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Convexity Analysis of Optimization Framework of

Attitude Determination from Vector Observations
Jin Wu, Member, IEEE, Zebo Zhou and Min Song

Abstract—In the past several years, there have been sev-
eral representative attitude determination methods developed
using derivative-based optimization algorithms. Optimization
techniques e.g. gradient-descent algorithm (GDA), Gauss-Newton
algorithm (GNA), Levenberg-Marquadt algorithm (LMA) suffer
from local optimum in real engineering practices. A brief
discussion on the convexity of this problem is presented recently
[1] stating that the problem is neither convex nor concave. In this
paper, we give analytic proofs on this problem. The results reveal
that the target loss function is convex in the common practice of
quaternion normalization, which leads to non-existence of local
optimum.

Index Terms—Attitude Determination, Vector Observations,
Optimization, Local Optimum, Convexity

I. INTRODUCTION

A
TTITUDE determination has been extensively employed

in mechatronic platforms and consumer electronics for

orientation measurement [2], [3]. From vector sensor outputs,

one can compute the optimal attitude transformation matrix

accordingly.

In the past 50 years, attitude determination from vector

observations has been systematically studied. One of the

most famous centers of such research is called the Wahba’s

problem posed by G. Wahba in 1965 [4] targeting to find

out the least-square alignment of two point sets. The op-

timal correspondence of this problem had not been solved

very effectively in later several years until the invention of

Davenport’s approach i.e. the q-method in 1968 [5]. The q-

method converts the Wahba’s optimization into an eigenvalue-

seeking problem of the Davenport K matrix. In later research,

the endeavors paid their most attention into finding efficient

computation procedure of the characteristic polynomial to K.

This in fact generates a large variety of algorithms including

famous ones e.g. the QUAternion ESTimator (QUEST, [6]),

Fast Optimal Attitude Matrix (FOAM, [7]), EStimator Of

Quaternion (ESOQ, [8]) and etc. Our recent contribution called

the Fast Linear Attitude Estimator (FLAE, [9]) can also be
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categorized into this kind of solvers.

The Wahba’s solutions are especially applied to aerospace

engineering for 3-axis satellite attitude determination where

the sun sensor, nadir sensor, star tracker, magnetometer and

gravimeter are invoked for vector observation outputs [10].

In consumer electronics, where the sensor precisions are

relatively low, the vector sensors e.g. accelerometer and mag-

netometer are usually integrated with gyroscope for more

smooth estimates [11]. For these estimators, there is always a

need of measurement source for direct attitude reconstructions

from sensors. According to bare computation resources, many

algorithms are also developed to extract orientation by means

of simple optimization methods. The Gauss-Newton algorithm

(GNA, [12]) is almost the first one doing this. Later, the

gradient-descent algorithm (GDA, [13]) is applied to the

same problem as well. The performances are improved by

levenberg-marquardt algorithm (LMA, [14]) and improved-

GNA (IGNA, [15]) in later literatures. Real-world applications

have completely verified the feasibility, accuracy and compu-

tation speeds of such optimizers [16].

In previous optimizations, the attitude determination is

treated as a nonlinear problem with the variable of quater-

nion, rotation vector, Euler angles and etc. This arouses a

question: Is the problem convex or concave? As is known

to us, the concave optimization suffers from local optimum

in real practice. However, in aforementioned research, the

convexity analysis has not been considered by the researchers.

In fact, if the problem is concave then the performance of

the optimizers would be significantly constrained for global

searching. In a recent paper by S. Ahmed et al. [1], the

authors declare that the attitude determination problem from

vector observations is neither concave nor convex. In this

paper, we give mathematical analysis aiming to show that the

target problem is actually a convex one, leading to the robust

insurance of current optimization solvers.

This paper is arranged as follows: Section II addresses the

problem background and our main results. Section III contains

numerical examples. In Section IV, we present discussion and

concluding remarks.

II. PROBLEM BACKGROUND AND MAIN RESULTS

A direction cosine matrix (DCM) relates a vector observa-

tion pair with

Db = CDr (1)

where C denotes the DCM; Db = (Db
x, D

b
y, D

b
z)

T ) and

Dr = (Dr
x, D

r
y, D

r
z)

T ) are the normalized vector observations

from one sensor in the body frame b and reference frame
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∂2C

∂q20
=





2 0 0
0 2 0
0 0 2



 ,
∂2C

∂q0∂q1
=





0 0 0
0 0 2
0 −2 0



 ,
∂2C

∂q0∂q2
=





0 0 −2
0 0 0
2 0 0



 ,
∂2C

∂q0∂q3
=





0 2 0
−2 0 0
0 0 0





∂2C

∂q1∂q0
=





0 0 0
0 0 2
0 −2 0



 ,
∂2C

∂q21
=





2 0 0
0 −2 0
0 0 −2



 ,
∂2C

∂q1∂q2
=





0 2 0
2 0 0
0 0 0



 ,
∂2C

∂q1∂q3
=





0 0 2
0 0 0
2 0 0





∂2C

∂q2∂q0
=





0 0 −2
0 0 0
2 0 0



 ,
∂2C

∂q2∂q1
=





0 2 0
2 0 0
0 0 0



 ,
∂2C

∂q22
=





−2 0 0
0 2 0
0 0 −2



 ,
∂2C

∂q2∂q3
=





0 0 0
0 0 2
0 2 0





∂2C

∂q3∂q0
=





0 2 0
−2 0 0
0 0 0



 ,
∂2C

∂q3∂q1
=





0 0 2
0 0 0
2 0 0



 ,
∂2C

∂q3∂q2
=





0 0 0
0 0 2
0 2 0



 ,
∂2C

∂q23
=





−2 0 0
0 −2 0
0 0 2





(17)

r respectively. With several pairs of vector observations, the

rotation matrix can be computed with the Wahba’s problem

that employs the following loss function

L(C) =
n
∑

i=1

ai
∥

∥Db
i −CDr

i

∥

∥

2
(2)

where ai is the positive weight of i-th sensor with
n
∑

i=1

ai = 1.

One can re-write this loss function into the system as follows


















√
a1

(

Db
1 −CD

r
1

)

= 0√
a2

(

Db
2 −CDr

2

)

= 0
...√

an
(

Db
n −CDr

n

)

= 0

(3)

Optimization algorithms usually seek the minimum point of

the Wahba’s loss function by parameterizing the DCM with

quaternion q = (q0, q1, q2, q3)
⊤, such that

argmin
‖q‖=1

n
∑

i=1

ai
∥

∥Db
i −CD

r
i

∥

∥

2
(4)

A general solution i.e. the q-method solves the maximum

eigenvalue and its associated eigenvector of the Davenport K

matrix given as follows [17]

K =

[

B + BT − tr(B)I z

zT tr(B)

]

(5)

where

B =

n
∑

i=1

aiD
b
i(D

r
i )

T

z =
n
∑

i=1

aiD
b
i ×Dr

i

(6)

If the target multi-variate function is concave, there be local

optimum setting up obstacles for global solving. In next sub-

section, we are going to investigate the convexity of this

optimization problem.

A. Single Vector Observation Pair

Starting from a single vector observation pair, one can define

the scalar loss function as

Fi(q) = eTi (q)ei(q) (7)

where ei(q) = Db
i −CD

r
i is the error vector function. Min-

imizing this target function can be achieved by GDA, GNA,

LMA and etc. For instance, the LMA conduct optimization

iteration by [18]

qp = qp−1 −
(

JT
i Ji + κI

)

JT
i ei(qp−1) (8)

where p is the recursion index; κ denotes a tiny positive

number ensuring invertibility of matrix; Ji stand for the

Jacobian of ei(qp−1) with respect to qp−1. Such optimization

relies on the Hessian that determines whether there is local

optimum or not. To study the convexity of the function Fi(q),
we can simplify it into

Fi(q) =
(

CDr
i −Db

i

)T (

CDr
i −Db

i

)

= (Dr
i )

T
CTCDr

i +
(

Db
i

)T
Db

i −
(

Db
i

)T
CDr − (Dr)

T
CTDb

i

= 1 +
(

q20 + q21 + q22 + q23
)2 −

(

Db
i

)T
CDr

i − (Dr
i )

T
CTDb

i

= 1 +
(

q20 + q21 + q22 + q23
)2 − (A+AT )

= 1 +
(

q20 + q21 + q22 + q23
)2 − 2A

(9)

where we use

(

Db
i

)T
Db

i = (Dr
i )

T
Dr

i = 1

CTC =
(

q20 + q21 + q22 + q23
)2

(10)

and

A =
(

Db
i

)T
CDr

i (11)

for simplification. The kernel problem is to deduce the convex-

ity of function A. Note that
(

q20 + q21 + q22 + q23
)2

= ‖q‖4 is

not simplified to 1 because of possible loss of normalization

between successive optimization updates. The main thought

of the proof is to show that the Hessian of Fi(q) belongs to

positive semidefinite matrices [19].

Taking the Hessian of Fi(q), we obtain

HFi
=













∂2Fi

∂q2
0

∂2Fi

∂q0∂q1

∂2Fi

∂q0∂q2

∂2Fi

∂q0∂q3
∂2Fi

∂q1∂q0

∂2Fi

∂q2
1

∂2Fi

∂q1∂q2

∂2Fi

∂q1∂q3
∂2Fi

∂q2∂q0

∂2Fi

∂q2∂q1

∂2Fi

∂q2
2

∂2Fi

∂q2∂q3
∂2Fi

∂q3∂q0

∂2Fi

∂q3∂q1

∂2Fi

∂q3∂q2

∂2Fi

∂q2
3













(12)
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QA =











(Db
x−Dr

x)(D
b
z−Dr

z)
N

− (Db
x−Dr

x)(D
b
y−Dr

y)
N

(Db
x+Dr

x)(D
b
z+Dr

z)
N

− (Db
x+Dr

x)(D
b
y+Dr

y)
N

(Db
x−Dr

x)(D
b
y+Dr

y)
N

(Db
x−Dr

x)(D
b
z+Dr

z)
N

(Db
y−Dr

y)(D
b
x+Dr

x)
N

(Db
x−Dr

x)(D
b
z−Dr

z)
N

1 0 1 0
0 1 0 1











(18)

in which

∂A
∂qk

=
(

Db
i

)T ∂C

∂qk
Dr

i , k = 0, 1, 2, 3 (13)

where k = 0, 1, 2, 3 are the quaternion indices and the

derivatives of C can be computed by

∂C

∂q0
= 2





q0 q3 −q2
−q3 q0 q1
q2 −q1 q0





∂C

∂q1
= 2





q1 q2 q3
q2 −q1 q0
q3 −q0 −q1





∂C

∂q2
= 2





−q2 q1 −q0
q1 q2 q3
q0 q3 −q2





∂C

∂q3
= 2





−q3 q0 q1
−q0 −q3 q2
q1 q2 q3





(14)

The above equations lead to further computations in (17). Then

we obtain

∂2A
∂qk∂qj

=
(

Db
i

)T ∂2C

∂qk∂qj
Dr

i ,

{

k = 0, 1, 2, 3
j = 0, 1, 2, 3

(15)

From the results of second-order derivative of C we can

observe that

∂C

∂qk∂qj
=

∂C

∂qj∂qk
,

{

k = 0, 1, 2, 3
j = 0, 1, 2, 3

(16)

This leads to the Hessian of A i.e. HA being a symmetric

matrix, such that

HA,11 = 2
(

Db
xD

r
x +Db

yD
r
y +Db

zD
r
z

)

HA,12 = 2
(

Db
zD

r
y −Db

yD
r
z

)

HA,13 = 2
(

Db
xD

r
z −Db

zD
r
x

)

HA,14 = 2
(

Db
yD

r
x −Db

xD
r
y

)

HA,22 = 2
(

−Db
xD

r
x +Db

yD
r
y +Db

zD
r
z

)

HA,23 = −2
(

Db
yD

r
x +Db

xD
r
y

)

HA,24 = −2
(

Db
zD

r
x +Db

xD
r
z

)

HA,33 = 2
(

Db
xD

r
x −Db

yD
r
y +Db

zD
r
z

)

HA,34 = −2
(

Db
zD

r
y +Db

yD
r
z

)

HA,44 = 2
(

Db
xD

r
x +Db

yD
r
y −Db

zD
r
z

)

(19)

where HA,jk is the entry of HA in the j-th row and k-th

column. The Hessian of
(

q20 + q21 + q22 + q23
)2

can easily be

computed by

H‖q‖4 = 4
(

q20 + q21 + q22 + q23
)

I+ 8qqT (20)

Hence the final Hessian of Fi(q) takes the following form

HFi
= 4‖q‖2I+ 8qqT − 2HA (21)

Notice that HA has the eigenvalue decomposition of [20]

HA = 2QAΣAQ
−1

A (22)

where

ΣA = diag(1, 1,−1,−1) (23)

while QA is given in (18) in which

N =
(

Db
y

)2
+
(

Db
z

)2 −
(

Dr
y

)2 −
(

Dr
y

)2
(24)

Therefore we can see that 4‖q‖2I− 2HA has the eigenvalues

of

λ4‖q‖2I−2HA
=















4‖q‖2 + 4

4‖q‖2 + 4

4‖q‖2 − 4

4‖q‖2 − 4

(25)

From another aspect, qqT is a matrix with rank 1 and all

non-negative eigenvalues, such that

qqT = QqqTΣqqTQ−1

qqT (26)

where

ΣqqT = diag
(

0, 0, 0, q20 + q21 + q22 + q23
)

QqqT =









− q3
q0

0 0 1

− q2
q0

0 1 0

− q1
q0

1 0 0
q0
q3

q1
q3

q2
q3

1









(27)

Therefore we have

rank(HFi
) = rank(4‖q‖2I− 2HA + 8qqT ) 6

rank(4‖q‖2I− 2HA) + rank(8qqT )
(28)

The eigenvalues of HFi
satisfies

min(λ4‖q‖2I−2HA
) + min(λ8qqT ) 6 λH

6 max(λ4‖q‖2I−2HA
) + max(λ8qqT )

(29)

yielding

4‖q‖2 − 4 6 λHi
6 12‖q‖2 + 4 (30)

That is to say, HFi
is currently indefinite. However, when

conducting in the optimization ensuring that the quaternion is

always normalized in last step, we would obtain ‖q‖ = 1. In

fact, for all q owning ‖q‖ > 1, HFi
is a positive semidefinite

symmetric matrix with rank 3 or 4. As in all literatures,

normalization of quaternion always takes place, then it is

ensured that the optimization is convex [19].
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B. Multi-Vector Case

Defining

e(q) =











√
a1

(

Db
1 −CDr

1

)

√
a2

(

Db
2 −CD

r
2

)

...√
an

(

Db
n −CD

r
n

)











(31)

, one can easily find out that the target loss function defined

by

F(q) = eT (q)e(q) (32)

meets

F(q) =

n
∑

i=1

aiFi(q) =

n
∑

i=1

ai
∥

∥Db
i −CDr

i

∥

∥

2
(33)

Its Hessian H

H =
n
∑

i=1

aiHFi
(34)

has the eigenvalue inequality of

0 6 λH 6

n
∑

i=1

ai
[

4 + 12
(

q20 + q21 + q22 + q23
)]

= 4 + 12
(

q20 + q21 + q22 + q23
)

(35)

which proves the convexity of the attitude optimization from

multi-vector observations.

III. NUMERICAL EXAMPLE

Assume that we obtain the following single vector observa-

tion pair from a vector sensor

Db =





−0.712824827533344
−0.225772381096068
0.664008732763561





Dr =





−0.037453665434217
0.500499809534146
−0.864926102971707





(36)

When we perform optimization based on last unnormalized

updated quaternion such as

q =









0.420683700201250
0.400737998146962
0.095142157864169
0.496684391636530









(37)

with ‖q‖ = 0.770268222031943< 1, the Hessian’s eigenval-

ues can be computed by

λH =















9.761874553883407
6.373252535488999
−0.268864411927401
−1.626747464510996

(38)

indicating that the optimization is non-convex nor concave.

However, with normalized quaternion of

q =









0.118759061535262
−0.346543560044311
−0.817997262250335
0.443491065576337









(39)

we can compute the Hessian’s eigenvalues by

λH =















14.677631236006699
7.999999999999996
1.322368763993306
0.000000000000000

(40)

which reflects H here is positive semidefinite. While with

q =









−0.353622599299341
0.046434526687823
0.046434526687823
−1.550514474779561









(41)

in whch ‖q‖ = 1.777657443309303> 1, we have

λH =















39.127609299877825
16.640263943011881
11.433446472169676
8.640263943011886

(42)

which verifies the former derived results that the current

H owns positive definiteness. Therefore, we verify that that

the attitude determination problem in (4) is always convex

provided that the last-step quaternion is normalized.

IV. CONCLUSION

In this paper, the optimization framework of the attitude

determination from vector observations is revisited. Some

closed-form results are derived showing the identities of the

Hessian to the optimization. By eigenvalue analysis, it is

found out that the original problem is sometimes concave but

is rigorously convex after adding a quaternion normalization

in advance. As such commitment is very common in real

engineering practice ensuring unitary quaternion norm, the

target optimization can be regarded as a fully convex one.

Numerical examples containing simulated cases verify the

derived results. It is fully proven in this paper that the previous

derivative-based optimization techniques are robust in the case

of convexity. And we hope that this contribution would benefit

related research in the future.
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