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Abstract—In this paper, a new interval optimization method
is proposed to manage the uncertainty of stochastic variables
to the problem of Residential Energy Management (REM). This
new method is called Stochastic Predicted Bands (SPB) and it
considers the uncertainty of decision making variables without
knowledge of the Probability Density Function (PDF). The
modeling of uncertainty is done by bands based on the prediction
of stochastic variables. Besides, an auxiliary parameter is defined
to provide flexibility to the decision-maker to be optimistic or
conservative. Hence, applying the optimistic coefficient to the SPB
method results in the enhancement of its performance. This new
method is called Modified Stochastic Predicted Bands (MSPB).
The simulation results of the test system show the performance
of the proposed model in solving energy management problems
via SPB method.

Index Terms—Residential energy management, interval op-
timization, decision-making under uncertainty, stochastic pre-
dicted bands, power scheduling.

I. INTRODUCTION

Residential buildings with linked devices via communica-
tions channels are called smart homes [1]. They are known
as prosumers, and have an important role in the optimization
of electrical energy scheduling [1]. The Residential Energy
Management System (REMS) is necessary for achieving
an economic improvement through automation technologies.
However, there are challenges in the REMSs consisting of
inaccurate forecasts of energy generation and demand patterns,
and heavy computational burden [2]-[8].

Various research papers have investigated the optimal
scheduling of home energy, and different algorithms and
methods have been presented. For example, in [3], the bi-level
day-ahead REM program it has been shown that the system
operator optimizes the centralized multi-objective problem
based on fuzzy decision making. In [4], a novel decomposition
approach has been used in an independent REM method.
In [5], the REM problem has been solved by modeling the
controllable loads and the loads that depend on the weather
conditions. In the proposed method of [6], Demand Response
(DR) program has been applied automatically to control the
appliances under uncertainty of outdoor temperature and elec-
tricity price. In [7], the probabilistic optimization method has
been used to solve the REM problem. In [8], the decentralized
approach has been proven to manage the energy and operate

the PV power output. An energy service modeling method
has been described in [9]. Particle swarm optimization (PSO)
has been used to solve the optimization problem in [9]. As
observed in the literature review, different methods have been
utilized in the REMSs to decrease the computational burden
of the REM problem. Numerous advantages can be achieved
by decreasing the computational burden of the algorithms
employed in REMSs such as reduction of the REMS energy
consumption and obtaining enough time to concentrate on the
forecasting methods with high accuracy [10].

In this paper, the uncertainly of decision making variables
are modeled based on new interval optimization method. This
method is called SPB that models the uncertainty of the
variables in the REMS.

The rest of this paper is organized as follows. Section II
introduces the proposed interval optimization framework of
the REM problem. Then, problem formulation is described in
Section III and the simulation results of the case study are
illustrated in Section IV. Finally, the findings of the paper are
concluded in Section V.

II. PROPOSED INTERVAL OPTIMIZATION METHOD

In this section, we introduce the proposed method for
modeling stochastic variables in the decision-making problem.
there are different methods to model uncertainty based on its
type in the problems that the interested readers are to referred
to [11]-[13]. There are similarities between the proposed
method of this paper and the Stochastic Optimization (SO)
methods. However, in this approach, presenting the uncertainty
is not done by stating the scenarios. Knowing the PDF of
decision-making variables is one of the necessities in most
of the stochastic scenario-based methods [14]. It is clear that
PDFs of stochastic variables are not always available. Besides,
SO models are a large computational burden to the systems.
Hence, our proposed method considers the uncertainty of the
decision-making variables, taking into account the drawbacks
of the SO method.

A. Stochastic Predicted Bands (SPB) Method

In this section, the SPB method is defined to model the
uncertainty. It consists of four steps which are described
below:
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Fig. 1: Simple flowchart of SPB method.

1) Step 1: This model consists of two stages and it is not
a bi-level optimization problem. The first stage is called the
shadow stage because it does not actually executed. Also, the
uncertainty of variables is not considered. The variables in
this stage are also called shadow variables. The second stage
is called real-time stage where the uncertainty of variables
is considered, and the associated variables are called real-
time variables. The shadow variables play an important role in
converging the real-time variables to their optimum decisions
when their uncertainties converge to zero. Hence, the shadow
variables should be determined in the first step.

2) Step 2: In this method, the uncertainty of variables is
considered based on their predicted amounts. Hence, short-
term forecasting of variables is done in the second step.
Besides, σup and σdown are parameters that are defined to
state the amounts of upper and lower variances of the predicted
variable in comparison with its actual amount, respectively.

3) Step 3: In this step, the difference between the shadow
amount of variables, ES

t , and their predicted amount in each
time, Epred

t is determined. Also, a simple flowchart of the
SPB method is illustrated in Fig. 1.

Dt = ES
t − E

pred
t (1)

4) Step 4: According to the state of Dt, the real-time
decision-making variables, Ert

t , are limited to the max and
min bands which are outlined below:

• If Dt is positive, it means that the scheduling amount
is more than the predicted amount. Hence, the real-time
amount should be greater than the predicted amount to
converge to the amount of scheduling variable.

• If Dt is negative, the predicted amount of the variable
is more than the scheduling one. Hence, as the real-
time variable likes to converge to the amount of its
scheduling variable, the real-time variable will be limited
to the predicted amount as its maximum band. Therefore,
the minimum limitation of the real-time variable will be
based on the upper variance of its prediction because the
variables predicted amount is more than its scheduling
amount.

(2) is defined to clarify the above explanations:{
Epred

t ≤ Ert
t ≤ E

pred
t + σdown Dt ≥ 0

Epred
t − σup ≤ Ert

t ≤ E
pred
t Dt ≤ 0

(2)

For instance, it is supposed that the amount of shadow
variable is determined to be equal to 10 in t=4. Also, the

predictor system forecasts that the amount of that stochastic
variable equals 11 in t=4, while the upper and lower variances
are considered to be 0.5 and 0.3, respectively. Hence, Dt will
be negative in this case, and the real-time variable should be
limited to the bands as following:

Dt=4 = 10− 11 = −1
11− 0.5 ≤ Ert

t ≤ 11

B. Modified Stochastic Predicted Bands (MSPB) Method

One of the drawbacks of the SPB method is that the
uncertainty of the stochastic variables cannot be modeled
completely based on the predicted bands. Also, the variables
tend to converge to the maximum and minimum bands based
on their amounts in the shadow stage. This way, results of the
decision-making variables are completely optimistic because
they always adapt to the bands to optimize the objective
function of the problem. Hence, the stochastic variables stick
only to the maximum or minimum bands to optimize the
problem.

In this section, an auxiliary parameter is defined as a slack
parameter in order to give freedom to the decision-maker
to apply its knowledge regarding the stochastic behavior of
the uncertain variable. This parameter is called an optimistic
coefficient, α, and its amount can be between 0 and 1. This
method is called MSPB. (3) is the modified version of the (2),
if the MSPB method is utilized in the problem.

Epred
t α+ (Epred

t − σup)(1− α) ≤ Ert
t

≤ (Epred
t + σdown)α+ Epred

t (1− α) Dt ≥ 0

(Epred
t − σup)α+ Epred

t (1− α) ≤ Ert
t

≤ Epred
t α+ (Epred

t + σdown)(1− α) Dt ≤ 0

(3)

III. PROPOSED RESIDENTIAL ENERGY MANAGEMENT
SYSTEM

In this section, MSPB is used to model uncertainty in
the REMS. However, the SPB and MSPB as novel interval
optimization methods can be used in different scale of power
system problems that face uncertainty, and there is a lack of
full information.

A. System Objective

In this section, a model of power scheduling in a build-
ing is presented. The objective function is to maximize the
revenue of energy services provided in a residential energy
management system. As seen in (4), the objective function
includes four parts. The first part represents the revenue from
selling the energy produced to the electricity market. The
total cost of energy consumption is presented in the second
term. The value of energy which is not served is stated in
the third term. Finally, the spillage costs of non-dispatchable
energies are presented in the last term. In this model, the cost
of reactive power as a major element of ancillary service has
been ignored, so the interested reader is to referred to [15]-
[16]. The proposed objective function consists of two stages:
the shadow the real-time stages.
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OF = EC (4)

EC =

Nt∑
t=1

(λpvbP
S
pvb,ot + λwP

S
w,ot

− λnetPS
nett

+ λPvbP
rt
pvb,ot + λwP

rt
w,ot + λevP

rt
ev,ot

− λnetP rt
nett

− (V OLLshLsht
shed + V OLLswhLswht

shed

+ V OLLppLppt
shed + V OLLmrsLmrst

shed)

− (V S
w Swt + V S

pvbSpvbt))

B. First Stage

The uncertainty of decision-making variables is not consid-
ered in this stage.

PS
nett + PS

pvb,it + PS
w,it = Lsht

s + LS
swht

+ LS
ppt

+ LS
mrst

(5)

− fmax ≤ PS
nett − (PS

pvb,ot + PS
w,ot) ≤ fmax (6)

(5) establishes the power balance equation of the devices
in the smart home. Besides, (6) represents the power flow
limitation through the distribution line which ended to the
building. Moreover, there are some limitations corresponding
to all appliances. Only maximum and minimum limitations of
energy produced/consumed by each device are defined in this
stage because the uncertainty is not considered in the shadow
stage. Also, components of the REMS that cause flexibility
are not modeled. Hence, the constraints of the energy storage
systems and load shedding are not defined in the first stage.
These flexibility is needed when system faces the uncertainty,
so all flexible agents are modeled in the second stage.

PS
pvbt = PS

pvb,it + PS
pvb,ot (7)

PS
wt

= PS
w,it + PS

w,ot (8)

Pmin
pvbt ≤ P

S
pvbt ≤ P

max
pvbt (9)

Pmin
wt
≤ PS

wt
≤ Pmax

wt
(10)

Lmin
sht
≤ LS

sht
≤ Lmax

sht
(11)

Lmin
swht

≤ LS
swht

≤ Lmax
swht

(12)

Lmin
ppt
≤ LS

ppt
≤ Lmax

ppt
(13)

Lmin
mrst ≤ L

S
mrst ≤ L

max
mrst (14)

C. Second Stage

In this stage, the uncertainties of decision-making variables
are considered. In this paper, only uncertainty of the wind and
PV power generation is considered, and uncertainty of the
outdoor temperature and the must-run services are ignored
for simplicity. Hence, the amounts of these variables are
determined based on the outputs of the first stage and the
uncertainty in the real-time operation. The power balance
equation in the real-time is represented in (15). Besides, the

power flow limitation through the distribution line in the real-
time is described in (16).

P rt
nett + P rt

pvb,it + P rt
w,it + P rt

ev,it = Lsht
rt + Lrt

swht
+ Lrt

ppt

+ Lrt
mrst − (Lsht

shed + Lshed
swht

+ Lshed
ppt

+ Lshed
mrst) (15)

− fmax ≤ P rt
nett − (P rt

pvb,ot + P rt
w,ot + P rt

ev,ot) ≤ fmax (16)

1) PV-Battery System: The power output of the PV-battery
system in the real-time, P rt

pvbt
, is obtained based on (17).

According to (17), P rt
pvt

is the power output of the PV panels
in the real-time, P rt

bt
is the storage power of the battery in

the real-time and Spvbt is the spillage power of the PV-battery
system. The state of charge balance equation is defined based
on (20). As seen in (20), Ci is the initial state of charge of
the battery. (22) shows that the total power output of the PV-
battery system equals its power output which was consumed
in the building and the amount of power generation that is
sold to the power market.

P rt
pvbt = P rt

pvt
− P rt

bt − ωt − Spvbt (17)

Pmin
pvt
≤ P rt

pvt
≤ Pmax

pvt
(18)

Pmin
bt − Ct−1 ≤ P rt

bt ≤ P
max
bt − Ct−1, t ≥ 2 (19)

Ct = Ct−1 + ωt, t ≥ 2 (20)
Ct = Ci, t = 1

ωmin ≤ ωt ≤ ωmax (21)
P rt
pvbt = P rt

pvb,it + P rt
pvb,ot (22)

2) Electric Vehicle (EV): EV plays as an electrical storage
system than can be used economically based on the charge and
discharge strategies in the REM problem. There are different
factors that should be considered to model the effect of the use
of EV in the REM problem. These factors are mobility patterns
and battery characteristics of the EV. The power generation of
the EV is represented in (23) and (30). (24) represents the state
of charge balance equation in the EV, and Cev

i is the initial
state of charge in the EV. (29) enforces power limitations of
the energy storage system in the EV.

P rt
evt

= −P rt
ev,bt − ω

c
t + ωd

t (23)

Cev
t = Cev

t−1 + ωc
tηG2V − ωd

t /ηV 2G − ωm
t /ηV 2T , t ≥ 2

(24)
Cev

t = Cev
i , t = 1

Pmin
ev,dt

ηev(1− uevt ) ≤ ωd
t ≤ Pmax

ev,dt
ηev(1− uevt ) (25)

Pmin
ev,ctηevu

ev
t ≤ ωc

t ≤ Pmax
ev,ctηevu

ev
t (26)

0 ≤ ωd
t ≤ (Cev

t − Pmin
ev,dt

)ηev (27)

0 ≤ ωc
t ≤ (Pmax

ev,ct − C
ev
t )ηev (28)

Pmax
ev,dt

− Cev
t−1 ≤ P rt

ev,bt ≤ P
max
ev,ct − C

ev
t−1, t ≥ 2 (29)

P rt
evt

= P rt
ev,it + P rt

ev,ot (30)

3) Wind System: The power output of the wind micro-
turbine is calculated according to (31). In (31), P rt

wt
is the

power output of the wind system, P rt
w,pt

is the potential
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power output of the wind micro-turbine based on the real-
time weather conditions, and Swt

is the spillage power of the
wind system.

P rt
wt

= P rt
w,pt
− Swt (31)

Pmin
wt
≤ P rt

w,pt
≤ Pmax

wt
(32)

P rt
wt

= P rt
w,it + P rt

w,ot (33)

4) Space Heater: The space heater is responsible for main-
taining the indoor temperature at the desired temperature.
There is a differential equation between the indoor temperature
and the power consumed by the space heater device. (34)
represents the performance of the space heater based on the
relation between the indoor temperature and the electrical load
of the space heater. As seen in (34), θ0 is the initial indoor
temperature and it has been proposed that this amount is equal
to the desired temperature.

θint+1 = θint
e−1/RC + Lrt

sht
R(1− e−1/RC) (34)

+ θpredoutt (1− e
−1/RC), t ≥ 2

θint
= θ0 = θdes, t = 1

− 1 ≤ θint
− θdes ≤ 1 (35)

Lmin
sht
≤ Lrt

sht
≤ Lmax

sht
(36)

5) Storage Water Heater: Storage water heater is responsi-
ble for storing the heat in the water tank via residents. The max
and min limitations of the storage water heater’s power and
energy consumed are expressed in (37) and (38), respectively.

Lmin
swht

≤ Lrt
swht

≤ Lmax
swht

(37)

Umin
swht

≤
Nt∑
t=1

Lrt
swht

≤ Umax
swht

(38)

6) Pool Pump: Running hours of the pool pump should
not be more than TON hours in a day. (39) represents the max
and min limitations of the pool pump power consumed in each
hour.

Lmin
ppt

zt ≤ Lrt
ppt
≤ Lmax

ppt
zt (39)

Nt∑
t=1

zt ≤ TON (40)

7) Must-run Services: Must-run services include electrical
loads that should be provided quickly such as lighting, en-
tertainment, etc. (41) makes the assumption that there is no
uncertainty in the prediction of the electrical loads of the must-
run services.

Lrt
mrst = Lpred

mrst (41)

8) Spillage Limits: The spillage amount of the wind and
the PV-battery systems are expressed in (42) and (43), respec-
tively.

0 ≤ Swt
≤ P rt

w,pt
(42)

0 ≤ Srt
pvbt ≤ P

rt
pvbt (43)

9) Load Shedding Limits: Load shedding is the amount of
the electrical load which is not served. (44)-(47) enforce the
load shedding constraints of each electrical load.

0 ≤ Lshed
sht
≤ Lrt

sht
(44)

0 ≤ Lshed
swht

≤ Lrt
wsht

(45)

0 ≤ Lshed
ppt
≤ Lrt

ppt
(46)

0 ≤ Lshed
mrst ≤ L

rt
mrst (47)

10) Integration with the Modified Stochastic Predicted
Bands(MSPB) Method: In this model, SPB and MSPB meth-
ods are defined to model the uncertainty of variables in the
REM problem. In this paper, the uncertainty of the wind
and PV power generation are considered based on (48)-(51).
Besides, outdoor temperature is considered as a deterministic
variable.

Dwt = PS
wt
− P pred

wt
(48)

Dpvt = PS
pvbt − P

pred
pvt

(49)


P pred
wt

αw + (P pred
wt

− σup
w )(1− αw) ≤ P rt

wt

≤ (P pred
wt

+ σdown
w )αw + P pred

wt
(1− αw) Dwt ≥ 0

(P pred
wt

− σup
w )αw + P pred

wt
(1− αw) ≤ P rt

wt

≤ P pred
wt

αw + (P pred
wt

+ σdown
w )(1− αw) Dwt

≤ 0

(50)


P pred
pvt

αpv + (Epred
t − σup

pv )(1− αpv) ≤ prtpvt

≤ (P pred
pvt

+ σdown
pv )αpv + P pred

pvt
(1− αpv) Dpvt

≥ 0
(P pred

pvt
− σup

pv )αpv + P pred
pvt

(1− αpv) ≤ P rt
pvt

≤ P pred
pvt

αpv + (P pred
pvt

+ σdown
pv )(1− αpv) Dpvt ≤ 0

(51)

IV. CASE STUDY

A. Energy Service system in a Smart Home

To assess the performance of the proposed REM model, the
physical system from [9] is applied. However, some extension
of the system parameters are made to the system. The case
study is described in Fig. 2. The maximum energy produced
by the PV system is 2-kW. The battery can store between
0.48 and 2.4 kWh, and the maximum charging/discharging
rates are 400 W. Besides, charging/discharging efficiencies are
90%. The maximum energy produced by the wind micro-
turbine is 6-kW. The EV can store between 1.77 and 5.9
kWh, and the maximum charging/ discharging rates are 3 kW.
Charging/discharging efficiencies are 90%. Also, the EV is
considered to be out of home between 6 AM and 5 PM.
The maximum heating power equals 2 kW to maintain the
temperature of the house within ±1 of the desired temperature
(23◦C). The thermal resistance of the building shell is equal to
18◦C/kW, and C equals 0.525 kWh/◦C . The energy capacity
of the storage water heater is 10.46 kWh (180 L) which has 2
kW heating element. The rated power of the pool pump is 1.1
kW, and it can run for maximum of 6 hours during the day. The
performance of the proposed REM model is assessed in three
cases. The program implemented is solved in GAMS 23.7
[17]. Table I presents the predicted data of stochastic variables.
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TABLE I: Predicted Data of Uncertain Variables

t P pred
pvt σup

pv σdown
pv P pred

wt σup
w σdown

w θpredoutt
Lpred
mrst

1 0 0.03 0.01 4 0.28 0.19 5.5 0.3
2 0 0.03 0.01 3.7 0.28 0.19 5.5 0.3
3 0 0.03 0.01 3.6 0.28 0.19 5.2 0.3
4 0 0.03 0.01 3.3 0.28 0.19 5.2 0.3
5 0 0.03 0.01 3.4 0.28 0.19 4.8 0.4
6 0 0.03 0.01 3 0.28 0.19 5.5 0.6
7 0.25 0.03 0.01 2.4 0.28 0.19 6.5 0.8
8 0.75 0.03 0.01 1.8 0.28 0.19 7.5 0.8
9 1.25 0.03 0.01 2 0.28 0.19 9.8 0.7
10 1.75 0.03 0.01 1.5 0.28 0.19 10 0.55
11 1.9 0.03 0.01 1 0.28 0.19 11 0.5
12 1.9 0.03 0.01 0.8 0.28 0.19 12 0.5
13 1.9 0.03 0.01 0.7 0.28 0.19 12 0.5
14 1.75 0.03 0.01 0.6 0.28 0.19 12 0.5
15 1.25 0.03 0.01 1.3 0.28 0.19 11 0.6
16 0.75 0.03 0.01 1.7 0.28 0.19 10 0.8
17 0.25 0.03 0.01 2.1 0.28 0.19 9 1.5
18 0 0.03 0.01 2.9 0.28 0.19 8.5 1.8
19 0 0.03 0.01 3.7 0.28 0.19 8 1.7
20 0 0.03 0.01 3.5 0.28 0.19 7.5 1.1
21 0 0.03 0.01 4 0.28 0.19 7 0.9
22 0 0.03 0.01 5 0.28 0.19 6.5 0.7
23 0 0.03 0.01 5.7 0.28 0.19 6.2 0.6
24 0 0.03 0.01 5.9 0.28 0.19 6 0.4

TABLE II: PRICE DATA OF THE SYSTEM

Price ($/MW)

Time
(hour)

λpvb λev λw λnet

23-7 2.2 1 2.2 0.0814

8-14 2.2 1 2.2 0.1408

15-20 2.2 1 2.2 0.3564

21-22 2.2 1 2.2 0.1408

TABLE III: VOLL AND SPILLAGE COSTS

VOLL ($/MW) Spillage Cost ($/MW)

Time
(hour)

SH SWH PP MRS PVB Wind

22-7 1 1 -0.5 2.2 4 6

8-21 1 1 0.25 2.2 4 6

Table II presents the price data of the system. Moreover, the
Value of Loss Loads (VOLL), and the spillage costs of the
wind and the PV-battery power generation are presented in
Table III. Note that αw and αpv to equal 1 in case 1, so the
SPB approach considers the uncertainty in case 1.

TABLE IV: Impact of uncertainty of unit generations on EC

No uncer. of wind and PV Uncer. of wind Uncer. of PV

EC ($) 652.683 665.087 660.969

B. Simulation Results

1) Impact of Uncertainty: This section presents the impact
of uncertainty of wind and PV power output on EC which is
presented in Table IV. However, the outdoor temperature and
must-run services are considered as deterministic variables for
simplicity.Table IV states that the uncertainty of the wind and
PV power output increases the amount of EC. Per the SPB
method, upper/lower variance of the predicted variables will
equal zero. Therefore, the decision-making variables can be
more/less than the predicted amount of these variables based
on the upper/lower variance of the prediction when there is
uncertainty in the prediction. As shown , the uncertainty of
the wind increases the amount of EC in comparison with the
uncertainty of PV because the penetration of wind power is
more than the penetration of PV power output in this case
study.

2) Impact of Optimistic Coefficient: In this section, the
MSPB method is used to apply the uncertainty of wind and
PV power generation. In this section, only the impact of αw

is assessed. It is considered that αpv equals 1. As seen in Fig.
3, increasing the amount of αw has the EC and wind energy
output increase. However, this increment is not uniform.
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Fig. 3: Impact of OC on wind energy output and system
expected cost

3) Impact of Prediction Accuracy: The impact of wind
power prediction accuracy is evaluated in three scenarios based
on its optimistic coefficient. Fig. 4 shows the influence of
the Prediction Accuracy Coefficient (PAC) on the EC and
wind energy output. In this case, it is assumed that upper
prediction accuracy is equal to 15% and the lower prediction
accuracy is equal to 10% when PAC equals 1. Additionally,
upper prediction accuracy equals 10% and lower prediction
accuracy is equal to 6.67% when the PAC equals 0.67, and
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upper prediction accuracy equals 22.5% and down prediction
accuracy equals 15% when the PAC equals 1.5. As seen in
Fig. 4, increasing the amount of wind power PAC can have
a positive effect on the EC in all scenarios. However, the
increasing of PAC does not get the wind energy output to
increase in all scenarios. Therefore, the pessimistic impact of
when it equals zero is the main reason why increasing the PAC
has the wind energy output decrease. It is noticeable that the
simulation results of the system are more realistic when αw

equals zero because increasing prediction error has negative
effect on the system energy output. Hence, this point is seen
when αw equals zero.
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Fig. 4: Impact of wind power prediction accuracy on wind
energy output and system expected cost.

V. CONCLUSIONS

In this paper, Stochastic Predicted Bands (SPB) method
has been defined as a novel interval method and utilized to
model the uncertainty of the decision-making variables in the
REM problem. The bands based on prediction of the stochastic
variables have been used to model the uncertainty of these
variables. Also, Optimistic Coefficient (OC) has been defined
for the first time in this paper to enhance the performance
of the SPB method. Therefore, this new interval approach
has been called Modified Stochastic Predicted Bands (MSPB)
method. OC is a slack parameter for the decision-maker
system. Hence, the flexibility, due to the OC, performs robust
and interval optimization methods only in the MSPB method.

The performance of the proposed model is evaluated based
on the influences of the uncertainty of wind and PV power
generation. Additionally, the performance of MSPB is assessed
in this paper. This is done by analyzing the effects of the
optimistic and prediction accuracy coefficients on the system
simulation results. According to the simulation results, increas-
ing the amount of the OC can make the optimistic impacts on
the system outputs and increase the system EC and the power
generation output of the uncertain energy resources.

Lastly, the proposed algorithm considers the uncertainty in
the REM problem, it has many advantages such as reducing
the computational burden of the system. However, this method
has some drawbacks too. For example, the performance of
decision-maker and predictor systems are independent. While,

the predictor system can be updated based on the outputs of the
decision-maker system. The mentioned topic requires further
research which will be considered in our future works.
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