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Abstract—Using only vertical acceleration measurements for
the sprung and unsprung masses of a suspension system of a
commercial city bus, the goal of the paper is to develop an analysis
method to find the vibration modes of the mechanical system from
data measured during real life operation. The identified vibration
modes can be used to (in)validate first principle physical models
of the system, while the identified ARMA models can be used to
develop uncertainty models. The challenge in the problem is that
the measurements are subject to very high level of noise due to
maneuvering of the vehicle, nonlinear effects of the suspension
system, vibration of the engine and the gear system, and sensor
noise. Nonparametric and parametric modeling methods are
applied to evaluate the quality of the measurements and find
the invariant properties of the suspension system. It is shown
based on multiple experiments that independently of the actual
road properties and operating conditions, eigen-frequencies of
some vibration modes can be determined with relatively small un-
certainty, while the corresponding damping factors have varying
amount of uncertainty. Comparing the results with the modes of a
full car vehicle model developed based on physical considerations,
it can be concluded that an identification algorithm for obtaining
the parameters of the physical model must be complemented with
a suitable uncertainty modeling and classification.

I. INTRODUCTION

Assessing technical conditions of the road network and
of fleets of public vehicles in a city provides an important
support to operators in making decisions on the scheduling
and harmonization of maintenance works. The long range goal
of our project is to equip a fleet of buses with relatively low
cost hardware to collect data about vertical vibrations and to
develop a tool chain for evaluating both road conditions and
technical state of the vehicles. The resulted system is to operate
during normal every-day operation continuously monitoring
the vehicles and supporting decision making. Toward the
construction of such a monitoring system, the following tasks
have to be performed.

Construction of a mathematical model for describing nom-
inal vibration mechanism. This model will serve as a reference
for evaluating both the technical condition of the suspension
system of a specific vehicle, and conditions of road surface.
The reference model should be constructed based on exper-
iments of specific circumstances where the road surface is
known and undamaged, the road is straight, the vehicle speed
is constant, the vertical dynamics of the vehicle is excited by
well specified test obstacles placed on the road. With repeated
experiments a set of nominal models are obtained from which
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a so called nominal uncertainty model set can be constructed,

(3], [6].

Furnished with the nominal model set, measurements are
collected under specific test conditions, like different road
surfaces and vehicle suspension characteristic. Uncertainty
modeling is repeated to obtain a set of uncertainty models. We
expect that by using a sufficient nominal model, the effects of
a normal vehicle behavior can be filtered out of the data, and
the uncertainty models can be applied to classify anomalous
effects due to bad road or vehicle conditions.

To start any identification process we need data. Exper-
iments are expensive and time consuming, therefore some-
times we have to make the best of measurements collected
during normal every-day operation of the system. In these
circumstances the data of commercial city buses contain the
effects of several issues: road surface variations, dynamics
of the suspension system excited by the disturbing lateral
and longitudinal accelerations, roll and pitch motions of the
vehicle, variations in the mass of load, and sensor noise. Only
a small part of the information is due to the vertical suspension
system and the vertical road excitation. We say that these
measurements are subject to very high level of noise. It is
important to know what information can be obtained from the
data like this. To this end, we seek in this paper the “invariant
factors”, that is, parameters that can be gained independently
of road and operation conditions.

Preliminary results can be found in [10] and [11], where
nonparametric and parametric (AR, ARMA) spectral analysis
were applied to evaluate vibration modes in terms of ride
comfort and invalidate the physics based low order “quarter
car” model, respectively.

In this paper it is shown that by identifying a sequence
of autoregressive moving average (ARMA) models, some dis-
turbing effects can be identified, and some invariant parameters
can be estimated which can be useful in the validation and
identification process of a 7-degree of freedom, first principle
linear suspension model, the so called full car” model. The
comparison of the invariant parameters obtained from the
ARMA models and those of the full car model suggests that a
sufficiently detailed physical model endowed with uncertainty
models can be identified even in the presence of high level of
noise.

The paper is organized as follows. In Sections II and III the
experimental conditions and the quality of measurements are
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Fig. 2. Measured time-domain acceleration data at the front right. Unsprung
mass (top) and sprung mass (down).

discussed. The invariant parameters of the suspension system
under the time-varying uncertain effects are determined in
Section IV.

II. EXPERIMENTAL CONDITIONS AND PREPROCESSING

The test vehicle shown in Fig. 1 was equipped with seven
accelerometers. Near the four spindle on each of the Z-
axis direction PCB ICP-type accelerometers were mounted to
measure the vertical acceleration of the unsprung masses. On
the floor plate (except for the driver side), over these sensors,
differential DC MEMS accelerometers were mounted along
the Z-axis direction to measure the vertical acceleration of
the sprung mass. In addition to the acceleration transducer
system a GPS based track recorder was also installed in order
to support data segmentation.

The measurements for the analysis in this paper were
collected on the normal route-way of the city bus in real traffic
conditions. The data was segmented into smaller records. Eight
pieces, each of length 10.24 sec, were cut. The measurements
are affected by both the road surface and the vehicle dynamics.
A sample data record can be observed in Figure 2.
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Fig. 3. Anti-aliasing filtering

The row data was sampled by 20 kHz resulting in a large
data set. In order to reduce the amount of data, a new sampling
frequency was chosen to be f; = 1/Ts = 200Hz which is
sufficiently high to capture the dynamics of the suspension
system. However, resampling must be taken with care, due to
aliasing effects, as demonstrated in the following.

An ideal filter (rectangular window) was used as antialias-
ing filter. First, the DFT components of the 20 kHz signal
beyond 25Hz were zeroed out. Then the filtered 20 kHz signal
was reconstructed by using inverse DFT. This filtered signal
can be resampled with f, = 200Hz. The resulted data set
consisted N = 2048 samples.

In Figure 3 a 0.1 sec period of the original signal and
the filtered and resampled signal are plotted with green and
blue lines, respectively. For illustration of the necessity of
antialiasing filtering, the original signal is resampled also
without filtering. The result is plotted by a red line in Figure
3. The difference between the two resampled signals can
be observed also in the frequency domain in Figure 4. The
spectrum of the filtered and resampled signal coincides with
the spectrum of the original 20 kHz signal. Without anti-
aliasing filtering (red line), high frequency components of the
signal (noise) appear at lower frequencies after resampling and
alter the low frequency components of the signal. For more
details on aliasing effects, see [2].

ITI. SPECTRAL ANALYSIS

In order to have a first impression on the information
the data may contain, a preliminary spectral analysis can be
performed. Both non-parametric and parametric methods can
be considered. In this paper, the parametric ARMA method is
used not only for spectral analysis, but also for determining
the possible modes of the suspension system. The approach
we follow is to separate invariant factors (possibly due to
suspension system dynamics) from uncertainties that may vary
from experiment to experiment. In this section the applied
mathematical tools are summarized.
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Fig. 4. Effects of anti-aliasing filtering on the low frequency components of
the signal.

The goal of spectral estimation is to describe the frequency-
distribution of the power contained in a signal, based on a
finite set of data. The power spectral density (PSD) of a
wide-sense stationary random process x; is mathematically
related to the autocorrelation sequence by the discrete Fourier
transformation (DFT). In terms of normalized frequency,
this is given by Pu.(f) = Ts> o . Ryp(m)e2mmfTs,
where the autocorrelation sequence is defined by R,,(m) =
Bl @am =) yhere u denotes the mean of the sequence,

2
o= ﬁ;N P, (f)df denotes variance with Nyquist frequency
N = ﬁ, and E/(.) denotes expectation, see [5], [7].

A. Nonparametric methods

The PSD can be estimated directly from the sampled
data (nonparametric methods). The simplest method is the
periodogram which is the Fourier transform of the biased
estimate of the autocorrelation sequence

N
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For a one-sided periodogram, the values at all frequencies
except 0 and fy are multiplied by 2 so that the total power is
conserved. Periodograms can be computed by using DFT.

2
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The periodogram is asymptotically unbiased, however, in
some cases the periodogram is a poor estimator of the PSD
even when the data record is long. This is due to the variance
of the periodogram,

B 2P2 (fr), k‘:Oork:%,

Var(PrT(fk)) - { me(fk)’ k= 1’2,“’,%_1 (2)
which does not tend to zero as the data length N tends to
infinity. Here, P,.(fx) denotes the periodogram defined by
(1) computed by DFT. In statistical terms, the periodogram is
not a consistent estimator of the true power spectral density of
a wide-sense stationary process.
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Fig. 5. Power spectral density of the measurements of Segment 4

An alternative method is by Welch, [12]. It breaks the time
series into segments to reduce the variance of the periodogram.
Welch’s method computes a modified periodogram for each
segment and then averages these estimates to produce the
estimate of the power spectral density. Welch’s method yields
a biased estimator of the PSD, however it is asymptotically
unbiased. For a fixed length data record, the bias of Welch’s
estimate is larger than that of the periodogram because the
length of the segments is less than the length of the entire
data sample. The variance of Welch’s estimator is difficult to
compute. Basically, the variance is inversely proportional to the
number of segments whose modified periodograms are being
averaged.

A typical PSD computation is shown in Figure 5, where
the periodogram and the Welch’s method were used. It can
be seen that the variance of the periodogram is quite large.
The variance of Welch’s method is much smaller, it actually
depends on the chosen window length and the overlapping rate.

From Fig. 5, two main resonant peaks of the PSD can be
observed. The one is about 1Hz, the other is about 9Hz. Based
on the physical model of a quarter car suspension model, the
two peaks should correspond to the two main modes of the
suspension system. In [10] the suspension system is evaluated
in terms of ride comfort based on the vibration levels and
damping factors computed from the two PSD peaks of the
two acceleration measurements and multiple data segments.

In order to further examine the information that can be
gained from the data, parametric methods are involved.

B. Parametric methods

Parametric methods estimate PSD from a signal that is
assumed to be output of a linear system driven by white noise.
Examples are the Yule-Walker and the Burg method. These
methods estimate the PSD by first estimating the parameters of
the linear system that hypothetically generates the signal. They



tend to produce better results than classical nonparametric
methods when the data length of the available signal is
relatively short. Parametric methods also produce smoother
estimates of the PSD than nonparametric methods, but are
subject to error from model misspecification.

The model structure applied in this paper is the auto
regressive moving average (ARMA) process

ARMA(p,q):

Ye ta1yi—1+ ... FapYs—p =€+ C1€41 + ... + C4€t_q-
with e; being a white noise process of variance A. With given
n and p, ARMA model parameters are estimated in this paper
by iteratively minimizing a quadratic prediction error criterion

[5]. With the choice ¢ = p, the model will be denoted a single
argument by ARMA(p).

Suppose the model structure ARMA(p) and the model
parameters collected in vector 6

T
0 = a1, ag, ...,ap, c1, C2y ..., Cp] 3)

are chosen, and the noise variance A are given, the estimated
PSD of the output can be expressed by
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is the transfer function of the model.
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For a given data set, the goal of the ARMA model identifi-
cation is to find the model parameters in vector § which mini-
mize the variance A of the prediction error £.(6) = v — 9:(0).
This problem is equivalent to minimizing the variance of the
PSD estimate. For ARMA model parameter identification an
iterative search algorithm is used that minimizes a robustified
quadratic prediction error criterion [8], [5, Chapter 10.2].

Figures 6 and 7 present the PSD estimate based on iden-
tified ARMA(10) and ARMA(20) models, respectively. It can
be seen that the higher order model captures better the two
modes of interest. From the poles of the ARMA models, the
stable complex poles with positive real part are selected, and
their associated frequency is computed by

_ =)
27T

where z; denotes a complex pole of the discrete time model
and Ts, = 1/fs is the sampling time. Actually, f; is the
frequency of the step response equivalent (zero order hold
equivalent) continuous-time resonant mode. Vertical black dot-
ted lines show the frequencies of these lightly damped modes.
It can be concluded that high order ARMA models are able
to provide good PSD estimates. Concerning the frequencies of
the resonant modes, Fig. 8 justify the above statement. It can
be seen that by increasing the model order the frequency of
the modes in the low frequency range, [0Hz, 15Hz], appear
consistently. It can be said that the some frequencies of the
modes are invariant against the model order, when the order
is sufficiently high to capture uncertainties.
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Fig. 6. Power spectrum of ARMA(10) model. Data: segment 1, sprung mass
acceleration. Vertical black dotted lines show the frequencies of the lightly
damped modes.
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Fig. 7. Power spectrum of ARMA(20) model. Data: segment 1, sprung mass
acceleration. Vertical black dotted lines show the frequencies of the lightly
damped modes.
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Fig. 8. Frequencies of the identified resonant modes in the different ARMA
models.

Beyond spectral analysis, the identification of ARMA mod-
els are useful also to determine poles of the linearized model
of the suspension system and point at some possible causes of
some uncertainties. This is discussed in the next section.

IV. INVARIANT PARAMETERS OF SUSPENSION SYSTEM

We have seen in Fig. 8 that some frequencies are invariant
(do not vary too much) under increasing the model order. The
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Fig. 9. Frequency and damping of resonant modes in the different ARMA

models, sprung mass acceleration, and poles of a full car suspension model.

variation of this invariant frequency parameter increases when
other experiments are considered. In Figs. 9 and 10 all 8 road
segments are used to generate ARMA models, and all resonant
frequencies are plotted versus model order (left) and versus the
corresponding damping parameter.

The ARMA models for the unsprung mass acceleration
show invariance of frequencies only at 1Hz and 4Hz, the higher
modes are strongly influenced by the noise and the uncertainty.
In contrast, models for the sprung mass acceleration tell much
more, see Fig. 9. Poles at about 1Hz, 7Hz, 9Hz, 11Hz and
12Hz are much more characteristic, than other frequencies. The
value and variance of the corresponding damping parameters
plotted on the right hand side show the character of some
modes. To be more specific, very small damping, around le-
3 refer to the presence of some periodic disturbance of 7Hz,
11Hz and 12Hz.

The obtained poles of the ARMA models are compared
to the poles of a first principle physical model, the so called
full car suspension model. In that model, it is assumed that
the vehicle body is rigid, and placed on four independent
suspension systems. Through the rigid body, these subsystems
are connected. Detailed mathematical model is omitted here,
but can be found in references [13] and [14]. The poles of this
linear full car suspension model are parameterized in terms
of frequency and damping, and denoted in Figs. 9 and 10 by
red diamonds. The poles at 1Hz are coincide with poles of
many ARMA models. Poles at 10Hz have a bit larger damping
than those of ARMA models. This result enables some hope
to construct and identify physically parameterized suspension
models, possibly by extending the dynamics by flexible body
modes. In every case, the identification must be carried out by
joint uncertainty modeling.

V. CONCLUSION

The suspension system of a city bus was analyzed based
on the spectral analysis of real acceleration measurements col-
lected in real traffic conditions. Nonparametric and parametric
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Fig. 10. Frequency and damping of resonant modes in the different ARMA
models, unsprung mass acceleration, and poles of a full car suspension model.

tools were applied to qualify the amount of uncertainty in
the data. We found that no low order, first principle models
(quarter car suspension models) are able to describe the data,
specially the data of multiple experiments. The uncertainty due
to time-varying effects, neglected dynamics and disturbances,
is very large in the data. In this paper we pursued invariant
parameters, that can be determined even under varying condi-
tions, multiple experiments, and which were independent on
the model order selection.

It can be concluded that some low frequency lightly
damped modes are invariant, specially the frequency parameter
of these modes. In all experiment and high order ARMA
models, the same periodic components are present, so these
components can be filtered out for further identification prob-
lems. The invariant modes were also compared with the poles
of a medium order full car suspension model, and we found
close relation between them, which show a direction for further
identification work.

Future work includes the identification of higher order
physical suspension models with joint identification of black
box uncertainty models.
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