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Abstract—Sliding Mode Control (SMC) is well known as
a robust control approach and is proven to be able to deal
with nonlinear systems. To achieve this capability, the SMC
controller input design is divided into two parts: a sliding surface
design (continuous control) and a switching function design
(discontinuous control). A spacecraft’s attitude model is a multi-
input and multi-output (MIMO) system and thus control design
is difficult for some methodologies, however, in this case a SMC,
is straightforward to construct. In this paper, for the continuous
part, a reduction of order method (ROOM) is used to construct
the sliding surface. For the discontinuous control, three different
switching functions are designed and evaluated such as relays
with constant gains, relays with state dependent gains and linear
feedback with switched gains. The main contribution of this
paper is to both analyse and investigate the limitations of these
three switching functions at two different points (critical gains
and proper gains) on a spacecraft’s attitude model. The gains are
selected using trial and error techniques as long as these gains
meet the sufficiency conditions for the existence of a sliding mode.
The discontinuous control is a high-speed switching function that
produces chattering in the control input; however, solutions for
chattering drawbacks are not discussed here. The best switching
function is chosen based on the spacecraft’s attitude transient
performance requirements.

Keywords: SMC, switching function, sliding surface, spacecraft’s
attitude

I. INTRODUCTION

In space, spacecraft positioning is challenged by distur-

bances and uncertainties such as sun UV, solar storms, atmo-

spheric drag in low earth orbits and, sun and moon gravita-

tional forces [1]. Hence, a robust controller is required to main-

tain the orientation of the spacecraft when these challenges

occur. Criteria such as computational time, control power

consumption and control output accuracy must be considered

when designing an appropriate robust controller. These criteria

are very important to make sure a spacecraft is successfully

able to accomplish its missions in the prescribed period.

Among the possible robust control strategies, Sliding Mode

Control (SMC) attributes such as low complexity, low compu-

tational burden, less weight and low cost control method make

this a suitable approach to be implemented as a spacecraft

attitude controller [2]. Adaptive Fuzzy SMC [3], Minimum

Sliding Mode Error Feedback [4] and Integral SMC [5]

have been successfully proposed for spacecraft attitude and

orientation model. Furthermore, as spacecraft’s attitude model

is a multi-input and multi-output (MIMO) system, using SMC,

the compensated system is easy to design. Thus, in this paper,

SMC is chosen as the base methodology for designing a

spacecraft attitude and orientation control law.

SMC control law design can be divided into two charac-

teristic features (as expanded in Section III); the continuous

and discontinuous control parts. The continuous part will

drive the state trajectories of the controlled system onto the

sliding surface in a prescribed manner while the discontinuous

feature will maintain the states on the sliding surface [6].

There are various approaches to design the continuous part

such as regular form and the reduced order dynamics, method

of hierarchy and diagonalization methods [7] for a MIMO

system. This paper, however, will use the reduction of order

method (ROOM) to design the continuous part. The rationale

for this is that in the ROOM method, the sliding surface

coefficients can be chosen flexibly and thus looser assumptions

can be made as long as the characteristic equation of the

compensated system is comparable to the design criteria. For

the discontinuous part (switching function), three approaches

(relays with constant gain, relays with state dependent gains

and linear continuous feedback) are evaluated on a known

spacecraft attitude model [7].

It is important to understand the range of limitations of

these SMC methods before further improvements can be

made. Hence, the main novelty of this paper is to design

and investigate the SMC control law with a focus on the

switching function (SFD) characteristics and capability at

two different points (critical gains and proper gains) for a

spacecraft’s attitude control. A notable part of the proposed

approach is that some of the gains can be tuned using trial

and error while satisfying some mild conditions to ensure the

existence of a sliding mode. Characteristics such as chattering

in the control inputs and transient response in the outputs

are observed. Consequently, the switching function with most

advantages is chosen as a basis for proposed improvements.

On the other hand, ideally, the discontinuous control law must

produce chattering due to a fast switching mechanism and

discontinuous control across the sliding surface [8]. In this

paper, approaches for chattering attenuation are not discussed

and elimination techniques are proposed for future work.

The remainder of this paper is organized as follows. Section



II constructs the spacecrafts attitude model orbiting around

earth. Section III designs and examines the SMC control law

(ROOM and SFD) in a nonlinear uncertain MIMO system at

two different situations. Next, Section IV analyses and evalu-

ates the designed methods with special attention on potential

improvements. Finally, conclusions and future proposals are

presented in Section V.

II. SPACECRAFT’S ATTITUDE AND ORIENTATION MODEL

In this section, the rotational equation of motions (EOM) [9]

of a spacecraft’s rigid body in the body-fixed frame orbiting

the earth with respect to an Earth Centered Inertial (ECI)

(figure 1) are presented.

Figure 1. Spacecraft’s attitude orbiting reference frame O, in moving frame
B. Both are moving in ECI [10].

Consider the general form of a nonlinear system in state-

space as in (1).

ẋ(t) = f(t, x) +B(u(t) + d(t)) (1)

where x(t) is a set of state variables, f(t, x) is a nonlinear

function, B is a Rm×n matrix, u(t) is a set of inputs and

d(t) is the disturbances. Then, the EOM of a spacecraft are

summarised as:

Jω̇ = Jω×ω + τ (2)

where J=diag(Jx,Jy ,Jz) is the inertia tensor of rigid body, ω

is spacecraft angular velocity, ω̇ is angular acceleration and τ

is torque control input generated by the spacecraft’s actuators.

The vector ω has three rotational degrees of freedom (Z, Y ,

and X axes are denoted as yaw (ψ), pitch (θ) and roll (φ)

respectively).

The absolute angular velocity ωB of moving frame B is

represented as follows where ωBO is the velocity of B respect

to O and ωO is the velocity of O with respect to ECI .

ωB = ωBO + ωO; ωB =







ψ̇ − ωoθ

θ̇ + ωoψ

φ̇+ ωo






(3)

Then, (3) is substituted into (2) with ω replaced by ωB .

Finally, the nonlinear spacecraft’s attitude system is given by

a form similar to (1) with:

˙x(t) =
[

ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6
]T

f(t, x) =
[

x2 h x4 i x6 j
]T

B =





















0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1





















u(t) =
[

τx
Jx

τy
Jy

τz
Jz

]

(4)

where
[

ψ ψ̇ θ θ̇ φ φ̇
]

are replaced by
[

x1 x2 x3 x4 x5 x6
]

respectively and

h = (
Jy−Jz+Jx

Jx
)ωox4 − (

Jy−Jz

Jx
)(x4x6 + x1x2ωo + x1ω

2
o);

i = (
Jz−Jx−Jy

Jy
)ωox2 + (Jz−Jx

Jy
)(x2x6 − x3x5ωo − x3ω

2
o);

j = (
Jx−Jy

Jz
)(x2x4 − x3x4ωo + x1x2ωo − x1x3ω

2
o);

In conclusion, the spacecraft’s attitude model is a MIMO

system where the inputs u(t) are the torques τx, τy, τz gener-

ated by actuators while the outputs are the spacecraft’s angular

velocity in the X , Y and Z directions.

III. CONTROL LAW DESIGN IN SMC

In this section, the constructions of SMC control law are

presented. There are two stages to design the control law (Ui)

that is continuous (Ueq) and discontinuous (UN ) control.

Ui = UN + Ueq (5)

In this paper, the first part (continuous control (Ueq)) is

designed by manipulating the inputs of the uncompensated

system using ROOM by introducing sliding surfaces. ROOM

is chosen because this method is suitable and easy to design

for a MIMO system.

The main contribution of this paper is focussed on the

second part of the control design. In the discontinuous control

(UN ) component, three alternative approaches are designed

and deployed; relays with constant gains (RCG), relays with

state dependent gains (RSG) and linear feedback with switched

gains (LFSG) [7]. Hence, the specific novelty in this section

is the construction of the switching function at two different

points (critical gains and proper gains [NOT DEFINED

THESE TERMS YET!]) in order to observe their constraints.

Thereafter, the performances of the alternative switching func-

tions are evaluated and compared. UNCLEAR On the
other hand, the gains (which ones) are tuning
using trial and error technique as long as the
values are fulfill the conditions for the existence
of a sliding mode (needs to be clarified).



A. Sliding Surface Design using Reduction of Order Method

The basic method in SMC is to design a set of switch-

ing surfaces (σ(x)). The behavior of a switching surface is

illustrated in figure 2 [1]. The σ(x) line is designed to cross

the origin (target) to make sure the compensated system is

robust to disturbances and uncertainties. The switching surface

equation and the dynamics equation where S is the sliding

surface are summarised as:

σ(x) = Sx = 0 (6)

σ̇(x) = Sẋ = 0 (7)

Figure 2. Phase-plane of the closed loop system for second order system.

The spacecraft’s attitude model is a multi-input (3 inputs)

and multi-output (3 outputs) system. Hence, three sliding

surfaces (S1, S2, and S3) are required for the spacecraft’s

attitude model:

S =







S1

S2

S3






=







s11 s12 s13 s14 s15 s16

s21 s22 s23 s24 s25 s26

s31 s32 s33 s34 s35 s36






(8)

In this paper, and with the spacecraft’s attitude model to be

used, it is appropriate to have the characteristic equation at

λ3+6λ2+11λ+6 with poles at −1, −2 and −3; the selection

of the characteristic equation is made in order to allow the

spacecraft’s attitude converge to the zero less than 100 seconds

[11]. Thus, some assumptions on the sliding surface coeffi-

cients (sij) are needed to ensure this characteristic equation is

achieved.

B. ROOM design

The sliding surface design using ROOM is as follows.

Firstly, (1) is replaced in (7) and produces:

Sẋ = S(f(t, x) +B(Ueq + d(t))) = 0 (9)

Now, u(t) become control law Ueq (the continuous part).

Hence:

Ueq = −(SB)−1(Sf(t, x) + SBd(t)) (10)

Then, (10) is substituted into (1) and produces :

ẋ = [I −B(SB)−1S]f(t, x) (11)

In ROOM, assumptions can be made on the sij values and

can be chosen flexibly. First define SB

SB =







s12 s14 s16

s22 s24 s26

s32 s34 s36






(12)

The determinant of SB can be set to any value as long as

|SB| 6= 0 and sij ≥ 0. To simplify the design process, assume

|SB| = 1. One of the combinations to set |SB| = 1 is to let

s12 = s14 = s22 = s26 = s32 = s34 = s36 = 1, s24 = 2 and

s16 = 0.

Thus, based on these selections, then:

(SB)−1 =







1 −1 1

0 1 −1

−1 0 1






(13)

Next, substitute (4), (8) and (13) into (11) so the dynamic

model is reduced to:





















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6





















=























0 1 0 0 0 0

0 a 0 b 0 c

0 0 0 1 0 0

0 d 0 e 0 f

0 0 0 0 0 1

0 0 0 h 0 i























(14)

where

a = s21 − s11 − s31; b = s23 − s13 − s33;
c = s25 − s15 − s35; d = s31 − s21;
e = s33 − s23; f = s35 − s25;
g = s11 − s31; h = s13 − s33;
i = s15 − s35;

Finally, using (7) and (14), the reduced order model of the

spacecraft’s attitude system is:

˙̂x =







˙̂x1
˙̂x2
˙̂x3






=







a b c

d e f

g h i






(15)

where ˙̂x1 = ẋ2, ˙̂x2 = ẋ4 and ˙̂x3 = ẋ6.

In this design, the characteristic equation of (15) is matched

to λ3+6λ2+11λ+6, in order to achieve zero steady state error

less than 100 seconds [11]. Hence, the expanded characteristic

equation of (15) is given as:

∆( ˙̂x) = λ3 + (s11 − s15 − s21 + s23 + s31 − s33 + s35)λ
2

+(s11s23 − s13s21 − s11s25 + s15s21 + s13s25
−s15s23 − s11s33 + s13s31 + 2s11s35 − 2s15s31
−s13s35 + s15s33 − s21s35 + s25s31 + s23s35
−s25s33)λ+ (s11s23s35 − s11s25s33 − s13s21s35
+s13s25s31 + s15s21s33 − s15s23s31)

(16)



and the implied constraints on the values sij are given as:

s11 − s15 − s21 + s23 + s31 − s33 + s35 = 6

s11s23 − s13s21 − s11s25 + s15s21 + s13s25
−s15s23 − s11s33 + s13s31 + 2s11s35 − 2s15s31
−s13s35 + s15s33 − s21s35 + s25s31
+s23s35 − s25s33 = 11

s11s23s35 − s11s25s33 − s13s21s35
+s13s25s31 + s15s21s33 − s15s23s31 = 6

(17)

In this paper we will define s13 = 0.5, s15 = 4, s23 = 3,

s25 = 2, s31 = 1 and s35 = 2 and then use these values in

combination with (17) to solve for the remaining coefficients

sij . Thus:

s11 − s21 − s33 + 2 = 6
5s11 + 1.5s21 + 2s33 − s11s33 − 11.5 = 11
6s11 − s21 − 2s11s33 + 4s21s33 − 11 = 6

(18)

Solving (18), then s11 = 5.5303, s21 = 0.0623 and s33 =
1.468. Finally, the sliding surface design of (8) is given as

follows:

S =







5.5303 1 0.5 1 4 0

0.0623 1 3 2 2 1

1 1 1.468 1 2 1






(19)

In conclusions, using the ROOM approach there are 18 coef-

ficients which have to be selected to define the sliding surface

design. This gives a huge amount of flexibility to the designer.

In principle one can meet the required dynamics for the sliding

mode by choosing 15 coefficients and then solving for the

remaining 3 to ensure sure the compensated system meets the

design criteria. This paper does not explore how this flexibility

might be exploited in general. HOWEVER, READ-
ERS MIGHT WANT SOME REFERENCES TO
FOLLOW UP OR HINTS AS THIS SEEMS
TOO ARBITRARY

C. Switching Function Design (SFD)

There are three popular variants of SFD (RCG, RSG and

LFSG) which are discussed in this section and for two different

scenarios which are critical gains and proper gains. The

general form of RCG, RSG and LFSG are shown in Table

I.

1) Relays with constant gains (RCG): The rules to meet

the sufficiency condition for the designed SMC is σσ̇ =
αiσi(x)sgn(σi(x)) < 0, if σi(x) 6= 0. αi is a constant tuning

gain (NEED INSIGHT INTO CHOICE) where the value

must be negative αi < 0. The stability condition for RCG is:

Table I
EXISTING SWITCHING FUNCTION CONTROL ALGORITHM

SFD Algorithm Condition

RCG UiN (x) =

{

αisgn(σi(x)),

0

σi(x) 6= 0
σi(x) = 0

RSG UiN (x) =

{

αi(x)sgn(σi(x)),

0

σi(x) 6= 0
σi(x) = 0

LFSG UN (x) = −Lσ(x)

L is sym-
metric posi-
tive definite
constant ma-
trix

σi(x) ˙σi(x) = αiσi(x)sgn(σi(x)) < 0

= αi
σ2

i (x)
|σi(x)|

Let,

αi = −0.001
Then,

σi(x) ˙σi(x) = −0.001
σ2

i (x)
|σi(x)|

< 0

(20)

2) Relays with state dependent gains (RSG):

The stability rules for the RSG controller are

σσ̇ = αi(x)σi(x)sgn(σi(x)) < 0, if σi(x) 6= 0. αi(x)
is a variable states function where αi(x) = βi(σ

2k
i (x) + γi)

with βi < 0, γi > 0 and k is an integer number.

σi(x) ˙σi(x) = αi(x)σi(x)sgn(σi(x)) < 0
αi(x) = βi(σ

2k
i (x) + γi)

Let,

βi(x) = −1, γi = 0.001, k = 1
Then,

σi(x) ˙σi(x) = −1(σi(x)
2 + 0.001) σi(x)

2

|σi(x)|

< 0
(21)

where here the design choices are *********give ratio-

nale*********

3) Linear feedback with switched gains (LFSG): The sta-

bility condition for LTSG is σT (x)σ̇(x)=−σT (x)Lσ(x) < 0,

if σ(x) 6= 0, L is a symmetric positive definite constant matrix,

L ∈ Rmxm. In this paper, L is a 3x3 matrix

L =





w y z

y w y

z y w



 (22)

w, y and z values are given in table II. again some rationale

is needed

4) Critical Gains and Proper Gains: There are two differ-

ent gains (critical gains and proper gains) where analysis of

performance are made on these switching functions designs

listed in Table I. The aims is to explore the limitations of

the SFD performances an gain insight into how alternative

proposals may be better suited to the given application. A

particular noteworthy point is that the gains in Table II are



Table II
GAIN SELECTION FOR SFD

SFD
RCG RSG LFSG
αi β γ L

Critical Gain -0.01 -1 0.01 w=0.02, y=0.01, z=0

Proper Tuning -0.000001 -1.0 0.000001
w=0.000002,
y=0.000001,
z=0

typically selected using trial and error techniques to meet the

conditions in table I and there is clearly a need for a more

systematic approach and insight into the repercussions of the

decisions taken.

IV. RESULTS

To perform and evaluate the designed control law with a

real case situation, next this paper considers the spacecraft’s

attitude model in (4) with numeric parameters as in Table III.

The selection of inertia tensor, Jx, Jy and Jz is based on

the International Space Station (ISS) [9] values. This section

will present the simulation results of the nonlinear system

with and without the SMC switching function approaches. The

results are divided into two parts; angular rate response at

critical gains, and proper gains and control input. For the first

subsection the transient response of the angular rate for both

gains selections are observed while the chattering phenomena

is analyzed in the second subsection.

Table III
NUMERIC PARAMETERS OF SPACECRAFT’S ATTITUDE SYSTEM

Parameter Value Unit

ωo 0.0011 rads−1

Jx 127538483.85 kgm2

Jy 201272329.17 kgm2

Jz 106892554.98 kgm2

τx, τy , τz 1× 10−3 N

d(t) sin(t) N

A. Angular Velocity of Spacecraft’s Attitude System

Figures 3 and 4 show the angular rate response of the

uncompensated (open-loop) spacecraft’s attitude system and

the same system in closed-loop with RCG, RSG and LFSG,

for critical gains and proper gains respectively.

• For critical gains, the uncompensated system shows that

the outputs for yaw, pitch and roll do not settle at zero

steady state error and thus closed-loop control is needed.

• For RCG, the outputs settle around 120 seconds with

chattering at an amplitude at 0.02 rads−1.

• RSG shows a chattering amplitude similar to RCG (0.02

rads−1) but converges faster in around 40 seconds.

• With LFSG, the angular velocity shows no chattering in

the outputs, but the convergence is somewhat slower at

280 seconds.

For the proper gains selections in figure 4, all the SFD methods

show zero steady state error with no discernible chattering.

With RCG and LFSG the angular rates converge to the

equilibirium point in around 10 seconds whereas RSG takes

around 100 seconds to achieve the equilibirium point. Again

the open-loop response does not converge. The summary of

SFD performances is summarised in Tables IV and V.
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Figure 3. Angular Rate Response of the Uncompensated and Compensated
System at the Critical Gain

Table IV
ANGULAR RATE RESPONSE AT THE CRITICAL GAIN

Original
System

RCG RSG LFSG

Steady State
Error

Yes Yes Yes No

Chattering Yes Yes Yes No

Chattering
Amplitude

0.02rads−1 0.02rads−1 0

Settling Time 120 s 40 s 280 s

Table V
ANGULAR RATE RESPONSE AT THE PROPER GAIN

Original System RCG RSG LFSG

Steady State Error Yes No No No

Settle Time 10 s 100 s 10 s

B. Control Inputs of Spacecraft’s Attitude System

Looking at the control inputs in figure 5, all the SFD

methods show some chattering with an amplitude of 0.1

rads−1. RSG, however, takes 5 seconds to converge to the

chattering amplitude compared to RCG and LFSG methods

where the chattering begins immediately.
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Figure 4. Angular Rate Response of the Uncompensated and Compensated
System at the Proper Gain
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Figure 5. Control Input of the Compensated System

V. CONCLUSIONS AND FUTURE RECOMMENDATIONS

This paper has focused on the potential uses of SMC

methods for spacecraft attitude control and specifically designs

and contrasts three common algorithms.

SMC approaches can produce high control accuracy but

the occurrence of a chattering phenomena is a significant

drawback. The results sections shows that at the critical

gains, LSFG gives an angular velocity which is free from

chattering compared to RCG and RSG. For the proper gains,

all techniques give outputs which are free from chattering.

However, the gain selection for proper analysis is small and

in general the gains may be quite difficult to tune to the require

for some trial and error and moreover higher gains may be over

sensitive to measurement noise. THIS LAST SENTENCE IS

UNCLEAR

In conclusion, the LFSG method shows a better performance

as there is no chattering in the angular velocity outputs

at the critical gains compared to RCG and RSG (both are

producing chattering in the outputs) for spacecraft’s attitude

model (see table IV). Thus, LFSG will be the preferred option

to design the SMC control law for this system for future

studies. However. it is noted that a modification in LFSG

is required in order to attenuate the chattering in the control

input. Some possible modifications to explore include higher

order sliding mode control [12], variable gain super-twisting

sliding mode control [13] and decaying boundary layer and

switching function method thorough error feedback [2].

A bit more information on next steps and desired

benefits would help. How improve compared to existing

ideas? Also any comments on tuning steps which were trial

and error? Why is your comparison a useful contribution

to the field? What is significance of this contribution?

Analysis/evaluation rather limited, could you say more?

Also, vague on performance requirements.
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