
HAL Id: hal-02947365
https://hal.science/hal-02947365

Submitted on 6 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BAM! Base Abstracted Modeling with Universal Notice
Network: Fast Skill Transfer Between Mobile

Manipulators
Mehdi Mounsif, Sebastien Lengagne, Benoit Thuilot, Lounis Adouane

To cite this version:
Mehdi Mounsif, Sebastien Lengagne, Benoit Thuilot, Lounis Adouane. BAM! Base Abstracted Mod-
eling with Universal Notice Network: Fast Skill Transfer Between Mobile Manipulators. 7th Inter-
national Conference on Control, Decision and Information Technologies (CoDIT 2020), Jun 2020,
Prague, Czech Republic. pp.926-932, �10.1109/CoDIT49905.2020.9263931�. �hal-02947365�

https://hal.science/hal-02947365
https://hal.archives-ouvertes.fr


BAM! Base Abstracted Modeling with Universal Notice Network: Fast Skill
Transfer Between Mobile Manipulators

Mehdi Mounsif1, Sébastien Lengagne1, Benoit Thuilot1 and Lounis Adouane2

Abstract— Following recent trends, it appears that robot
presence within human day-to-day lives is likely to grow
and become ubiquitous. As many actors are engaged in this
automation effort, it is plausible that the various cultural
backgrounds of these actors will result in a broad range of
different robots that will nevertheless need to perform similar
tasks. Due to the excessively large number of experiences
samples needed to successfully train a learning-based control
policy, it would be remarkably useful to be able to efficiently
transfer the skills acquired by a given agent to other, struc-
turally distinct, robots. Accordingly, the BAM (Base-Abstracted
Modeling) methodology proposed in this paper is a fast transfer
learning approach that relies on a clear segmentation between
the task model, that is a learned policy for solving a specific
task and the learned robot control policy. The evaluation on
two manipulation tasks using twelve different configurations of
mobile manipulators demonstrates the strong potential of this
approach as the segmentation results for more robust policies
than naive methods and that an efficient transfer can be done
in a fraction of the initial training time.

I. INTRODUCTION

The rise of human societies was supported by various
specific human traits, such as the human brain size or
the opposable thumb. A key feature of this expansion was
however our ability to share and transfer knowledge to our
peers. Indeed, seen from a global point of view, shared
insights allowed important population clusters to coordinate
their actions and achieve goals that are beyond the reach of
a single individual, while, on a more local scale, it enables
unexperimented individuals to quickly learn from domain
experts, thus fastening the generation process of capable
elements of the society.

Reproducing this process of knowledge transfer within
a population of robots is a highly desirable goal, due to
resources needed to train a learning-based agent. For in-
stance, in the context of an industrial chain, as shown in
Figure 1, where several robots are liable to perform a similar
assignment, it would be interesting not to have to train each
robot separately, but instead, create a task knowledge module
that can be shared between different instances, even if their
kinematic structure (i.e: number of DoF, segment lengths) is
different, thus reducing the time for recovering an operational
process, should one robot be damaged for instance.

The BAM (Base-Abstracted Modeling) method proposed
in this work focuses precisely on this transfer issue as it
introduces a methodology to transfer knowledge between

1Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pas-
cal, F-63000 Clermont-Ferrand, France. mehdi.mounsif@uca.fr

2Université de Technologie de Compiègne, CNRS, Heudiasyc, F-60200
Compiègne, France

two differently structured entities. Specifically, it relies on
a staged training process that creates a robot-agnostic, in-
dependent task model called the UNN (Universal Notice
Network) that can then be seamlessly paired with a robot-
specific controller (called the base modules). This enables
the latter robot to solve a task by using the knowledge
created by another agent, with minimal fine-tuning. In
this setting, the BAM method is an environment modeling
strategy that was designed to tackle potential issues that may
arise when the UNN learns how to solve the task while using
a poorly-conditioned robot module.

Fig. 1: Industrial integration of the Universal Notice Network
approach

The UNN/BAM method capabilities are demonstrated in
the context of mobile manipulators. Using three mobile bases
(omni-directional, bicycle and differential), four robotic arm
configurations and two environments (Pick’n Place task
and the Stacking task), the experiments, set within a RL
(Reinforcement Learning) framework, detailed below show
that the concept of task knowledge advantages are twofold.
Firstly, it is beneficial to the initial learning process, as it
eases the reward function design and prevents the RL agent
to fall within local minima. Next, it is particularly suitable
for transferring skills between differently shaped entities,
outperforming naive transfer both in final performances and
training time perspective and even enabling zero-shot transfer
in a particular case.

II. RELATED WORKS

Perform complex motions to complete a task is still an
open issue. While there exists optimization methods based
on complete models [1], these are usually computationally
intensive and may not satisfy real-time constraints. To tackle
this issue, the community has also been leveraging predictive
methods that are completely suitable for real-time control.
However, this execution efficiency is usually achieved by



sacrificing the model complexity and thus considering sim-
plified versions that may not have enough degrees of freedom
to express the full problem spectrum [2]. These methods
present the strong and undeniable advantage of allowing
direct transfer of skills between different agents. However,
while it is possible to conceive hybrid controllers that can
mitigate each approach’s weaknesses, they nevertheless rely
on an analytical model for both the task and the robot that can
be hard if not impossible to define. As a result, it is common
to integrate various hypotheses and assumptions that highly
impact the precision of the model.

Data-driven approaches, in particular RL (Reinforcement
Learning) have intensely been discussed in recent works as
these methods are model-free [3] and are able to generate
control policies for highly complex and non-linear tasks
[4], [5]. Nevertheleess, training these performant policies
require such an important computational training budget
that the benefit of task knowledge transfer become obvious.
However, as opposed to usual practices in CV (Computer
Vision) and NLP (Natural Language Processing) [6], [7],
RL architecture (being shallow and without dimensional
bottleneck) are not designed for knowledge transfer to other
entities. This usually results in an entangled knowledge
representation. As a matter of fact, the RL paradigm focuses
rather on training a single couple agent/task. In some cases,
the author investigate whether the agent’s previously learned
representations can be repurposed by modifying slightly the
task [8], [9]. In this view, to broaden an agent’s usability,
some works propose entropy-based loss functions [10] to
increase the agent’s curiosity and exploration as well as meta-
Learning methods [11]. Although these works do enhance the
relative reusability of an agent, they are still directly aiming
at a single agent/single task frame while there exist numerous
real-world cases that would rather benefit from transferring
knowledge from one entity to a distinct one. This issue lacks
representation in literature and to the best of our knowledge,
there is so far no work that focuses on transferring task
knowledge between differently shaped entities.

III. UNIVERSAL NOTICE NETWORK

The UNN (Universal Notice Network) presented in [12]
is a framework that implements the idea of knowledge
segmentation between the agent and the task. Using 2D
robots, the authors of this work show that it is possible to
pair a policy learned using RL approaches with analytical
controllers to achieve and transfer simple tasks. The main
UNN principle is derived from the idea that a task can
be achievable by any agent, by following the right set of
instruction, provided the agent is able to move adequately.
For this last constraint to be satisfied, the agent is pre-trained
on a primitive task that enables it to acquire basic motor
skills. This process is shown in Figure 2. Once trained, the
UNN module can be transferred to a structurally different
agent from the one used to create it and consequently enable
this new agent to perform the task without prior interaction
with it. In Figure 3, stage I corresponds to the initial choice of
task and agent. The computation pipeline is created in stage

II by pairing the trained task UNN and the base module of
the performing agent (this agent is different from the one
that initially constructed the UNN). This makes possible the
achievement for this task by the new agent as shown in stage
III. The next paragraph describes the computational pipeline
set up, while the rest of this section provides details on the
modules creation.

Fig. 2: The original UNN Pipeline staged training first creates
a primitive agent controller (in blue) for a chosen agent
configuration. The UNN for the task relies on the generated
primitive motor skills to learn a successful policy (in red).

Fig. 3: The successive steps for deploying the transferred
UNN to a new configuration

A. The UNN pipeline

In practice, the UNN pipeline is a model composed of
three sub-modules, mr

i ,m
T
u ,m

r
o, as shown in Figure 4. The

first and the last parts of this model mr
i ,m

r
o, respectively the

input (green) and the output (red) modules, are specific to
the robot r, while the center model mTu , the UNN (blue),
is designed to be robot-agnostic and specific to the task
T . Specifically, the state vector that is observed at each
timestep, can be split into two parts si,r, sT , respectively
holding data intrinsic to the considered robot and task-related
information, independent from the agent. The agent specific
state si,r is used by its input module to compute a state agent
representation:

si
′,r = mr

i (s
i,r) (1)

The UNN (i.e.: the task module), conditioned by the task ob-
servation vector sT , uses the processed agent representation
vector to compute a vector that can be seen as a high-level
instruction:

oout = mTu (s
T , si

′,r) (2)



Finally, the effective robot action is then recovered by
concatenating the initial intrinsic vector si,r with oout and
feeding it to the output base, that is:

ar = mr
o(o

out, si,r) (3)

Fig. 4: The UNN Pipeline is composed of three stages: the
input and output bases (in green and red) are specific to the
robot, while the UNN (blue) is task-related

In the cases discussed below, the UNN and the ouput
module are neural networks, but in practice, there is no
theoretical restriction on the computational model used, as
long as the vector returned by the modules has the expected
dimensionality. From a functional point of view however,
to ensure that the UNN is compatible with transfer, it is
necessary to design the vector si,r that is passed between
the UNN and the output module in a way that ensures
the Markov property is satisfied: it must encompass enough
information for selecting the next action without needing to
consider additional previous steps. The same logic is applied
to the vector passed between the input module and the UNN.

B. Base Abstracted Modeling

Ultimately, the goal is, for any UNN/agent couple, to
find the module functions mr

i ,m
T ,mr

o, that produces the
movement M generated by actions ar provided by the
pipeline for solving a task τ and that must ensure the set of
constraints gτ to perform the task and the set of constraints
gr to ensure the physical limits of the robot, such as:

find mr
i ,m

T ,mr
o

such as gτ (M) ≤ 0
gr(M) ≤ 0

With: M = f(ar) = f(mr
o(m

T
u (s
T ,mr

i (s
i,r)), si,r))

(4)
However, due to the RL tendency to fall into local minima,

the UNN can discover a successful strategy for solving the
task that depends on its body configuration (for instance,
blocking an object between two articulations). In these cases,
Equation 4 is longer respected. While this is not an issue
for the current agent, it is detrimental for the efficiency of
a future transfer to an agent with a different structure. To
ensure that the UNN constraints are not entangled with the
agent’s, the Base Abstracted Modeling (BAM) is introduced.
This approach relies on a environment modification that
assimilates the robot to its effectors, thus creating a virtual
robot, as shown in Figure 5. On the formulation side,
we set the bases models mr

i ,m
r
o as identity functions and

provide directly the UNN output to the command. These two
modifications release most of the constraints that would have
been distilled by the pre-trained base and prevent the UNN

from learning a configuration-specific strategy, resulting in
the creation of a UNN closer to a model-agnostic setting.

Fig. 5: The BAM version of the environment allows the UNN
to be bias-free

C. Learning techniques

In the experiments presented below, the UNN is optimized
via a combinaison of reinforcement learning methods. The
main technique used is PPO (Proximal Policy Optimization
[3]), a policy gradient algorithm that maximizes the expected
sum of rewards:

J(θ) = E[
inf∑
t=0

γt × rt] (5)

where rt is the reward obtained at time t by the stochastic
policy πθ parameterized by a vector of parameters θ, γ is a
discount factor and E represents the averaging operator. PPO
also relies on an actor-critic with trust region to improve the
stability and robustness of the gradients estimation.

While RL excels in reactive environments, it is usually
less straightforward to design reward functions for sequential
environments like those presented in Section IV-B. Indeed,
in these cases, tuning the reward function in order to balance
between a negative reward that may induce divergence in the
agent’s behaviour and a positive reward that may lead the
agent to accumulate rewards without a clear line of action is
very subtle and requires a considerable amount of tweaking.
Thus, in order to improve the learning performances, PPO
is coupled with two additional techniques:
• Pre-training with a Behavior Cloning based [13] ap-

proach
• Inverse Reinforcement Learning [14]
These two techniques, that seamlessly integrate with

UNN/BAM approach, leverage a small dataset of expert
demonstrations (in our case, a human operator) and provide
a supplementary signal for guiding the agent within the
environments.

IV. EXPERIMENTAL SETUP

A. Robots

We consider three mobile bases configurations (Omnidi-
rectional, bicycle and differential), as well as four different
manipulator types (KUKA, BLUE, Generic 2, Generic 3).
Which, in total, leaves us with 12 possible configurations,
three of them are displayed in Figure 6. The bicycle mobile
base is non-holonomic and relies on two values: thrust and



steering, for moving. The differential base is also non-
holonomic and uses two torque values to compute the
resulting direction. Finally, the omnidirectional base is the
simplest as it is holonomic and the two values determine
linearly its next position. Concerning the manipulators, both
the KUKA and BLUE robots have 5 DoF. The Generic
arms (rightmost configuration in Figure 6) have 2 DoF per
articulation, which leads to a total of 4 and 6 DoF for
the agents considered through our experiments. All serial
manipulators are controlled using joints target position.

Fig. 6: A subset of the possible agent configurations. From
left to right: Bicycle KUKA, Omni-directional BLUE, Dif-
ferential G3. Parts can be exchanged between agents.

B. Environments

This section presents the two environments, implemented
in the ML-Agents framework (introduced in [15]), that
were created in order to demonstrate the UNN and the
BAM advantages. An additional environment, the Reaching
environment is used to train the base modules and is pre-
sented below. For each of these environments, we explain
the general goal, define the task-related states and detail
the extrinsic reward signal used to guide the policy in the
environment.

In these environments, the UNN expects a vector si
′

from its input base and always outputs the same type of
information oout. In practice, we have:
• The processed intrinsic information si

′ ∈ R6 consist of
the end effector linear position and velocity, computed
by an analytical approach. Specifically, the input base
relies on a forward kinematic approach to compute the
processed intrinsic information.

• The UNN outputs oout ∈ R3×B, composed of desired
effector linear velocity and a Boolean for sucker action.

Reaching Task: This is the primitive base module training
environment. Consequently, the state and actions of this
specific task are agent-related. This task involves touching
a given point in space with the agent’s effector. The target
point is regularly moved in order to force the agent to use its
mobile base to get in range. This task features the following
MDP:
• State: st ∈ R16+n: mobile base pose ∈ R3, arm pose
∈ Rn (n joints positions), vector to target ∈ R3, LIDAR
sensors ∈ R10

• Action: at ∈ R2+n: mobile base movement vector ∈ R2

(specific to each mobile base configuration) and target
joints speed ∈ Rn.

• Reward: rt = −α × dE,T +
∑
i βi × ci where dE,T is

the distance between the effector and the target, α is a
normalizing constant and βi×ci is a weighted constraint
on the arm to prevent it from falling into undesired local
minima

For training the UNN and evaluating the BAM approach,
we created two custom environments.
Pick’n Place Task: the agent is expected to pick up an object
from one table and drop it to a given point in space. In this
case, the task-related state is spap ∈ R6 × B, composed of
the current object position, the drop target position and a
boolean for signaling whether the cube is held or not. The
agent relies on the following reward function:

rp = α(d0 + d1)
−1 (6)

where rp, the reward for the Pick’n Place environment,
depends on α a positive scaling factor, d0 the distance from
the object to the effector and d1 the distance from the object
to the drop target position.

Stacking Task: the goal is to stack a number of cubes.
The task-related state is conceptually similar to the Pick’n
Place, that is sstacking ∈ R3∗c ×B4 where c is the number of
cubes to stack, in our case c = 4. We also design a reward
that penalizes the agent according to the summed distance
between each of the cube and their ideal position. That is:

rs = [

4∑
i=1

αi(d0,i + d1,i)]
−1 (7)

where rs, the Stacking task reward, depends on αi a
positive scaling factor that is adjusted according to the agent
progression in the task, d0,i the distance from the cube i
to the effector and d1,i the distance from the cube i to its
target position.

V. RESULTS

In this section, the results of our method on both training
and testing setup, over all environments are presented. In
particular, we compare our architecture, the BAM modeling,
with several baselines, namely the naive PPO approach and
the UNN segmentation. A video of our results is available
at https://bit.ly/324Sxnz.

A. Training

During training, we monitor the agent’s evolution through
the mean cumulative reward per episode. This metrics is
common in RL and serves as a measure of how well the
agent behaves within its environment.

Curves in Figure 7a are specific to our architecture and
measure the output base training performances with respect
to the reaching task. Figure 7b and Figure 7c respectively
display these results for the whole architecture (bases +

https://bit.ly/324Sxnz


0 100000 200000 300000 400000 500000

Steps
700

600

500

400

300

200

100

0

100

Cu
m

ul
at

iv
e 

re
wa

rd

Primitives

Omni. G2
Bicy. Kuka
Diff. Blue
Omni. G3

(a) Primitive training on 4 predefined con-
figurations

0 100000 200000 300000 400000 500000

Steps
800

600

400

200

0

200

400

Cu
m

ul
at

iv
e 

re
wa

rd

Pick & Place

BAM
UNN - O.G2
PPO - O.G2

(b) Comparative Pick’n Place training
performances

0 200000 400000 600000 800000 1000000

Steps

3000

2500

2000

1500

1000

500

0

500

Cu
m

ul
at

iv
e 

re
wa

rd

Stacking

BAM
UNN - O.G2
PPO - O.G2

(c) Comparative Stacking training perfor-
mances

Fig. 7: Learning performances over various environments

UNN) for the Pick’n Place and Stacking environments using
an Omnidirectional Generic 2 robot configuration. Due to the
intermediate model outputs, constrained through the bases,
the UNN is able to learn the task more efficiently than a naive
agent. As a matter of fact, we can see that both UNN-based
techniques, in red and orange, respectively representing the
UNN and the BAM approaches, clearly outperform the naive
PPO approach, in blue. We note that the BAM (red) and
UNN (orange) curves both reach a higher final cumulative
reward than the naive PPO, while also being faster, indicating
a better performance at solving the task overall.

B. Transfer

UNN-based approaches aim at making the skills transfer
between agents of diverse constitutions possible. Hence, after
training, we pass pre-trained models on a given configuration
to another one with a different structure and compare their
performances. In an ideal case, pairing the UNN would not
require any fine-tuning. However, in practice, most cases
require additional training iterations for the UNN to complete
the adoption by another agent configuration. We display
some examples of this process in Figure 8a and Figure 8b,
respectively for Pick’n Place and Stacking environments.
These curves show for each environment how fast the
performance can be recovered for a given configuration.
Specifically, the y-axis measures the relative mean reward of
the current agent projected in the lowest-to-highest interval
from all initial agents. The x-axis also indicates how much
of the initial training time was necessary to reach said
performance. For the Pick’n Place environment, see Figure
8a, it appears that transfer within the naive framework is
not efficient and even detrimental to the agent. The policy
weights when transferred to another agent do not provide
a decent initialization point and, through our experiments,
these agents systematically failed at the task. In the contrary,
using the UNN-based techniques allows to jump-start the
new agent configuration with an initial level of performance
that exceeds 70% of the previous agent and allows to
recover almost the full performance, evaluated by the mean
cumulative reward per episode, in a fraction of the previous
training time, mostly depending on the base conditioning. For
the Stacking environment, similar observations emerge from
the Figure 8b where, again, the UNN-based methodology
allows agents with different body configuration to access

to the task knowledge, thus enabling quicker performances
recovering.

While mean reward is a very common metric in RL, we
also consider test time performances by averaging over 100
runs the number of steps necessary to complete the task
for various agents in both environments. In this setting, the
best agents are the fastest and need the lowest number of
steps to complete the task. Table I details results of this
evaluation for Pick’n Place environment. In this case, we
observe very contrasted results. No naive PPO agent was
able to succeed in the task after being transferred, while the
UNN-based transfer was particularly beneficial. Indeed, in
these configurations, the performance was mostly conserved,
with differences being related to the output base quality and
movement capabilities (that is, it takes more time for the
bicycle mobile base to reach a specific point than it does
for the omni-directional base.) This is further confirmed
by results presented in Table II, concerning the Stacking
task, where test performances are globally similar for all
UNN-based agents with a transferred task-model. While
these results are not sufficient to unequivocally determine
an optimal configuration, they do however show that in
both environments, the UNN and the BAM method yield an
increase in performance and allow transfer between entities.
This is due to the fact that, in this modelling approach, the
UNN can focus on the task at hand, without having to learn
simultaneously how to correlate external perceptions to low-
level orders.

TABLE I: Transfer: Pick’n Place

Archi. Config. Agent Training % Perf.

PPO
Initial Omni. Generic 2 100% 1355.4

Transferred
Omni. Generic 3 40% Fail

Bicy. KUKA 40% Fail
Diff. BLUE 40% Fail

UNN
Initial Omni. Generic 2 100% 848.8

Transferred
Omni. Generic 3 20% 784.8

Bicy. KUKA 20% 801.7
Diff. BLUE 20% 443.6

BAM
Initial - 100% 412.3

Transferred
Omni. Generic 2 20% 751.6

Bicy. KUKA 20% 707.9
Diff. BLUE 20% 747.7



0 5 10 15 20 25 30 35 40
Training percentage

0

20

40

60

80

100

Re
la

tiv
e 

pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Pick & Place - Transfer

BAM to B-KUKA
BAM to D-BLUE
BAM to O-G2
UNN O-G2 to O-G3
PPO O-G2 to B-KUKA
PPO O-G2 to O-G3

(a) Pick’n Place transfer fine-tuning performances

0 10 20 30 40 50
Training percentage

30

40

50

60

70

80

90

100

Re
la

tiv
e 

pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Stacking - Transfer

BAM to B-KUKA
BAM to D-BLUE
BAM to O-G2
UNN O-G2 to O-G3
PPO O-G2 to B-KUKA
PPO O-G2 to O-G3

(b) Stacking transfer fine-tuning

Fig. 8: Fine-tuning performances using various architectures

TABLE II: Transfer: Stacking

Archi. Config. Agent Training % Perf.

PPO
Initial Omni. Generic 2 100% 4571.9

Transferred Omni. Generic 3 40% Fail
Bicy. KUKA 40% Fail

UNN
Initial Omni. Generic 2 100% 3547.6

Transferred
Omni. Generic 3 20% 4004.1

Bicy. KUKA 20% 3966.1
Diff. BLUE 20% 3847.9

BAM
Initial - 100% 2879.3

Transferred
Omni. Generic 2 20% 3540.4

Bicy. KUKA 20% 3391.8
Diff. BLUE 20% 3312.7

C. Discussion

Through our experiments, it clearly appears that the UNN
output base’s quality is paramount for establishing acceptable
performances. Indeed, the overall UNN performances, both
for learning and transfer are tightly tied to the stability and
robustness of the bases. More specifically, RL-trained bases
do not generalize very well to a distribution of states that
does not match the initial training distribution. As a result, it
is difficult to predict the agent’s behavior for remotely visited
states. To prevent this and increase the base reliability, it is
important to ensure that the base training visits the state-
space regions that will be required to perform the task. This
additional precaution implies that the primitive task should
be carefully crafted and leads to wonder whether this whole
setup is necessary. The visual observation of a naive agent
provides some clues to address this concern. As a matter of
fact, the naive version relies solely on the reward to guide the
agent’s conduct, and, even though these agents are likely to
find a way to perform the task, no control or constraint are
included, which might result in unwanted body configura-
tions. While it is theoretically possible to include behavioral
terms in the reward function, it is difficult to foresee the
effects of such constraints and, in practice, this accumulation
of weighted reward terms provides a noisy signal to the
agent, drowning the task reward signal with the penalties for
unwanted or encouraged behavior, hence usually minoring

the performance. Using the UNN architecture provides a
clear improvement from this point of view because the base’s
training can be more thoroughly controlled, thanks to the
carefully crafted primitive task, without being distracted by
the task reward, thus resulting in a more reliable agent.

This analysis was the starting point for the BAM in-
troduction that lessens the difficulty for learning the tasks
for the UNN, placing instead the burden on the interface
UNN-base. Through this segmentation and a meticulously
designed primitive task, it is possible to create more efficient
policies that outperform the naive PPO agent on a variety of
environments.

VI. CONCLUSION

The BAM approach presented in this work is a fast transfer
learning method that dissociates the agent’s control logic
from the task it is supposed to accomplish. This technique
also introduced an environment modeling modification that
tackles issues related to RL-policy learning bias, making the
UNN method more scalable and robust. We assessed the
viability of this technique, using two custom 3D dynamic
environments and several agent configurations, by comparing
it with a current state-of-the-art algorithm and demonstrating
that the task model segmentation implies strong benefits
both during the learning phase, as the performing agent is
able to learn faster and reach higher rewards by not being
distracted by low-level parameters, and also during transfer.
Specifically, the transfer, which is likely to fail using naive
methods is not only possible using the BAM method but
quite fast, even enabling zero-shot transfer in some cases.
Future works will investigate the creation of a structural
distance metric to evaluate how different two robots can be
to still benefit from the transfer and whether it is possible to
project the agent state representation within a shared latent
space to avoid manually crafted representations.

ACKNOWLEDGMENT

This work has been sponsored by the French govern-
ment research program Investissements d’Avenir through the
RobotEx Equipment of Excellence (ANR-10-EQPX-44) and



the IMobs3 Laboratory of Excellence (ANR-10-LABX-16-
01), by the European Union through the program of Re-
gional competitiveness and employment 2007-2013 (ERDF
- Auvergne Region), by the Auvergne region and the French
Institute for Advanced Mechanics.

REFERENCES

[1] S. Lengagne, J. Vaillant, A. Kheddar, and E. Yoshida, “Generation
of whole-body optimal dynamic multi-contact motions,” International
Journal of Robotics Research, p. 17, Apr 2013.

[2] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” in Fast
Motions in Biomechanics and Robotics, ser. Lecture Notes in Control
and Information Sciences, M. Diehl and K. Mombaur, Eds. Springer
Berlin / Heidelberg, 2006, vol. 340, pp. 65–93.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

[4] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz,
B. McGrew, J. W. Pachocki, J. Pachocki, A. Petron, M. Plappert,
G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,
L. Weng, and W. Zaremba, “Learning dexterous in-hand
manipulation,” CoRR, vol. abs/1808.00177, 2018. [Online]. Available:
http://arxiv.org/abs/1808.00177

[5] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” 2019.

[6] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin,
“Distilling task-specific knowledge from BERT into simple neural
networks,” CoRR, vol. abs/1903.12136, 2019. [Online]. Available:
http://arxiv.org/abs/1903.12136

[7] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.
org/abs/1804.02767

[8] B. Trapit, P. Jakub, S. Szymon, S. Ilya, and M. Igor, “Emergent
complexity via multi-agent competition,” arXiv - OpenAI Technical
Report, 2017.

[9] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent Tool Use From Multi-Agent Autocurric-
ula,” arXiv e-prints, p. arXiv:1909.07528, Sep 2019.

[10] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all
you need: Learning skills without a reward function,” CoRR, vol.
abs/1802.06070, 2018. [Online]. Available: http://arxiv.org/abs/1802.
06070

[11] L. M. Zintgraf, K. Shiarlis, V. Kurin, K. Hofmann, and S. Whiteson,
“CAML: Fast Context Adaptation via Meta-Learning,” ArXiv e-prints,
Oct. 2018.

[12] M. Mounsif, S. Lengagne, B. Thuilot, and L. Adouane, “Universal
notice network: Transferable knowledge among agents,” in IEEE
- International Conference on Control, Decision and Information
Technologies (IEEE-CoDIT 2019), 2019.

[13] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and N. R.
Waytowich, “Integrating behavior cloning and reinforcement learning
for improved performance in sparse reward environments,” 2019.

[14] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
CoRR, vol. abs/1606.03476, 2016. [Online]. Available: http://arxiv.
org/abs/1606.03476

[15] A. Juliani et al., “Unity: A general platform for intelligent agents,”
CoRR, vol. abs/1809.02627, 2018.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476

	Introduction
	Related Works
	Universal Notice Network
	The UNN pipeline
	Base Abstracted Modeling
	Learning techniques

	Experimental Setup
	Robots
	Environments

	Results
	Training
	Transfer
	Discussion

	Conclusion
	References

