energy
cost overheads for the CSP.

 Many possible schedules exist when performing VM
allocations and task migrations, among which a schedule
with no deadline violations and a low energy cost is
preferred. The best allocation and migration scheme
depends on the characteristics of the cloud platform and
the workloads. The scheduling framework described in
the next section will undertake those challenges.

VI. THE GMaP FRAMEWORK

In this section we illustrate our "Guided Migrate and Pack"
(GMaP) scheduling and optimization framework for the CSP
phase by phase. GMaP is based on beam search in order for it
to be fully parallelizable, which is crucial when the CSP is
utilizing the cloud resources at its disposal to run GMaP.

Fig. 7 Abstraction of the GMaP algorithm

Fig. 7 provides an abstraction of the GMaP algorithm. The
basic idea of GMaP is to start with schedules that are deadline
oblivious but energy efficient. It will then co-optimize latency
for the deadline violating applications and the global energy
cost. First, seed schedules for each application are generated in
parallel, and assembled into the Preliminary Schedule Set
(PSS). Then treating each preliminary schedule in the PSS as
root, the main body of GMaP is executed in parallel,
eventually producing multiple result schedules from which the
best schedule will be promoted to be the solution. At first,
GMaP will be energy aware but deadline oriented. Once all
deadlines have been met, then GMaP will only focus on the
energy cost, unless new deadline violations appear.

A valid argument would be that the scheduling process
itself may become overly power hungry or time consuming.
Fortunately, the resource requirement and run time of the
GMaP can be adjusted based on the power portfolio of the
target cloud environment in two ways: (i) the number of roots
can be sized to any natural number and (ii) each search tree
size can be individually tuned.

Phase 1: Seed Schedule Generation
The seed schedule for User a is the schedule for Ga based

on U
a
, while assuming only one VM is instantiated for each

requested VM type. Also, all VMs are mapped to a single
imaginary server. The seed schedules can be derived in
parallel for all applications through any scheduling algorithm
[38]. In this paper we used a modified greedy algorithm.

Phase 2: Application Characterization
In this phase, each application is affiliated with different

characterizing parameters to aid the following phase. The first
parameter is the seed schedule length for Ga, given as

 .
The second parameter is the deadline slack SLACKa =

 -

 . Applications with larger slack can better
cope with energy cost minimization maneuvers by the CSP.

Finally, PARa, is calculated as
 subtracted by the length

of a schedule for Ga under the assumption of infinite VM
resources. Three sorted lists of applications based on these
parameters in ascending order will be produced: Lseed[↑],
PAR[↑] and SLACK[↑].

Phase 3: Preliminary Schedule Generation
In this phase, we generate the PSS by overlaying the seed

schedules onto the servers. Fig. 5a is an example of a
preliminary schedule. Below is the high level pseudo code.

Procedure P3: Preliminary Schedule Set (PSS) Generation

D[↑] = sort_servers(α+β); /*Sort servers by energy efficiency*/
list_total = { n1{Lseed[↑]}, n2{PAR[↑]}, n3{SLACK[↑]}, n4{shuffle[]} };
/*shuffle[] contains a shuffled list of applications*/
j = 0;
while (list_total ≠ Ø)
 list = pop(list_total) ;
 clear(pre_schedule(j));
 while (list ≠ Ø)
 a = pop(list);
 for (i = 0; i < |D[↑]|; i++)

 if (∑

 ∑

 ()

 &&

 ∑

 ∑

 ()

)

 if (∑

 ∑

 ()

)

 if (match_probability(p1))
 map();
 break;
 output(prelminary_schedule(j));
 j++;

Phase 4: Optimization
The beam search based optimization process is the main

body of GMaP. In concept, this phase will transfer suitable
tasks from one VM to another, in attempt to satisfy deadlines
or maximize energy efficiency. In most cases, these two
objectives are contradictory.

GMaP is "guided" in the sense that exploration is steered
by empirical observations. GMaP also borrows concepts from
evolutionary algorithms to break away from local optima.
Each iterative optimization pass goes through two steps:
migrate and pack. The pseudo code is presented below.

Procedure P4: Optimization

for (all preliminary schedules in the PSS), do in parallel
 S = load(preliminary_schedule);
 initialize(Explore_Depth);
 if (evaluate(energy) < saved_ref_energy)
 saved_ref_energy = evaluate(energy);
 Explore_Depth = Explore_Depth * Depth_Scale;
 for (i = 0; i < Explore_Depth; i++)
 if (check_deadline_violations() == 1)
 A = pop_dealine_violated_application();
 else
 A = choose_application({G1, G2, ..., Gx});
 T = choose_task(A, PAR[↑], SLACK[↑], Lseed[↑]);
 if (match_probability(p2))
 D = pop(mapped_servers(A));
 else
 D = choose_sever(D[↑], mapped_server_farm(A));
 S = migrate(A: T → D); S = adjust(S);
 evaluate(energy, length);
 if (match_probability(p3, energy, length));
 accept_move(A: T → D);
 else
 reject_move(A: T → D);
 restore_schedule();
 pack(S);
 evaluate(energy, length);
 if (energy < energy_evaluate(solution_schedule))
 update(solution_schedule)

...

Preliminary Schedule

Result Schedule

Intermediate Schedule

(Deadline Violating)

Intermediate Schedule

(Deadline Met)

...

L
e
g

e
n

d
s

The function migrate(), as the name suggests, will migrate
a single task

 from its current type g VM (source VM) in Dx
(source server) to another VM of the same type (destination
VM) in Dy (destination server). The source and destination
servers may not be the same, but in most cases they are within
the same server farm to avoid high communication latencies.

Each migration attempt makes three important decisions
that will collectively dictate the solution quality, namely:

 Which user should be selected for migration?

 Which task should be selected for migration?

 Which server should the task migrate to?
The CSP should select tasks that bottleneck application
latencies, and move them to servers that will not incur high
energy overheads, while considering the repercussions to other
applications. The decision process will typically cross check
Lseed[↑], PAR[↑] and SLACK[↑] to select the application that
has a negative SLACK value and high Lseed and PAR values for
migration, because this application has violated the deadline
resulting in a negative slack, but since it has a high PAR value,
there is great potential for length reduction through parallel
execution. The destination server will be selected based on the
utilization levels and task dependencies. But the server on
which the predecessor successor tasks reside will be selected
with a high probability since the current priority is to satisfy
the deadline, and communications across servers should be
minimized. When the deadlines have been met for most
applications, GMaP will be more flexible towards
manipulating applications with high SLACK values to
minimize energy consumption, such as moving tasks to less
crowded servers. After migration, the schedule in the source
server may need to be adjusted, as well as the schedule in
servers where tasks that are direct or indirect successors to the
migrated task reside.

Migration may overprovision VMs, which is why the
packing step ensues to compress the schedule. Packing is
similar to VM consolidation [26].

VII. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the GMaP via Monte
Carlo simulations for randomly generated large scale task
graphs.

Experiments on Large Scale Workloads
In this subsection we demonstrate the effectiveness of

GMaP through experiments on large scale cloud platforms
with large scale workload inputs. For each experiment, the
inputs will be generated differently and the cloud platform
scaled accordingly. Table II provides the upper and lower
bounds of some key parameters.

Table II. Modeling parameters summary

Cloud Platform
Parameters

User Workload
Characteristics

Algorithm Search
Space

Servers
Server
Farms

Total
Users

Tasks
per User

Task
Latency

Roots in
the PSS

Nodes
per Tree

10 - 30 2 - 6 30 - 100 20 - 100 1 - 10 50 5000

We first compare the final solution schedule with the "Best
Deadline Oblivious Preliminary Schedule" (BDOPS), i.e. the
best achievable schedule when regarding workload requests as
atomic entities and ignoring all deadlines. BDOPS is ideal for
energy efficiency but contain many deadline violations. We

purposely draft the SLA so that 30% - 80% of the users in
BDOPS have their respective deadlines violated. BDOPS is
the reference for energy cost overhead calculations.

Second, we compare the solution with the baseline, which
is derived from GMaP minus the energy efficiency
optimizations. In other words, the baseline schedules are
energy cost oblivious.

Table III. Results for large scale and very large scale workload inputs

In
d

e
x

Number of Users
Energy Cost
Improvement

Allocated
VMs in
BDOPS

Allocated
VMs in
Solution Total Rejected BDOPS Baseline

1

L
a
r
g
e
 S

ca
le

 (
3

0
 -

 5
0

 U
se

r
s)

30 0 0.77% 13.04% 35 72

2 30 0 -0.02% 36.76% 34 94

3 30 0 -12.41% 29.35% 33 118

4 30 0 -1.25% 27.49% 32 94

5 35 6 -0.47% 27.70% 30 112

6 35 6 4.34% 28.84% 30 116

7 35 5 -29.89% 33.35% 32 121

8 35 0 -10.17% 14.54% 35 127

9 40 0 -34.02% 27.21% 40 147

10 40 0 -18.93% 20.21% 40 134

11 40 0 -28.04% 17.29% 40 163

12 45 2 -7.98% 18.83% 43 126

13 45 2 -4.73% 17.08% 43 195

14 50 7 -54.85% 18.80% 43 222

Average (Large) -14.12% 23.61% 36.4 131.5

15
V

e
r
y
 L

a
rg

e
S

ca
le

 (
6
0

 -
 1

0
0
 U

se
r
s)

 60 0 -9.09% 6.70% 60 176

16 65 0 -27.30% 16.34% 65 260

17 75 1 -25.55% 19.44% 74 227

18 75 3 -2.53% 16.66% 72 129

19 75 0 -35.88% 13.36% 75 270

20 85 0 -111.19% 8.67% 85 467

21 85 0 -94.04% 8.14% 85 310

22 85 0 -22.42% 14.52% 85 317

23 85 0 -14.91% 8.88% 85 318

24 95 0 -110.47% 0.12% 95 496

25 100 2 -58.25% 6.64% 98 296

26 100 2 -45.72% 4.24% 98 309

27 100 5 -74.06% 10.08% 95 302

28 100 0 -44.11% 8.50% 100 258

Average (Very Large) -49.72% 9.35% 83.7 295.4

Results are shown in Table III. For large scale inputs (30 -
50 users), energy cost improvement compared to the BDOPS
is on average -14.12%, in other words, the energy cost
overhead is on average 14.12%. This overhead is inevitable,
since it is caused by the additional VM allocations used to
accelerate deadline violating applications. The CSP allocates
appropriate amount of VMs to each user based on their
demands, Fig. 8 illustrates the VM distribution for Experiment
6. Compared to the baseline the energy cost improvement is
on average 23.61%, which is a very promising result.

To achieve the same level of solution quality for very large
scale inputs (60 - 100 users), the algorithm search space
should be expanded to match the increase in input size.
However for the sake of consistency, we fixed the size of the
search space as indicated in Table II. Consequently, there is
considerable increase in energy cost overheads to 49.72% on
average. The average energy costs improvements with respect
to the baseline decreased to 9.35%. From these statistics we
can infer that the search space of 50 roots and 5000 nodes per
search tree is sufficient for 30 - 50 user workloads, but lacking
for 60 - 100 user workloads. In the next subsection we will
expand the search space and rerun the experiments for very
large scale workload inputs. Nevertheless, GMaP always

terminates with a solution schedule with no deadline violations
and positive energy cost improvements over the baseline.

Fig. 8. VM allocations for each user from Experiment 6

Now we show how GMaP balances workloads among
servers while allocating additional VMs. Fig. 9 plots the Util(t)
for all ten servers observed during Experiment 6 in Table III.
We sorted the servers according to their energy efficiency
ratings, with Server 0 being the most energy efficient. We can
see fundamental differences in scheduling decisions between
the BDOPS and the solution schedule. For the BDOPS, all
applications are placed in the most energy efficiency servers,
namely Servers 0 - 4, leaving Servers 5 - 9 unused. Although it
achieves near optimal energy efficiency, out of the 29
accepted workload requests, 12 violated their deadlines.

For the solution schedule, Servers 0 - 4 saw a utilization
percentage increase, which is a result of GMaP allocating
additional VMs. Servers 5 - 9 which are less energy-efficient
have been brought online to host the new VMs. Their Util(t)
values appears to be high at t = 0, but these values only
remained high for a short period of time before they dropped.

Fig. 9. Server utilization rates for Experiment 6

Impact of Search Space Analysis
Similar to other evolutionary algorithms, for GMaP longer

run times will expand the algorithm search space and produce
better solutions. But a larger search space needs to be
supported by increased computation time, which will lead to
increased energy consumption and time of running GMaP. We
provide some insights on how to balance the benefits gained
from deploying GMaP versus the cost of GMaP itself, by
evaluating the improvement in solution quality with respect to
expanded algorithm search space.

First we rerun Experiment 15 - 18 from Table III with an
expanded search space, namely 50 roots in the PSS and 10

4

nodes per search tree, results are presented in Table IV.

Table IV. Results for expanded search space

In
d

e
x

Number of Users
Energy Cost
Improvement

Allocated
VMs in
BDOPS

Allocated
VMs in
Solution Total Rejected BDOPS Baseline

15

V
e
r
y
 L

a
rg

e
S

ca
le

 (
6
0

 -
 1

0
0
 U

se
r
s)

 60 0 -7.78% 8.15% 60 211

16 65 0 -18.94% 20.23% 65 273

17 75 1 -27.78% 19.92% 74 292

18 75 3 -2.43% 12.14% 72 171

19 75 0 -21.14% 22.69% 75 281

20 85 0 -66.33% 29.05% 85 572

21 85 0 -61.50% 21.24% 85 347

22 85 0 -22.42% 14.52% 85 386

23 85 0 -5.71% 14.24% 85 373

24 95 0 -65.29% 17.20% 95 634

25 100 2 -43.39% 16.90% 98 364

26 100 2 -35.99% 9.75% 98 405

27 100 5 -52.16% 14.78% 95 309

28 100 0 -81.38% 15.06% 100 459

Average (Very Large) -36.59% 16.85% 83.7 362.6

As expected, when the search space is doubled, GMaP
produced better results than those presented in Table III,
almost doubling the average energy cost improvement from
9.35% in Table III to 16.85% in Table IV.

Next we examine a detailed case study with 20 accepted
users on a fixed cloud platform. There will always be 50 roots
in the PSS, but we gradually grow the search tree sizes
exponentially from 10

2
 nodes to 10

5
 nodes. Results are shown

in Table V.

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

N
u

m
b

er
 o

f
A

ll
o

ca
te

d
 V

M
s

User Index

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 0

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 1

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 2

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 3

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400

S
er

v
er

 U
ti

li
za

ti
o
n

Time

Server 4

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 5

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 6

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 7

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 8

BDOPS

Solution Schedule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80

S
er

v
er

 U
ti

li
za

ti
o

n

Time

Server 9

BDOPS

Solution Schedule

Table V. Impact of algorithm runtime analysis

Index
Search Tree Size
(Number of Nodes)

Energy Cost
Improvement

Allocated
VMs in
BDOPS

Allocated
VMs in
Solution BDOPS Baseline

29
a

102
-17.77% -1.38% 20 38

b -17.53% -0.84% 20 35

30
a

103
-4.91% 13.20% 20 67

b -0.03% 7.46% 20 53

31
a

104
12.30% 23.79% 20 91

b 14.30% 25.35% 20 96

32
a

105
16.34% 23.82% 20 93

b 16.78% 28.94% 20 99

It is clear that as the search tree grows, GMaP terminates
with superior solutions. More importantly, GMaP suffers from
the common phenomena of diminished returns. The right
sizing of the search trees and the PSS is highly dependent on
the actual operating context. Currently, GMaP can only offer
the flexibility in molding the search space. In the future we
intend to develop an adaptive search space sizing procedure.

Impact of Deadline Aggressiveness Analysis
The aggressiveness of deadlines in the SLA has impact on

the solution qualities. In this subsection, we investigate a
single experiment with a fixed cloud platform of 15 servers in
two server farms and a fixed set of 40 workload requests. The
deadline of each application is a fraction of the length of its
seed schedule:

 ∀ . If μ ≥ 1, then the

BDOPS would satisfy all deadlines, and immediately becomes
the baseline schedule. When μ < 1 GMaP is needed to
eliminate deadline violations. Since μ controls the deadline for
all applications, a small decrease in μ will greatly increase the
overall deadline aggressiveness. If μ is too small, then many
requests will be dropped. To be consistent in our analysis, in
Table VI we only focus on cases with no dropped requests.

Table VI. Impact of deadline aggressiveness analysis

Index
μ
(Deadline
Aggressiveness)

Energy Cost
Improvement

Allocated
VMs in
BDOPS

Allocated
VMs in
Solution BDOPS Baseline

33

a 1.00 20.32% 20.32% 40 54

b 0.95 -8.94% 20.13% 40 177

c 0.90 -20.55% 37.82% 40 192

d 0.85 -20.55% 37.82% 40 192

e 0.80 -46.50% 38.24% 40 205

f 0.75 -29.19% 39.27% 40 202

g 0.70 -53.27% 37.08% 40 192

When μ = 1, we can see that GMaP can devote the entire
optimization process to energy cost minimizations, achieving
20.32% improvement over the BDOPS. When μ drops below
1, GMaP becomes constrained by the hard requirement of
deadline satisfactions, hence the solution schedules no longer
outperform the BDOPS. As the value of μ decreases, the
baseline schedule will perform many VM allocations and task
migrations that may be detrimental to the energy cost. GMaP
successfully recovers near 40% of the loss in energy costs.

VIII. CONCLUSION
In this paper, we consider the problem of global operation

optimization in cloud computing from the perspective of the
cloud service provider (CSP). Our goal is to provide the CSP
with a versatile scheduling and optimization framework that
aims to simultaneously maximize energy efficiency and meet
all user deadlines, which is also powerful enough to handle
multi-user large scale workloads in large scale cloud platforms.

Two types of workload models have been adopted in cloud
computing systems: independent batch requests and task
graphs with dependencies. In this paper we model the
workloads from multiple users as a collection of disjoint task
graphs. As for the cloud platform model, it is fully capable of
reflecting server resource capacity and energy efficiency
heterogeneities. Server communication bottlenecks are also
taken into account. This fine-grained treatment of the
hardware resources and user workloads provides opportunities
for deadline-oriented application acceleration via parallel
execution and global energy cost minimization, but also
requires additional effort in admission control, resource
provisioning, virtual machine placement and task scheduling.
In this paper we propose "Guided Migrate and Pack" (GMaP)
as a unified scheduling and optimization framework for the
CSP that addresses these issues in a holistic fashion. GMaP is
also flexible in search space sizing and algorithm run time
control. Experimental results show that when GMaP is
deployed for the CSP, global energy consumption costs
improves by over 23% when servicing 30 - 50 users, and over
16% when servicing 60 - 100 users.

ACKNOWLEGEMENT

This work is supported in part by the Software and
Hardware Foundations program of the NSF's Directorate for
Computer & Information Science & Engineering.

REFERENCES

[1] B. Hayes, "Cloud Computing," Communications of the ACM,
2008.
[2] R. Buyya, "Market-oriented cloud computing: vision, hype, and
reality of delivering computing as the 5th utility," 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGrid), 2008.
[3] M. Armbrust et al., "A view of cloud computing,"
Communications of the ACM, 2010.
[4] M. Pedram, "Energy-efficient datacenters," IEEE Trans. on CAD,
2012.
[5] P. Barham et al., "Xen and the art of virtualization," Proc. of the
19th ACM Symposium on Operating System Principles (SOSP), 2003.
[6] S. Srikantaiah et al., "Energy aware consolidation for cloud
computing," Cluster Computing, 12(1):1–15, 2009.
[7] G. Chen et al., "Energy-aware server provisioning and load
dispatching for connection-intensive internet services," NSDI, 2008.

[8] S. Xavier and S. J. Lovesum, "A survey of various workflow

scheduling algorithms in cloud environment," International Journal

of Scientific and Research Publications, 3(2), 2013.
[9] M. Mazzucco et al., "Maximizing cloud providers revenues via
energy aware allocation policies," IEEE Int’l Conf. on Cloud
Computing, 2010.
[10] M. Lin et al., "Dynamic right-sizing for power-proportional data
centers," INFOCOM, 2011.
[11] M. Isard et al., "Dryad: distributed data-parallel programs from
sequential building blocks," EuroSys, 2007.
[12] D. Warneke and O. Kao, "Nephele: efficient parallel data
processing in the cloud," SC-MTAGS, 2009.
[13] R. Chen et al., "On the efficiency and programmability of large
graph processing in the cloud", Technical Report MSR-TR-2010-44,
Microsoft Research, 2010.

[14] E. Deelman et al., "Pegasus: A framework for mapping complex

scientific workflows onto distributed systems," Scientific

Programming, 13(3):219-237, 2005.

[15] L. Ramakrishnan et al., "VGrADS: enabling e-Science
workflows on grids and clouds with fault tolerance," Conf. on High
Performance Computing Networking, Storage and Analysis, 2009.

[16] S. Pandey et al., "A particle swarm optimization-based heuristic

for scheduling workflow applications in cloud computing

environments," Advanced Information Networking and Applications,

2010.
[17] A. Gorbenko and V. Popov, "Task-resource scheduling
problem," International Journal of Automation and Computing, 9(4):
429-441, 2012.
[18] R. Lichtenwalter and N. Chawla, "DisNet: A framework for
distributed graph computation,” ACM/IEEE Conference on Advances
in Social Network Analysis and Mining, 2011.

[19] M. Redekopp et al., "Performance analysis of vertex centric

graph algorithms on the Azure cloud platform," Workshop on

Parallel Algorithms and Software for Analysis of Massive Graphs,

2011.
[20] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2
[21] D. Tammaro et al., "Dynamic resource allocation in cloud
environment under time-variant job requests," Cloud Computing
Technology and Science, 2010.
[22] J. Bi et al., "Dynamic provisioning modeling for virtualized
multi-tier applications in cloud data center," IEEE Int’l Conf. on
Cloud Computing, 2010.
[23] R. Aoun et al., "Resource provisioning for enriched services in
cloud environment," Cloud Computing Technology and Science,
2010.
[24] S. Zaman et al., "An online mechanism for dynamic VM
provisioning and allocation in clouds," IEEE Int’l Conf. on Cloud
Computing, 2012.
[25] M. Bjorkqvist et al., "Opportunistic service provisioning in the
cloud," IEEE Int’l Conf. on Cloud Computing, 2012.
[26] K. Halder et al., "Risk aware provisioning and resource
aggregation based consolidation of virtual machines," IEEE Int’l
Conf. on Cloud Computing, 2012.
[27] S. Irani et al., "Competitive analysis of dynamic power
management strategies for systems with multiple power savings
states," DATE, 2002.

[28] S. Zaman and D. Grosu, "Combinatorial auction-based
allocation of virtual machine instances in clouds," IEEE Int’l Conf.
on Cloud Computing, 2010.
[29] H. N. Van et al., "Performance and power management for cloud
infrastructures," IEEE Int’l Conf. on Cloud Computing, 2010.
[30] M. Hadji and D. Zeghlache, "Minimum cost maximum flow
algorithm for dynamic resource allocation in clouds," IEEE Int’l
Conf. on Cloud Computing, 2012.
[31] W. Chen et al., "A profit-aware virtual machine deployment
optimization framework for cloud platform providers," IEEE Int’l
Conf. on Cloud Computing, 2012.
[32] S. He et al., "Improving resource utilisation in the cloud
environment using multivariate probabilistic models," IEEE Int’l
Conf. on Cloud Computing, 2012.
[33] N. M. Calcavecchia et al., "VM placement strategies for cloud
scenarios," IEEE Int’l Conf. on Cloud Computing, 2012.
[34] L. Rao et al., "Minimizing electricity cost: optimization of
distributed internet data centers in a multi-electricity-market
environment," INFOCOM, 2010.
[35] N. Buchbinder et al., "Online job-migration for reducing the
electricity bill in the cloud," NETWORKING, 2011.
[36] H. Xu and B. Li, "A general and practical datacenter selection
framework for cloud services," IEEE Int’l Conf. on Cloud
Computing, 2012.
[37] M. A. Adnan et al., "Energy efficient geographical load
balancing via dynamic deferral of workload," IEEE Int’l Conf. on
Cloud Computing, 2012.
[38] Y.-K. Kwok and I. Ahmad, "Benchmarking the task graph
scheduling algorithms," Int’l Parallel Processing Symp./Symp. on
Parallel and Distributed Processing, 1998.
[39] H. Topcuoglu et al., "Performance-effective and low-complexity
task scheduling for heterogeneous computing," IEEE Trans. on
Parallel and Distributed Systems, 13(3):260–274, 2002.
[40] Y. Gao et al., "Using explicit output comparisons for fault
tolerant scheduling (FTS) on modern high-performance processors,"
Design Automation & Test in Europe, 2013.
[41] P. Greenhalgh, "Big.LITTLE Processing with ARM Cortex-A15
& Cortex-A7," ARM White Paper, 2011.

http://scholar.google.com/citations?user=9cHjPDkAAAAJ&hl=en&oi=sra

