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Novel Approach Towards Global Optimality of Optimal Power Flow Using

Quadratic Convex Optimization

Hadrien Godard1,2,3, Sourour Elloumi2,3, Amélie Lambert2, Jean Maeght1 and Manuel Ruiz1

Abstract— Optimal Power Flow (OPF) can be modeled as a non-
convex Quadratically Constrained Quadratic Program (QCQP).
Our purpose is to solve OPF to global optimality. To this end,
we specialize the Mixed-Integer Quadratic Convex Reformulation
method (MIQCR) to (OPF).

This is a method in two steps. First, a Semi-Definite Program-
ming (SDP) relaxation of (OPF) is solved. Then the optimal dual
variables of this relaxation are used to reformulate OPF into an
equivalent new quadratic program, where all the non-convexity
is moved to one additional constraint. In the second step, this
reformulation is solved within a branch-and-bound algorithm,
where at each node a quadratic and convex relaxation of the
reformulated problem, obtained by relaxing the non-convex added
constraint, is solved. The key point of our approach is that the
lower bound at the root node of the branch-and-bound tree is
equal to the SDP relaxation value.

We test this method on several OPF cases, from two-bus
networks to more-than-a-thousand-buses networks from the MAT-
POWER repository. Our first results are very encouraging.

I. INTRODUCTION

The Optimal Power Flow (OPF) problem deals with de-

termining power production at different nodes of an electric

network where a production cost is minimized. If we model

this network with an AC framework, the optimization problem

is quadratic and non-convex [16].

(OPF) can be solved with general purpose solvers such

as Baron [21]. A branch-and-bound algorithm specialized to

(OPF) has been introduced in [7] using the SDP rank re-

laxation [15] as a lower bound provider. More recently [13]

introduces an SOCP-based branch-and-bound algorithm.

Our goal is to design a branch-and-bound algorithm that

closes the gap between lower and upper bounds. The lower

bound is obtained with the rank relaxation and the upper bound

is obtained with a feasible point computed, for instance, by an

interior point method. It has been already observed that this

gap is quite small for (OPF) instances as these lower and upper

bounds are very sharp in general [9].

To this end, we work on a specialization of MIQCR [2],

[3], [6] which is a method designed to solve non-convex and

mixed integer quadratic programs to global optimality. MIQCR

works in two steps: first a semi-definite relaxation is used

to reformulate the problem into another quadratic program.

Then this reformulated problem is solved within a branch-

and-bound framework where at each node a quadratic and

convex program is solved to get a local lower bound. A key

advantage of this method is that it requires the solution of
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only one SDP relaxation as a preprocessing step. Then, the

strength of this SDP lower bound is captured onto quadratic and

convex programming. However, the solution of this large SDP

is the bottleneck of MIQCR when handling larger instances.

The contribution of this paper is a specialization of MIQCR

to (OPF) where we prove that we can reach the strengthened

lower bound of the MIQCR method by solving a smaller

semidefinite relaxation than in the original approach.

In this paper, we adapt method MIQCR to the OPF problem.

In Section 2, we recall the formulation of the OPF problem

as a quadratic program. In Section 3 we introduce the semi-

definite relaxation used in our algorithm, known as the rank

(or Shor) relaxation of the OPF problem [15]. We also give

in this section a new proof of the strong duality of the rank

relaxation. Then, in Section 4 and in Section 5, we present our

contribution: the specialization of MIQCR to solve the OPF

problem. In Section 4, we prove that solving a smaller SDP

relaxation than in the original MIQCR approach is sufficient

to reformulate the OPF problem and to attain the sharp rank

relaxation bound at the root node of the branch-and-bound tree.

Indeed, solving the dual of the rank relaxation is equivalent

to finding the best quadratic reformulation of an OPF problem

among the MIQCR family of reformulations. Moreover, in Sec-

tion 5, we present a branch-and-bound framework to solve the

reformulated problem. Finally, in Section 6, we illustrate our

method by computational experiments on small and medium-

sized instances of OPF problems. Section 7 draws a conclusion.

NOTATIONS

• i is the complex number whose real part is null and

imaginary one equals one.

• Sm(R) is the set of symmetric matrices on R
m.

• 0m is the zero matrix of size m.

• Idm is the identity matrix of size m.

• λmin(M) is the smallest eigenvalue of a symmetric matrix

M .

• v(P ) is the optimal value of an optimization problem (P ).
• < A,B > is the canonic scalar product between matrices

A and B.

• |E| is the cardinal of a set E.

II. A QUADRATIC FORMULATION OF THE OPF PROBLEM

Driving power flows from producers to consumers in an

electric network constitutes the OPF problem. Usually the

amount of consumed electric power is known at each node

of the network. On the contrary the production is unknown

and OPF deals with determining its value. The goal is to
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minimize electric power production costs under the constraint

that the demand is satisfied at each node, and that active

and reactive powers are box constrained for each production

unit. Because real electric transmission networks work with

alternative current, one must consider voltage at each node in

order to compute where the power flows through the network.

Engineering limits such as bounds on voltage magnitude are

also considered as constraints. See the bus injection model

in [16] for more precisions on this topic.

We only consider a cost linearly linked to the power pro-

duced at each unit. Note that a linear cost on the power

production handles the case where one tries to minimize losses

on the network. The following program is a classic model for

the (OPF) problem:



















































min
V ∈Cn,PG∈Rng

,QG∈Rng
c′PG (1)

s.t.

PG
i + iQG

i = V ∗YiV, i ∈ NG, (2)

−PD
i − iQD

i = V ∗YiV, i ∈ ND, (3)

Pmin
i ≤ PG

i ≤ Pmax
i , i ∈ NG, (4)

Qmin
i ≤ QG

i ≤ Qmax
i , i ∈ NG, (5)

(V min
i )2 ≤ |Vi|

2 ≤ (V max
i )2, i ∈ N. (6)

Where N is the set of network nodes and n their number.

NG, respectively ND, is the set of production, respectively

consumption, nodes and ng = |NG|. Variables V are the

complex voltages of network buses. Variables PG are the

generated active powers at production buses. Variables QG

are the generated reactive powers at production buses. c is

the vector of linear costs, where ci is the production cost at

node i ∈ NG. Yi is the complex admittance matrix at node

i ∈ N . Pmin and Pmax are lower and upper bounds on active

generated powers. Qmin and Qmax are lower and upper bounds

on reactive generated powers. Vmin and V max are lower and

upper bounds on voltage magnitudes.

The objective function (1) is linear relatively to active pro-

duced powers PG. Constraints (2) (resp. (3)) are power balance

equations at production (resp. consumption) nodes. Constraints

(4), (resp. (5)), are bounds on active (resp. reactive), produced

powers. Constraints (6) are bounds on voltage magnitudes.

Substituting voltages to other variables, from equations (2),

one can see that (OPF) can be modeled as a pure quadratic

program, without linear terms, in the real and imaginary parts

of voltages.

To simplify the notations, we rewrite the above problem in a

more abstract style as the following quadratically constrained

quadratic program with 2n variables (OPF ):

(OPF )











min
x∈R2n

xtCx

s.t.

xtAkx ≤ bk, k ∈ K.

Variables x are the real and imaginary parts of the voltage

at each network node. C ∈ S2n(R). K is the set of constraints

indices. At each node there are two constraints that bound the

voltage magnitude, and four other constraints that model the

complex power balance. Hence, the number of constraints is

6n. ∀k ∈ K,Ak ∈ S2n(R) and bk ∈ R.

The objective function and the constraints are convex if and

only if matrices C and Ak are positive semi-definite (PSD)

which is not the case for (OPF ).
In this formulation with continuous variables there are no

natural lower and upper bounds on variables x. However to

perform a spatial branch-and-bound algorithm, initial lower and

upper bounds (ℓ and u) on each variable are needed.

To obtain such bounds one can use the fact that the

modulus of each complex voltage is upper-bounded. Those

upper-bounds are also at the heart of the proofs of Proposi-

tions 1 and 2.

Suppose that xi is the real part of the complex voltage at

node i, and xi+n its imaginary part. By Constraints (6), we

have:

x2
i + x2

i+n ≤ (V max
i )2. (7)

It follows that:

−V max
i ≤ xi ≤ V max

i and − V max
i ≤ xi+n ≤ V max

i .

Below, we take:

ℓi = ℓi+n = −Vmax
i , (8)

ui = ui+n = Vmax
i , (9)

ℓ ≤ x ≤ u.

III. THE RANK RELAXATION OF OPF

In this section we recall the rank relaxation of (OPF ), that

we call (SDP ):

(SDP )



















min
X∈S2n(R)

< C,X >

s.t.

< Ak, X >≤ bk, k ∈ K

X � 0.

The dual of (SDP ) is:

(DSDP )































max
α∈R|K|

∑

k∈K

−bkαk

s.t.

C +
∑

k∈K

αkAk � 0,

αk ≥ 0, k ∈ K.

where αk is the dual variable associated with constraint k.

Strong duality for feasible OPFs has been already proved

(see for instance [8]). In this paper, we propose another proof

based on the fact that the modulus of each complex voltage is

bounded. Parts of this proof will be used later to demonstrate

Proposition 2.

Proposition 1: If (OPF ) is feasible, there is no duality gap

between (SDP ) and (DSDP ). In other words, strong duality

holds for the rank relaxation of feasible OPF problems.

Proof: We first prove that if (OPF ) is feasible then

(SDP ) is feasible too. Indeed from each feasible solution x̃ to

(OPF ) one can build a feasible solution X̃ = x̃x̃t to (SDP ).



Let us now prove that (DSDP ) is strictly feasible, i.e.

finding α̃ > 0 satisfying C +
∑

k∈K α̃kAk ≻ 0.

In the following we assume that the elements of K are

integers from 1 to |K|, and that the n first elements of K are

the indices of voltage magnitude upper-bound constraints (7)

on the n network nodes. For k from 1 to n: all entries of Ak

are zeros except the k-th and (k+n)-th entries of the diagonal,

which are equal to 1. It follows that
∑

k=1,...,nAk = Id2n.

For k > n : take α̃k = 1 > 0. Consider the matrix

C′ = C +
∑

k>n α̃kAk .

For k from 1 to n :

take α̃k = µ ≥ 1 + max(0,−λmin(C
′)) > 0.

Then:

C +
∑

k∈K

α̃kAk = C +
∑

k=1,..,n

α̃kAk +
∑

k>n

α̃kAk

= C′ + µId2n ≻ 0.

As α̃ has positive entries and C+
∑

k∈K α̃kAk ≻ 0, (DSDP )
is strictly feasible.

To sum up, (SDP ) is feasible, (DSDP ) is strictly feasible,

so strong duality holds.

We have shown that strong duality holds for the rank

relaxation of (OPF ), using the fact that the modulus of each

complex voltage is bounded. This is a special case of ball

constraints on an optimization problem with complex variables,

see [8] to get more details on this subject.

(SDP ) relaxation of (OPF ) is known to give a sharp

lower bound. We want to point out that we study transmission

networks which are not tree networks and are highly meshed.

Moreover we do not have a sufficient number of phase-shifter-

transformers on network to use results from [20]. Thus rank

relaxation does not necessarily lead to an optimal solution.

In the next sections, we present a branch-and-bound algo-

rithm that starts with this sharp lower bound which is based at

each node on a quadratic and convex relaxation of (OPF ).

IV. AN EQUIVALENT FORMULATION TO (OPF )

The first step of MIQCR consists in reformulating a QCQP

like (OPF ) into an equivalent quadratic problem that has

a quadratic and convex objective function, linear constraints,

and additional variables Y that are meant to satisfy quadratic

constraint Y = xxt.

Let S ∈ S2n(R)
+ be a positive semi-definite matrix. We

reformulate (OPF ) as:

(OPFS)































min
x∈R2n,Y ∈S2n(R)

x
t
Sx+ < C − S, Y >

s.t.

< Ak, Y >≤ bk, k ∈ K

Y = xx
t
, (10)

ℓ ≤ x ≤ u.

Observe that the reformulated objective and constraints

functions have the same value as the original ones for a same

x if Constraints (10) are satisfied. Moreover, the new objective

function is convex since matrix S is positive semi-definite. The

constraints are now linear, and thus convex. This is why, this

reformulation is called a quadratic and convex reformulation.

In (OPFS) only Constraint (10) is non convex. In a way,

all the non-convexity has been moved into this constraint.

To solve (OPFS) to global optimality MIQCR uses a branch-

and-bound algorithm where, at each node, we relax Constraint

(10) and add the linear McCormick inequalities (11)-(14) [17]

to tighten the relaxation.

Therefore, at the first node of the branch-and-bound, the

quadratic and convex relaxation (OPFS) is solved.

(OPFS)



















































min
x∈R2n,Y ∈S2n(R)

xtSx+ < C − S, Y >

s.t.

< Ak, Y >≤ bk, k ∈ K

Yij ≤ ujxi + ℓixj − ℓiuj , (i, j) ∈ E (11)

Yij ≤ ℓjxi + uixj − uiℓj , (i, j) ∈ E (12)

Yij ≥ ujxi + uixj − uiuj , (i, j) ∈ E (13)

Yij ≥ ℓjxi + ℓixj − ℓiℓj , (i, j) ∈ E. (14)

where ℓ, u are defined as in (8) and (9) and

E =
{

(i, j) ∈ {1, . . . , 2n}2 : i ≤ j
}

.

Notice that in practice, the full variables matrix Y is not

considered. Coefficient Yij is considered if and only if the

entry (i, j) is non zero in a matrix among {C,A1, . . . , A|K|}.

Every positive semi-definite matrix gives a different refor-

mulation. In the particular case where S = 02n, the objective

function is linear. It is the linearization of (OPF ). For example

the Baron solver [21] relies on this linearization within a

branch-and-bound framework.

We are now interested in finding a ”best” matrix S, i.e. a

matrix S which gives the largest lower bound at the root node

of the branch-and-bound tree. That is to say, a matrix S which

maximizes the value of (OPF S). More formally we want to

solve:

max
S�0

v(OPF S).

It is proved in [3] that a best matrix S∗ can be computed from

optimal dual variables of a semi-definite relaxation of (OPF )
which is (SDP ) but with additional constraints and variables

to raise the McCormick’s inequalities.

In this paper, we characterize (SDP ), which does not

contain the McCormick inequalities, as the relaxation that

can be used to compute a best positive semi-definite matrix.

The fact that the McCormick inequalities are redundant in

the (SDP ) relaxation is a significant result and is the main

difference between Proposition 2 and the result in [3]. As

a consequence, to reformulate (OPF ), we have to solve a

problem with a smaller size than the one solved in the original

method MIQCR. Moreover, we prove that the optimal value

of this ”best” quadratic and convex relaxation is equal to the

optimal value of (SDP ).
Proposition 2: Let α∗ be an optimal solution to (DSDP ),

take:

S∗ = C +
∑

k∈K

α∗
kAk,

If ℓ and u are defined by (8) and (9) we have:

v(SDP ) = v(max
S�0

v(OPFS)) = v(OPFS∗).

Proof: For each PSD matrix S, let us introduce the

optimization problem:



(LRS)











min
x∈R2n,Y ∈S2n(R)

x
t
Sx+ < C − S, Y >

s.t.

< Ak, Y >≤ bk, k ∈ K

(LRS) is the relaxation of (OPFS) where inequalities (11)-

(14) have been dropped. Thus, it is a relaxation of (OPFS).

The proof is divided in two parts.

• First we prove that:

v(DSDP ) = v(max
S�0

v(LRS)) = v(LRS∗).

Let us rewrite the dual of the SDP relaxation by introduc-

ing a slack matrix S:

(DSDP )























max
S�0,α≥0

∑

k∈K

−bkαk

s.t.

S = C +
∑

k∈K

αkAk.

For a given S � 0, the optimization problem in α is a

linear program. We replace it by its LP-dual and obtain

the equivalent problem:










max
S�0

min
Y

< C − S, Y >

s.t.

< Ak, Y >≤ bk, k ∈ K.

Now we can observe that as S is positive semi-definite,

one can add xtSx to the objective function together with

variables x. Indeed x will be equal to 0 in any optimal

solution. Therefore:

v(DSDP ) = v











max
S�0

min
x,Y

xtSx+ < C − S, Y >

s.t.

< Ak, Y >≤ bk, k ∈ K.

We have proved:

v(DSDP ) = v(max
S�0

v(LRS)) = v(LRS∗).

• Now, in the second part, we prove that:

∀S � 0,v(OPFS) ≤ v(SDP ) ≤ v(OPF S∗).

From the first part, and by Proposition 1, it follows that

v(SDP ) = v(LRS∗), and, as (LRS∗) is a relaxation of

OPF S∗ :

v(SDP ) = v(LRS∗) ≤ v(OPF S∗).

Let us now prove that:

∀S � 0,v(OPF S) ≤ v(SDP ).

Let X̄ be a solution to (SDP ). Let us show that (x̄ =
0, Ȳ = X̄) is a feasible solution to (OPFS) with a lower

objective value.

The inequalities < Ak, Ȳ >≤ bk, k ∈ K are trivially

satisfied. Let us now prove that (11)-(14) are satisfied.

Which amounts to prove:

X̄i,j ≤ V max
i V max

j , (i, j) ∈ E, (15)

X̄i,j ≥ −Vmax
i V max

j , (i, j) ∈ E. (16)

When i = j, as X̄ � 0, then for all i ∈
{1, . . . , 2n}, X̄i,i ≥ 0. Moreover, from (7):

∀i ∈ {1, . . . , n} : X̄i,i + X̄i+n,i+n ≤ (V max
i )2.

And therefore:

X̄i,i ≤ (V max
i )2 and X̄i+n,i+n ≤ (V max

i )2. (17)

When (i 6= j), as X̄ � 0, X̄i,iX̄j,j − X̄2
i,j ≥ 0. From

(17), it follows that X̄2
i,j ≤ (V max

i )2(V max
j )2. Then (15)

and (16) are satisfied.

Let us now compare the objective solution values of X̄

and (x̄, Ȳ ):

< C, X̄ > −x̄tSx̄− < C − S, Ȳ >=< S, X̄ >≥ 0

as S and X̄ are PSD.

Therefore (x̄, Ȳ ) has a lower solution value than X̄ .

To sum up for any PSD matrix S, (OPF S) has a lower

optimal solution value than (SDP ).

We can now conclude that v(OPFS∗) = v(SDP ) and that

S∗ maximizes the value of (OPFS).
Remark 1: In the proof above, we demonstrate that any

solution of (SDP ) ”satisfies” the McCormick inequalities.

This is because bounds ℓ and u were obtained with constraints

(7) which are in (SDP ). See Section II.

Remark 2: The optimal matrix S∗ is not unique, other

matrices may give a root node relaxation with the same value.

Proposition 2 ensures that the lower bound obtained at the

root node of our branch-and-bound framework is equal to the

rank relaxation bound. For many test cases, this bound seems

to be very sharp [9]. To solve (SDP ) and compute S∗ matrix,

one can use the solver introduced in [9], [18].

Those results allow us to build the following algorithm to

solve the OPF problem to global optimality:

1) Solve the rank relaxation and deduce optimal dual

variables α∗.

2) Define the PSD matrix S∗ = C +
∑

k∈K α∗
kAk.

3) Solve (OPFS∗) within a branch-and-bound algorithm.

V. SOLUTION WITHIN A BRANCH-AND-BOUND ALGORITHM

In the previous section we showed how to build an ”optimal”

reformulation of (OPF ) in the sense that it maximizes the

lower bound at the root node of our branch-and-bound tree.

In this section we describe the second step of the MIQCR

method: the solution within a branch-and-bound algorithm.

This algorithm is used to solve (OPFS∗) and hence (OPF ).
Let us recall that a branch-and-bound is an enumeration

tree used to solve an optimization problem. Each node of

the tree represents a sub problem of the original one. There

are multiple ways to divide the original problem into sub

problems. The classic way is to divide each variable interval



into different subintervals, those branch-and-bound algorithms

are called spatial branch-and-bound. We choose to implement

this type of branch-and-bound, that is why we need bounds

ℓ and u on variables x. To sum up, at each node we modify

values of ℓ and u to build the sub problem.

A branch-and-bound implementation is defined by:

• Actions performed at each node of the tree,

• Next node selection strategy.

A. How to deal with a node ?

At each node we solve (OPF S∗) where bounds ℓ and u

are different. This change modifies the relaxation value since

ℓ and u are involved in the McCormick inequalities (11)-(14).

We recall that this relaxation is convex and quadratic and that

it gives a lower bound of the node subproblem.

Next step depends on the result of the node relaxation:

• If the relaxation is infeasible: the branch is pruned.

• If the lower bound from relaxation is greater than the best

current upper bound: the branch is pruned.

• If the solution (x̄, Ȳ ) from the relaxation satisfies con-

straint (10): x̄ is then a solution of (OPF ), the branch is

pruned and the upper bound is potentially updated.

• Else: two new nodes are built as children of the current

node.

About branching: To build two children nodes from a parent

node, a branching variable (xb) and a branching value (xs
b) are

chosen.

Variable selection strategy: xb is chosen among variables

(ib, jb) that violate the most Equality (10) (for the Euclidian

norm).

Interval division: xs
b is chosen between the middle of the

current interval of variable xb (denoted xm
b ) and x̄b, the value

of xb in the node relaxation solution. Let δ be a parameter

between 0 and 1:

xs
b = δx̄b + (1− α)xm

b .

Lower bounds on the local optimal solution value are com-

puted at each node, however we need to find upper bounds

and we cannot rely on relaxations results to do so. That is

why every three nodes, a heuristic, consisting in finding a

point satisfying first order optimality conditions of (OPF ),
is launched.

B. How to select the following node ?

At each node is attached a potential which is the lower bound

found at its parent node. At this node the relaxation value

cannot be lower than this potential.

Our next node selection strategy is designed as a ”best-first”

strategy. Indeed we want to see the global lower bound of the

tree (which is the minimum among the potentials of the leafs

in the tree) increase. To do so, we select the node with the

lowest potential as the following node to handle.

Branch-and-bound algorithm is terminated when the relative

difference between the lowest upper bound (the best feasible

solution) and the global lower bound is less than an ǫ-value.

MIQCR BARON

Name Root gap Gap-Time Root gap Gap-Time

WB2 2.2% 1s 2.2% 1s

LMBM3 0% 1s 0% 1s

WB3 0% 1s 0% 1s

WB5 16.7% 23s 16.8% 1.92s

6ww 0% 1s 0.2% 1s

9 0% 1s 0% 1.34s

9mod 0.1% (0.1%) 12.4% 5.83s

14 0% 1s 100% (21.1%)

22loop 0% 1s 31.6% (31.6%)

30 0% 1s 100% (100%)

39 0% 2s 100% (100%)

39mod1 0.1% (0.1%) 100% (100%)

39mod2 0.1% (0.1%) 100% (100%)

57 0% 1s 100% (100%)

89pegase 0% 2s 72% (72%)

118 0% 3s 100% (100%)

118mod 0% 7s 100% (100%)

300 0% 10s 100% (100%)

300mod 0.1% (0.1%) 100% (100%)

1354pegase 0% 204s 69% (69%)

TABLE I

RESULTS ON 20 OPF TEST CASES, WITH A TIME LIMIT OF 300S

VI. NUMERICAL EXPERIMENTS

To illustrate our method, we present results on a batch of 20

OPF instances involving networks from 2 to 1354 nodes. All

these instances come from the MATPOWER repository [23],

except the ”WB” and ”LMBM” instances that come from [4].

In our experiments (as in [9]) we do not consider any

constraints on current magnitudes, and we only consider the

linear part on the active power cost.

For each instance, we launch our implementation of MIQCR

along with the Baron solver [21], keeping default options.

For MIQCR, the rank relaxation is solved with the Mosek

solver [19] and a chordal decomposition to exploit the problem

sparsity. The quadratic and convex relaxation at each branch-

and-bound node is solved with the Xpress [22] solver. Heuristic

performed at each three nodes is based on the solution of the

first order optimality conditions of (OPF ) with the Knitro

solver [5], [12]. To perform computation we use the following

parameters:

Absolute feasible tolerance for the heuristic 10−5

Final ǫ gap 10−5

δ parameter to perform branching 0.5

Hence a 0% gap means that the gap is under the ǫ parameter

value. The choice of δ = 0.5 came after some numerical

experiments along with the reading of [1].

Table 1 presents numerical results where each line refers

to one OPF test case. In the first column, each instance name

contains the number of nodes in the associated electric network.

We recall that in (OPF ) the number of real variables is twice

the number of nodes. For each solver, the Root gap column

gives the relative gap between the best known solution for

the instance and the lower bound found at the root node of

the branch-and-bound tree, i.e., if the best known solution

is denoted by UB and the lower bound by LB, the gap



equals UB−LB
UB

. The Gap-Time column gives the execution

time if global optimality is reached within five minutes of

computation, if this is not the case, this column gives the

relative final gap between the best known solution and the final

lower bound.

On small test cases (under 10 nodes) the gap is closed within

the branch-and-bound tree by both solvers, except for 9mod

instance where MIQCR fails. We observe that the root gap

of MIQCR is very tight. This reflects the quality of the SDP

rank relaxation lower bound as already observed by several

authors [9], [15]. On the contrary, the root gap obtained with

the Baron solver [21] is often very large for instances with

more than 10 nodes. Moreover its root gap is not improved

during the five minutes of branch-and-bound computation.

Notice that a feasible solution is always found for each test

case by MIQCR, and may be improved within the branch-and-

bound. For instance, for case300 first upper bound found equals

475783 and it is improved to 475462.2 during branch-and-

bound tree iterations.

In [10], authors successfully use the Lasserre hierarchy [14]

to also solve smallest instances of (OPF) problems to global

optimality. Although their method can be extended to deal with

some well-conditioned larger instances [8], [11], it fails with

largest generic ones.

VII. CONCLUSION

In this paper we show how to adapt the MIQCR method to the

OPF problem. We prove that the well-known rank relaxation

is sufficient to build an ”optimal” quadratic reformulation of

(OPF ). This result can be extended to each quadratic problem

with complex variables whose magnitudes are upper-bounded.

When solving this optimal reformulation within a branch-

and-bound framework, we can close the gap between rank

relaxation and known feasible solutions.

First numerical results are encouraging. Future work consists

in a specialization of the branch-and-bound framework in

order to close the gap by raising the lower bound in larger

instances of the OPF problem. To do so we will focus on

bound tightening techniques.
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