
Layering the monitoring action for improved
flexibility and overhead control: work-in-progress

Giacomo Valente1, Tiziana Fanni2, Carlo Sau3, Francesco Di Battista1

1Università degli Studi dell’Aquila, 2Università degli Studi di Sassari, 3Università degli Studi di Cagliari
email address: giacomo.valente@univaq.it, tfanni@uniss.it, carlo.sau@diee.unica.it

Abstract—With the diffusion of complex heterogeneous plat-
forms and their need of characterization, monitoring the system
gained increasing interest. This work proposes a framework to
build custom and modular monitoring systems, flexible enough to
face the heterogeneity of modern platforms, offering a predictable
HW/SW impact.

Index Terms—SW monitoring, HW Monitoring, self-
awareness, monitoring layer

I. CONTEXT AND OBJECTIVES

Nowadays, embedded platforms are evolving toward hetero-
geneous architectures, including general and specific purpose
processors implemented on chips with both dedicated and
reconfigurable logic. This evolution has been mainly driven by
the need of different functionalities while trading-off among
non-functional requirements (e.g., timing, energy, cost) [1],
[2]. In this context, the demand of system characterization
techniques is increasing: simulation not always represents an
acceptable solution, since a fine granularity requires complex
models and tends to slowdown the application (with respect
to its actual running time [3]), qualifying the usage of run-
time monitoring systems [4]. However, the evolution toward
heterogeneous architectures also impacts on monitor design,
since it (i) elicits fresh monitoring ReQuireMents (RQMs),
and (ii) requires the satisfaction of traditional RQMs (e.g.,
monitor of power dissipation, monitor of execution time)
on those new platforms. As a result, there are consolidated
solutions dedicated to specific areas, targeting specific plat-
form components and RQMs. The drawback of this approach
is highlighted when we try their adaptation for monitoring
new platforms (flexibility), and also on evolving them toward
satisfaction of fresh RQMs (applicability). Furthermore, the
need to satisfy multiple RQMs leads to the adoption of mul-
tiple different monitoring systems, with a difficult to predict
HW/SW impact on system resources (predictability). Many
academic and industrial solutions are available in literature
to address these issues. The works in [5], [6], [7], [3], and
[8] all offer a solution to compose a monitoring system in a
modular way, starting from the basic events to be monitored
and building the monitor to capture and store them. Works in
[9] and [10] both allow to design and introduce a monitoring
system during a High-Level Synthesis (HLS) flow. Finally,
[11] and [12] start from simulation of the system, trying
to understand which are the target signals to be monitored
against some RQMs, by exploiting data-mining techniques.
However, both the approaches based on HLS and data-mining

provide monitors difficult to combine with SW-tasks, due
to a monitor creation that does not take into account mi-
croprocessors architectures, limiting their flexibility. Modular
monitoring solutions represent a promising approach, but the
available ones lack in applicability to different RQMs, being
typically focused on specific purposes, i.e., debugging [5], or
timing performance [3], [6]. Only the work in [8] targets
both performance- and debugging-oriented monitoring over
heterogeneous architectures. By looking at industrial solutions,
two modular approaches can be mentioned: ARM Coresight
[13] and AXI Performance monitor [14]. The former is not
flexible enough to be used on custom accelerators, while the
latter only targets bus interconnections. The main contribution
of this work in progress paper is a HW monitoring layer,
part of a larger project that aims at providing a framework
for building custom hardware monitoring systems, that, dif-
ferently from the state of art approaches, offers flexibility,
applicability, and predictability for the generated monitors.The
HW monitoring layer is the component that allows to provide
those features by allowing the build of the monitors in a
modular way. The final framework will target heterogeneous
architectures with reconfigurable accelerators implemented on
FPGA, taking as input a model of the platform description
and RQMs, producing an HDL description of the monitored
platform as output. The resulting monitored platform will be
provided with monitors satisfying the given RQMs, with a well
defined monitoring overhead in terms of area, PoWeR (PWR),
and SoftWare OVerhead (SWOV). The proposed framework is
similar to [6] and [5] but additionally, besides targeting hard-
ware accelerators (that could be addressed with an extensions
of such previous works), it allows optimal resource utilization
leveraging on event instances sharing.

II. THE HW MONITORING LAYER

As starting point for the construction of the HW monitoring
layer, we considered the generic online monitoring process
proposed by Kornaros et al. [4]. Authors state that a mon-
itoring process has five phases: event trigger, data capture,
filtering, decision, and reaction. To this end, we divided the
construction in two main phases: Ph.1) identification of places
for event triggers to have a monitoring action that is both appli-
cable for satisfying fresh RQMs and flexible; Ph.2) building of
a HW layer to implement the monitoring action. In Ph.1 RQMs
are covered in a general way (thus enabling applicability).
We considered the six classes of RQMs for a monitoring

ar
X

iv
:2

10
3.

01
17

6v
1

 [
cs

.A
R

]
 1

 M
ar

 2
02

1

TABLE I
TEST RESULTS. INT., DATAM AND CORE REFER RESPECTIVELY TO EVENT TRIGGERS PLACED, STICKING TO THE PROPOSED HW LAYER, IN

INTERCONNECTION, DATA MANAGER AND CORE (1E32 IS 1 EVMON 32-BIT SIZE, 1T64 IS 1 TMON 64-BIT SIZE, P IS PROGRAMMABILITY). A TERM
OF COMPARISON FOR LUT AND FF IS PROVIDED: IN THIS CASE [14] IS USED TO MONITOR INT. AND [15] TO MONITOR DATAM AND CORE.

ID RQM Int. DataM Core LUT FF PWR[mW] SWOV[us] LUT [14] [15] FF [14] [15]
Y0 - - - - 3397 2864 24 10.981 - -
Y1 RQM1+RQM2+RQM3 (1E32)(P) (1T64) (2E10) +9.45% +13.2% +8.33% +39.68% +82.16% +166.3%
Y2 RQM2+RQM3+RQM4 - (1T64) (2E10) +3.39% +8.66% +8.33% +37.33% +68.11% +40.12%
Y3 RQM1+RQM4+RQM5 (1E32)(P) (1T64) - +8.98% +12.33% +12.5% +37.36% +82.16% +166.3%

action [4]: Monitor for DeBuG (MDBG), PerFormance (MPF),
Power/Energy/Temperature (PET), Quality of Service (QoS),
Fault Tolerance/Reliability (FT), and Security (Sec). Then,
to guarantee the flexibility, we associated those RQMs to a
general reference platform for embedded systems, identifying
the places for event triggers (see Fig. 1). Analysing the output
of Ph.1, we noticed that multiple RQMs can share the same
trigger location.

Fig. 1. Heterogeneous reference platform with places for performance event
triggers (blue) and for debug ones (red).

Sharing the event triggers among multiple RQMs allows to
share, in turn, the collected events: in the proposed HW layer,
built in Ph.2 (see Fig. 2), an adapter block samples the i-th
event instance and sends it to the data capture and filtering
blocks. For these last two phases, a customizable number of
nucleus blocks is provided to selectively capture different data
according to RQMs (enabling applicability). Each nucleus can
aggregate events, in form of event instances coming from
adapter, by means of multiple event monitors (EVMON) and
time monitors (TMON). The aggregation basically reflects the
function mapping events to metrics (e.g. start and done signals
assertion to measure an execution time). Nucleus data are
then sent to a global monitor interface (GMI), that sends the
information toward a global monitor (GM), connected at the
same level of the reference platform actors; GM implements
decision making stage and triggers a reaction by means of
an interrupt controller. In case of target architecture change,
only adapter and nucleus need to be modified, enabling
flexibility. To illustrate the benefits of the proposed solution in
generating monitoring systems, we defined some RQMs for an
embedded application executed on a heterogeneous platform
implemented, using Xilinx Vivado 2017.4, on a Zynq7000
XC7Z020 [16]. It has an AXI system bus connecting a dual-

core ARM processor, an external DRAM memory and a
hardware accelerator generated with the MDC suite1 [17]. The
application, running on the ARM processor, prepares some
inputs in the external DRAM and triggers a DMA to transfer
them to the accelerator. This latter performs multiply-and-
accumulate operations (constituting the HW task) and stores
back the result in the DRAM through a new DMA mediated
transfer. The considered RQMs are the followings: RQM1
(MDBG - data transfer fault detection on the accelerator),
RQM2 (MPF - execution time of the HW task), RQM3
(MDBG - accelerator computation fault detection), RQM4
(MDBG - watchdog for the HW task), RQM5 (MPF - through-
put of data processed by HW task). Table I reports area, PWR
(only dynamic FPGA fabric one), and SWOV impact of the
different monitoring solutions depending on the considered
input RQMs (Y1, Y2, and Y3). A comparison, only in terms
of resources, with commercial monitoring solutions ([14] and
[15]) shows the better performance of the proposed solution
in satisfying different RQMs.

Fig. 2. The proposed hardware layer.

ACKNOWLEDGMENT

This work is part of the FitOptiVis project [18], funded
by the ECSEL Joint Undertaking under grant number H2020-
ECSEL-2017-2-783162, and of the Comp4Drones project No.
826610, ECSEL-JU 2018.

REFERENCES

[1] G. Valente et al., “Dynamic partial reconfiguration profitability for real-
time systems,” IEEE Embedded Systems Letters, pp. 1–1, 2020.

[2] C. Sau et al., “Challenging the best hevc fractional pixel fpga interpo-
lators with reconfigurable and multifrequency approximate computing,”
IEEE Embedded Systems Letters, vol. 9, no. 3, pp. 65–68, 2017.

[3] N. C. Doyle et al., “Performance impacts and limitations of hardware
memory access trace collection,” in Conf. Design, Automation Test in
Europe, 2017, 2017, pp. 506–511.

[4] G. Kornaros and D. Pnevmatikatos, “A survey and taxonomy of on-
chip monitoring of multicore systems-on-chip,” ACM Trans. Des. Autom.
Electron. Syst., vol. 18, no. 2, Apr. 2013.

[5] M. Seo and R. Lysecky, “Non-intrusive in-situ requirements monitoring
of embedded system,” ACM Trans. Des. Autom. Electron. Syst., vol. 23,
no. 5, Aug. 2018. [Online]. Available: https://doi.org/10.1145/3206213

1Multi-Dataflow Composer: https://github.com/mdc-suite/mdc

https://doi.org/10.1145/3206213

[6] G. Valente et al., “A flexible profiling sub-system for reconfigurable
logic architectures,” in Conf. on Parallel, Distributed, and Network-
Based Processing, 2016.

[7] A. Moro, F. Federici, G. Valente, L. Pomante, M. Faccio, and V. Muttillo,
“Hardware performance sniffers for embedded systems profiling,” in
2015 12th International Workshop on Intelligent Solutions in Embedded
Systems (WISES), 2015, pp. 29–34.

[8] T. Fanni et al., “Run-time performance monitoring of heterogenous
hw/sw platforms using papi,” in Workshop on FPGAs for Software
Programmers, 2019.

[9] J. Goeders and S. J. E. Wilton, “Signal-tracing techniques for in-system
fpga debugging of high-level synthesis circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 1, pp. 83–96, 2017.

[10] M. B. Hammouda et al., “A unified design flow to automatically generate
on-chip monitors during high-level synthesis of hardware accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 36, no. 3, pp. 384–397, 2017.

[11] M. N. at al., “A design-time method for building cost-effective run-time
power monitoring,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 7, pp. 1153–1166, 2017.

[12] D. Zoni and others, “PowerTap: All-digital power meter modeling
for run-time power monitoring,” Microprocessors and Microsystems,
vol. 63, pp. 128 – 139, 2018.

[13] ARM, “White Paper: CoreSight Technical Introduction, A quickstart for
designers. Document Number: ARM-EPM-039795,” 2013-08.

[14] Xilinx, “AXI Performance Monitor v5.0, PG037,” 2017-10-4.
[15] Xilinx, “System Integrated Logic Analyzer v1.0, PG261,” 2017-06-7.
[16] Xilinx. (2020-06) Zynq7000 soc. [Online]. Available: https://www.

xilinx.com/products/silicon-devices/soc/zynq-7000.html
[17] C. Sau et al., “Automated design flow for multi-functional dataflow-

based platforms,” Journal of Signal Processing Systems, vol. 85, pp.
143–165, 2016.

[18] Z. Al-Ars et al., “The fitoptivis ECSEL project: highly efficient dis-
tributed embedded image/video processing in cyber-physical systems,”
in Conf. on Computing Frontiers, 2019, pp. 333–338.

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	I Context and Objectives
	II The HW Monitoring Layer
	References

