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Abstract—The availability of advanced hybrid system identifi-
cation techniques is fundamental to extract knowledge in form
of models from data streams. Starting from the current state
of the art, we propose an approach based on a specialized
architecture, conceived to address the peculiar integration of
nonlinear dynamics and finite state switching behavior of hy-
brid systems. Following the Mixtures of Experts concept, we
combine a set of Neural Network ARX (NNARX) models with
a Gated Recurrent Units network with softmax output. The
former are exploited to map specific nonlinear dynamical models
representing the behavior of the system in each discrete mode of
operation. The latter, operating as a neural switching machine,
infers the unobserved active mode and learns the state-transition
logic, conditioned on input-output data sequences. Besides, we
integrate a LASSO based input features and model selection
mechanism, aimed to extract the most informative lags over
the sequences for each NNARX and calibrate the modes to be
employed. The overall system is trained end-to-end. Experiments
have been performed on a benchmark hybrid automata with
nonlinear dynamics and transitions, showing the capability to
achieve improved performances than conventional architectures.

Index Terms—System Identification, Hybrid systems, Mixture
of Experts, Neural Network, Automatic feature selection, LASSO

I. CONTEXT AND MOTIVATION

The widespread digitalization and the consequent imple-
mentation of Cyber Physical Systems in different domains
from Industry4.0 and Smart Grid to Smart Cities and health-
care to cite a few, are posing new challenges and further
increasing the demand for efficient and scalable system iden-
tification techniques [1]. While a broad spectrum of methods
are available to tackle systems characterized by continuous
dynamics, CPSs have an intrinsic hybrid nature, character-
ized by the non-trivial interaction of discrete and continu-
ous elements, requiring enhanced hybrid system identifica-
tion techniques [2]. Hybrid system identification targets the
estimation, from available input output data sequences, of
both the discrete modes and the sub-models governing the
dynamics of the continuous state for each mode [3]. Auto-
mated model learning is particularity challenging for hybrid
systems exhibiting complex nonlinear behavior and switching
rules between dynamical regimes [4]. Most of the proposed
approaches have focused on switched affine and piecewise
affine models, constituted by a finite set of linear subsystems
[1]. Due to their theoretical universal approximation capability,

neural networks have also been widely investigated to learn
dynamical models from data, showing the capability to extract
mappings of complex nonlinear dynamical systems (see e.g.,
[5]) as well as representations of finite state machines (see e.g,
[6]). Both feed-forward (FFNN) and recurrent architectures
(RNN) have been employed for this purpose. In principle, they
are able to identify also hybrid dynamical systems; however,
the incorporation of specific structures into neural models, by
considering the specific characteristics of the target problem, is
receiving a lot of attention as a way to increase performance,
sample efficienty, and explainability [7].

To target the identification of hybrid systems, a neural
network is expected to learn both the finite state machine
governing regime switching and a specific nonlinear dynamical
model for each regime. Such pattern resembles the Mixture
of Experts (MoE) model proposed in the seminal paper of
Jacobs et al, generalizing finite mixture models to address
problem decomposition [8]. MoE are composed by a set of
regression functions and a gating mechanisms soft-partitioning
the input space, to capture the sub-regions where the individual
experts are reliable [9], and supporting the identification of
piece-wise continuous systems. Despite being conceived to
process static data, MoE models have been exploited also
for the identification of non-stationary time series, including
input output Hidden Markov Models [10]. Major critical
issues of MoE model regard model selection (e.g., number
of experts) and feature selection. The latter usually need to
be performed specifically for both the mixing component and
each expert (e.g., to capture mode related nonlinear map to
input regressors). In practice, expensive manual procedures are
often employed, by leveraging on the developer expertise [9].
In general, accuracy is often improved by discarding irrelevant
and redundant features [11]. The Least Absolute Shrinkage
and Selection Operator operator (LASSO) has been proposed
for such purpose for linear MoE, often employing Gaussian
experts [12].

In this work, we target Switching Nonlinear Auto-
Regressive with Exogeneous inputs (SNARX) systems, rep-
resenting a broad class of hybrid problems, including CPS.
To this end, we propose an approach based on a specialized
network architecture, including a LASSO-based automated
feature selection mechanism. Our scope is to identify the
overall behavior of the system in a single step, covering the



estimation of the discrete modes, the related switching logic
as well as the nonlinear subsystems dynamics with unknown
structure. The proposed method is applied to a benchmark
hybrid system identification problem, showing improved per-
formance than conventional network architectures. The rest of
the paper proceeds as follows: Section II deepens the related
works and open issues; Section III reports the developed
network architecture and training method, then Section IV
summarizes the results achieved.

II. RELATED WORKS AND CONTRIBUTION

As reported in [1], a broad spectrum of hybrid systems
identification techniques has been proposed in the last two
decades, mostly focusing on Piece-Wise Affine (PWA) systems
with linear transition rules. In this context, the approaches
that attained particular attention include the algebraic, clus-
tering based, bounded-error, mixed integer programming and
Bayesian learning. A detailed review is reported in [13].
More recently, authors in [14] proposed a technique based
on multi-class linear separation and recursive clustering. Far
fewer works address the nonlinear case [15]. An approach to
identify piece-wise smooth and switched nonlinear systems
based on Support Vector Machines (SVM) is proposed in
[3], but it suffers limitations on the treatable data size. In
[16] a reduced-size kernel models is introduced, assuming that
the number of submodels and their regressors are known. In
[15], the SVM model is enhanced by a robust sparsity term
to control model complexity, extending previously proposed
sparsification techniques for affine systems. A method for
the segmentation of nonlinear systems is proposed in [17],
exploiting a least squares SVM with the sum-of-norms reg-
ularization. Hybrid identification is approached by symbolic
regression in [18] and complemented with model selection
through sparsification in [4]. A two step technique is proposed
in [1], including a clustering based subsystem inference phase
followed by a transition inference phase, which considers a
linear combination of over-determined dictionary matrices.

Neural networks have been investigated for hybrid sys-
tem identification in [19] and [20], proposing respectively
a feedforward network to learn a class of hybrid systems,
and a recurrent network based switching Manifolds supervisor
between local sub-network. Switching density networks [7]
have been proposed to predict the parameters of hybrid control
laws. Research efforts have been dedicated to learn piece-wise
continuous time-series by MoE (see e.g,. [9] for a detailed
review). Most notably, authors of [21] derived an extension
to the original MoE based on a n-th order Markov model,
introducing recurrence in the gate.

In a grammar inference context, authors of [10] proposed a
recurrent version of the MoE, called the Input Output Hidden
Markov Model architecture, composed by output networks and
recurrent state networks. The internal state is computed as a
linear combination of the outputs of the state networks, gated
by the previously computed internal state. In [22], time series
with switching regimes are tackled by a multilayer perceptron
based gate combining a set of feed-forward neural network

experts.

The aforementioned studies mainly target architectural patterns
and related learning procedures. Previous works also addressed
LASSO-based features/model selection by focusing on linear-
in-parameters models, thus leading to simplified convex op-
timization problems (see e.g., [11]). However, to the best of
our knowledge, the investigation of integrated methods sup-
porting end-to-end learning including features/model selection
in a MoE framework is still lacking within hybrid systems
identification literature.

In this paper, we propose a hybrid system identification
approach based on a specialized architecture constituted of
a set of Neural Network-ARX (NN-ARX) models governed
by a switching machine based on a Gated Recurrent Unit
(GRU) network. Moreover, we integrate the log-likelihood
function with weighted LASSO terms dedicated to inputs,
hidden network layers and gates, performing automated feature
selection. The main goal is to increase prediction performance
in contexts where specific knowledge is not available (e.g.,
number of discrete modes, features lags, etc.), as detailed in
the following sections.

III. METHODS

Depending on the specific characteristics of the hybrid
identification problem at hand, the interaction of discrete
and continuous counterparts can be characterized by dif-
ferent modeling approaches, from piece-wise affine systems
- determined by a polyhedral partition of the continuous
space of the regressors -, to piece-wise nonlinear systems
- with subdomains not restricted to polyhedral - up to the
broader class of arbitrary switching systems [2]. Discrete states
typically characterize the different operating modes of the
system or changes in the dynamics, e.g., thresholds and dead-
zones, behavioral switching, physical limits, etc. [13]. In jump
systems, the active discrete state is provided as an exogenous
input, thus the hybrid identification problem can be recast to
a classical nonlinear identification problem, e.g., by learning
each sub-model separately. However, in most of applications,
the timed sequences of discrete states have to be inferred, as
well as the initial conditions.

In this work, we target the broad class of Switching
Nonlinear Autoregressive with Exogeneous inputs (SNARX)
systems, defined as a composition of input-output subsystems
in discrete time as follows:

y(t) = file(t)) +e(t) ,when g(t) =1
(1)
y(t) = fa(zq(t)) +e(t) ,when ¢(t) =g
where y(t) is the system output at sample time ¢,

{2;(t) = yenpowei;]};_,  and  {fi[]:R™ >R},
the collections of regression vectors and the nonlinear
function mappings valid within each discrete state (or mode)
q(t) € {1,...,q}, e(t) is a noise term assumed to be Gaussian
distributed with zero mean and the same variance o2. It is
worth noting that a single discrete state is active in each
sample time. Besides, the number of lagged input u;_g;



and measured outputs y; p, are in general specific of each
NARX submodel. The switching between discrete states is
governed by a finite set of transitions with boolean conditions,
unknown functions of both lagged input and output as well
as temporized events (see e.g., [2] for further details). We
formulate the method for a Single Input - Single Output
(SISO) system to simplify notation, however it can be
straightforwardly extended to the Multi Input-Multi Output
(MIMO) case. The aim of the identification process is to
learn the one-step prediction of the hybrid system (1) from
an input-output dataset {x;(t), yi(t)}fvzlof length N.

A. Neural network architecture

The network architecture, depicted in Figure 1, has been
designed following the Mixture of Experts (MoE) concept.
The rationale behind this choice is twofold. On the one
hand, we aim to foster the identification of specialized sub-
models (i.e., experts) characterizing the dynamics of the hybrid
system within each discrete state. On the other hand, we target
the implementation of hierarchical patterns shaped according
to the specific characteristics of the problem class at hand.
Specifically, the developed MoE architecture is formalized as:

PO, 0) = 3 Ply(t), jle(t),6)
. @)
=2 0(2(),0,) P(y(®)lj, z(1), )

where g¢;(x(t),0,) represents the probability of each expert
given the inputs regressors, n, € R the configured number
of experts and P(y(t)|7,z(t),0.) the expert-wise likelihood
function. , € R"% and 0. € R™% summarizes the parameters
sets of the mode gating and experts networks respectively,
which size depends on the specific architectural shapes.
Considering the Gaussian assumption over the noise reported
above, the latter is defined as:

P(y()]d, z(t),0) =

L s ew-ve? (3
2o

Following the NARX formulation stated above, we chose
the experts as feedforward neural networks with regressors
input layers (i.e, NNARX). The discrete state network, aimed
to learn the transition dynamics between the hybrid system
modes, is modeled by means of a recurrent neural network
(RNN). RNN exploits its capability to structure compressed
representations of arbitrary long input sequence within the
hidden state. Hence, such gating parametrization is expected
to learn complex transition rules including short and long-
term swithcing events and conditioning on input features.
To address the vanishing gradient issue of traditional RNNs,
we included Gated Recurrent Units cells (GRU), providing
a computationally cheaper alternative to Long Short-Term
Memory units. The investigation of alternative network archi-
tectures (e.g. recurrent network based experts, etc.) is left to
future extensions of the present work. Formally, the network
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Fig. 1. Developed MoNNARX network architecture

components are defined as follows, where we include a single
layer both for the recurrent and the feed-forward networks and
employ subscripted time to ease notation:

Zt :U(Wzl't + Uzht—l + bz)

Tt :O'(er't + Urhtfl + br)
ht :(1 - Zt) ® tanh(tht + Uh(’f't ® ht—l + bh))

+ 2t © he—q
my =0 (Whe + b)) “4)
si= ottt K = oW )
yl = Wikl +b),  ye= Yo ulsl
where 2z; defines the update gate, r; the reset gate,

W., W, Wy, € RXme U, U, Uy € R™X™ W, €
R7mxmn W e R™ X" W, € R™*™ the weight matrices
and b.,by, by, € R™, by, € R™, b, € R™, bJ € R™ the
bias vectors. The gates include an element-wise sigmoid acti-
vation, () = 13-==, while an hyperbolic tangent activation

tanh(z) = Ez;z:, is used for the hidden state equation.
The layer with output m; has been also introduced to enable
mapping complex nonlinearities within the transition function,
since despite being deep when unfolded in time, RNNs still
results shallow on certain computational paths. We employed
relu(z) = maz(0, z) units since sparsely activated.

It is worth noting that the vector output sg of the
softmax layer, implementing the RNN-based experts gating
gj(z(t),8,), is a smooth version of the winner take all model,
which is employed to obtain a trainable network architecture.
Hence, it approximates, by training, the conditioned switching
mechanisms between the modes-specific NARX predictions y]
through soft-partitioning. To enforce learning a sparse selector,
we introduce a LASSO term on the layer outputs, as reported
in the next subsection. Besides, the specific structures of
experts and gating networks (e.g. in terms of layers, neurons
in each layer, Back Propagation Through Time of the RNN,
etc.) represent hyperparameters that must be properly tuned
on the specific application at hand. To this end, we exploited
cross-validation, as detailed in Section IV.




B. Network training approach

Typically, system identification models are trained by max-
imizing the likelihood of the training data, assuming i.i.d.
samples and Gaussian noise.

Still, automated feature and model selection mechanisms
have to be integrated, in order to achieve an efficient and
scalable system identification technique, avoiding extensive
manual trial and error. The selection of the features subset
providing support to explain the problem is particularity
critical for hybrid systems since typically characterized by
multiple modes, specific timed correlations on both states and
transitions, unknown number of change-points and related lag
positions. Besides, working on a lower dimensional space
with less features redundancies often support the performance
of training procedures. Moreover, even by manually stating
the features subset, there is still an infinite number network
models, with increasing number of expert sub-components,
capable of explaining the data [23].

To address such issues, we embed weighted LASSO-based
sparsification terms within the conventional maximum like-
lihood training function related to: the input layers of the
networks (with weight ) to perform selection of the features
from the time series including both exogenous variables and
past values of the measured output; the hidden layers of
both networks sub-components (with weight ) to control
complexity and consequent generalization capacity; the output
activity of the discrete state selection network (with weight )
to foster the learning procedure to approach input conditioned
winner-take-all patterns; leading to the following objective:

0= argmin [L(0) + al[Wxlls + BIWalls +vllslla] - 5)

where we used L(6), Wx, Wy to summarize the likelihood,
weights of input and hidden layers to simplify notation.

In general, specific penalties can be introduced for each layer
of the network thus increasing control on the related regular-
ization effects. However, the hyperparameter space increases
accordingly, thus impacting on the grid of cross-validation. To
balance control and tuning complexity, in this work we used
single weights «, 3 for the input and net complexity since our
major aim is to investigate input features and model selection.
The exploration of more granular hyperparametrizations, as
well as the integration of further regularization terms, are left
to future extensions of the present work.

As introduced above, the major strength of LASSO operator
resides in its capability to encourage sparse solutions, as op-
posed to alternative regularization methods based on quadratic
forms (as ridge/weight decay) achieving contractions to small
values, but not exactly zero. Even so, the non-differentiability
at zero limits the straight application of conventional gradient
based training algorithms. Such issue has been partially ad-
dressed in previous studies on hybrid system identification by
focusing on linear-in-parameters models.

By retaining the representation capability of the full nonlinear-
in-parameters form, two major families of learning approaches
can be exploited [24]. The former recast to a constrained

optimization problem, e.g., by introducing a set supplementary
slack-variables to tackle the absolute values signs. The latter
maintain the unconstrained optimization form, often exploiting
smooth proxies, sub-gradients or thresholding. In this work,
we implement the sub-gradient approach since computation-
ally cheaper and more scalable than constrained formulation
based methods [25]. The investigation of alternative solution
techniques is foreseen as future extension of the present work.
The overall network is trained end-to-end and the weighting
parameters of the LASSO terms are tuned by a grid search
procedure in cross-validation, as reported in the following
section.

IV. EXPERIMENTS AND RESULTS

In this paper, we apply the method discussed in Section
IIT on a benchmark nonlinear hybrid system stated oppor-
tunely to combine several challenging features both in state
transitions and internal dynamics. The Multiple Input-Single
Output (MISO) system is characterized by four discrete modes
q € Q, in which the dynamical system evolution is described
by a non-linear map y(t) = f;(z(t)) + e(t) for all j € Q.
The regression vector z(t) = [Yi—n, U1, t—k;- - Um, t—k]
where Yi-h = [y(t - 1)77y(t - h)]/ and U, t—k =
[ (E—1), U (t—1), ..., um (t—k)]’ collect the lagged output
measurements up to the time h and past values of the m'™"
input, with lag window k.

The nonlinear maps are reported in Table I. Note that to
simplify the notation, here the lag subscript y;_p, u;, ¢y is re-
moved: for all the modes h = 3 and k = 2. Moreover, in every
mode the hidden state is incremented by 7(¢) = 7(t — 1) + 1.
A common noise parameter have been applied as € = 0.01.
The discrete-time hybrid automaton is depicted in Figure 2,
where the vertices are the discrete modes while the edges
of the directed graph represent the feasible transitions. These
transitions are activated by guard conditions, reported in Table
L. It is worth noting that these are defined by general Boolean
expressions that include threshold conditions on nonlinear
functions of output, inputs and their time derivatives. In
addition, time-enabled transitions are also present: a hidden
internal state is used in each mode to model a required
dwell-time. In particular, the presence of time derivatives and
dwell-time transitions requires the capability of the switching
machine to deal with conditions based also on past data. The

ye > 1.5

mode 1 mode 2

yr = fa(Ye—n, k) + e

Yt = f1(Ye—h, W) + e

Fig. 2. Nonlinear hybrid automaton model



TABLE I
NONLINEAR MAPS AND GUARDS IN EACH MODE

Mode ¢ Nonlinear Map

fi=ay+ b(diag(ul)u1)®% + cu2®3
1 where a = [0.871, —0.235,0.018],

b = [0.383,0.068, —0.040]

and ¢ = [1.329, —0.859, 0.136]

fo = ay + bdiag(0.8u;1)(0.3uz) + cug)2
where a = [1.646, —0.670, 0],

b = [0.414, —0.406, 0]

and ¢ = [0.213,0.192, 0]

f3 = adiag(y) (0.15u2)9~ T + pu®?
3 where a = [1.47624603635867, 0, 0],

b = [0.048,0.110, 0.015]

fa = ay + bdiag(ui)uz + cuy

where a = [0.455, —0.034, 0.001],

4 and b = [—0.185,0.045,0.009],
and ¢ = [0.144, 0.116, 0.004]
Notation: | Hadamard power: for a € Q, x©% = [z¢,..., 23]
Mode g | Transition Guards Reset
g2 y(t)>15
1 =
G- y(t) < -1 T =0
@2-1 y(t) <0
2 t)=0
@23 (W2 <ent(t)>8 7(®)
3 @31 yt)Z <eAui(t) >0 7(t) =0
Ly ¢
4 q4—1 3_15<E/\T()>6 T(t):O
Qa2 G >eAy(t) >1

employed dataset, generated by a Matlab implementation of
the benchmark hybrid system, is constituted by an overall
sequence of 10000 input-output measurements.

The overall dataset is divided into training, validation and
test sets composed of 60%, 30%, 10% of the samples re-
spectively. Then, the training and validation sequences have
been processed to construct batches of ordered samples used
to train the network by supervised learning. To this end, the
overall sequences are processed by sliding a window. The
width of the window is a tunable hyperparameter, definining
the extension of the search space considered for features
selection from the raw input sub-sequences during training.
In general, specific search windows could be configured for
each subcomponents of the overall model (e.g., different length
for NARX experts and discrete state network). However,
in this work we employed a common hyperparameter, to
reduce the dimensions of the search grid. Hence, the search
window width is configured to cover the maximum lag horizon
needed to capture specific substate dynamics or transition
rules, considering both input and past-output data. The same
hyperparameter configuration is set to the extension of Back
Propagation Through Time and to build the NARX regressors
{h;, k; }?:1. Then, thanks to the developed automated feature
selection mechanism, the unnecessary inputs/lags are excluded
during training specifically for each subcomponents. The test
set is processed only during the final one-shot experiments,
employing the weight obtained by cross-validation.

The neural networks is deployed by means of Tensorflow
2.0, by a custom Keras model. Summarizing, the hyperpa-
rameters set includes the number of layers and units in the
networks, the width of the sliding a window, the maximum
number of experts to be employed (the exact subset is then

TABLE II
TEST SET RESULTS
Experts « B ¥ sMAPE
FF-NNARX - 0 le-4 - 0.23
FF-NNARX - le-2 | le-4 - 0.29
MoNNARX 4 le-2 | le-4 | le-2 0.16
MoNNARX 10 0 le-4 0 0.28
MoNNARX 10 le-2 | le-4 | le-1 0.16

chosen during training by the network exploiting the related
selector) and the LASSO weights related to the input, output
and hidden selectors. Network training is performed over
150 epochs with an early stop patience of 20 epochs (i.e.,
interrupting training when the objective stops decreasing)
with a mini-batch size of 32 samples. We employ the Adam
algorithm, conceived to tackle noisy and sparse gradients, as
expectable in our case. Since the main goal of this work
was to exploit whether the introduction of the MoNNRX spe-
cialized hierarchical structure support improved performance
than conventional networks under comparable configurations,
an extensive hyperparameter search has not been carried out.
Future extension of this work will focus on the fine-tuning
of those parameters and how optimization methods such as
metaheuristics can be used to find their optimal values.

For final test set experiments, we employed the following
setup: discrete state network with a recurrent layer of 30 GRU
units stacked with a dense layer of 10 units; 10 NNARX with
a dense layer with 30 sigmoid units stacked with a linear
layer; window width of 10. Prediction performances have
been evaluated by means of the symmetric Mean Absolute
Percentage Error (SMAPE) to avoid the sensitivity to small
values of conventional MAPE and obtain scale independent
metrics. Table II reports the results obtained on the test set,
while Figure 3 plots the predictions vs targets data. First of
all, we performed experiments by a conventional feedforward
architecture, capable to learn both continuous and finite state
dynamics in an integrated representation, as shown in the pre-
vious studies reported in Section II. Both models works on the
same input data space, thus the neural network operates as an
overall NNARX structuring all modes within the hidden space.
By cross validation, we did not observe sensible improvements
by increasing the number of hidden units beyond 100 within
the FF-NNARX, thus we used such configuration in test. To
achieve comparable results, we included the input and network
regularization components also in the FF-NNARX. Notably,
the FF-NNARX achieved good prediction performances, thus
learning both the different continuous dynamics of the modes
and the discrete state switching. Surprisingly, the inclusion of
the input feature selection term did not decrease the error.
Principally, this was induced by the input layer sharing be-
tween the different modes embedded within the FF-NNARX,
with consequent difficulties in performing features selection
for each discrete state by a unique mechanism. Afterwards,
we tested the MoNNARX model by setting the number of
experts equal to the mode size of the benchmark problem,
thus fostering the identification of one mapping, and related
feature selection, for each state.
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Fig. 3. Predicted vs target data over the test set

Finally, we experimented a MoNNARX network with 10
NNARX, to check eventual performance degradation (e.g., due
to overfitting) and mode selection when the actual number is
unknown, as common in real settings.

Notably, we obtained a sensible increase in prediciton accuracy
with MoONNARX, as compared to the FF-NNARX model, thus
showing that the introduction of a specialized network archi-
tecture improves the hybrid system identification. Besides, we
observed stable performances even by doubling the number
of NNARX experts than the target system modes. We report
also the results obtained by setting «,y = 0, showing the
importance of the LASSO-selection mechanism to achieve
effective mixture of NARX experts architectures in practical
applications where indications on the modes/features to be
used is not available.

V. CONCLUSION AND NEXT STEPS

In this work we focused on the identification of one-step
prediction models of hybrid systems from input-output data
sequences. The complexity of such problem depends on which
elements are assumed to be known a priori [13], e.g., number
of modes, input feature, etc. Considering the requirements of
real world applications, where such information are typically
not available, we targeted the inference of the overall system,
including the nonlinear dynamics related to each mode as well
as the discrete states transitions. Besides, we considered as
unknown also the set of input features lags, the currently active
state, as well as the number of discrete states. To this end, we
have proposed a hybrid system identification approach based
on a specialized neural network architecture constituted of a
set of Neural Network-ARX models governed by a switching
machine based on a Gated Recurrent Unit network. Then, we
included a LASSO-based automated feature/model selection
mechanism, avoiding the complex manual procedures that has
to be performed for each dynamical mode. By application to a
benchmark hybrid system identification problem, we showed
that the specialized hierarchical structure achieve improved
performances than conventional general purpose network ar-
chitectures, and we showed that the LASSO-selection mecha-
nism is crucial to achieve effective mixture of NARX experts
architectures when prior information is lacking, as common

in real-life applications. Next developments will include the
exploration of further specialized network architectures, the
integration of optimization techniques for hyperparameter tun-
ing, the investigation of rule-extraction techniques to enhance
neural network explainability, and the application to practical
case studies.
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