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Abstract— In the present work, a second-order PLL with
lead-lag loop filter and triangular phase detector characteristic
is analysed. An exact value of the conservative lock-in range
is obtained for the considered model. The solution is based on
analytical integration of the considered model on the linear
segments.

I. INTRODUCTION

The interest to study phase-locked loops (PLL) comes
from their wide applications. Initially described by A. Ap-
pleton in 1923 [1] and H. Bellescize [2], these circuits
became widely spread in wireless communications [3]–[9],
GPS navigation [10], gyroscope systems [11], [12], computer
architectures [13], [14], and others.

First ideas of mathematical analysis of such systems
belong to Italian academician F. Tricomi [15] and are based
on the analysis of system phase portraits. These ideas were
further developed in works of A.A. Andronov [16]. Funda-
mental monographs devoted to the problems of numerical
simulation and analysis of PLL were published in 1966
by F. Gardner [17], A. Viterbi [18], V.V. Shakhgildyan,
and A.A. Lyakhovkin [19]. These books are devoted mostly
to engineering approaches of two-dimensional PLL models
analysis.

In this article, we consider a PLL with lead-lag loop
filter and triangular phase detector characteristic. Nonlinear
analysis of this model and estimates of the global stability
domain were conducted in [20]–[25]. Basing on these works,
we analytically obtain an exact formula for the conservative
lock-in range for the first time. This characterisctic considers
the ability of PLL to synchronize in a short time and related
to the Gardner problem [26], [27].

II. MATHEMATICAL MODEL AND HOLD-IN RANGE

Consider analog PLL baseband model in Fig. 1 [18], [26],
[28]–[30]. Here θref(t) = ωreft + θref(0) is a phase of the
reference signal, a phase of the VCO is θvco(t), θe(t) =
θref(t)− θvco(t) is a phase error. A phase detector (PD)
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Fig. 1. Baseband model of analog PLLs.

generates a signal ve(θe(t)) where ve(·) is a characteristic of
the phase detector. In the present paper, a piecewise-linear
PD characteristic, which is continuous and corresponds to
square waveforms of the reference and the VCO signals, is
considered:

ve(θe) =

{
2
π

θe−4m, −π

2 +2πm≤ θe(t)< π

2 +2πm,

− 2
π

θe +2+4m, π

2 +2πm≤ θe(t)<−π

2 +2π(m+1),
(1)

here m ∈ Z (see Fig. 2).
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Fig. 2. Triangular PD characteristic.

The state of the loop filter is represented by x(t) ∈R and
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the transfer function is1

F(s) =
1+ τ2s

1+(τ1 + τ2)s
, τ1 > 0, τ2 ≥ 0.

The output of the loop filter vF(t) = 1
τ1+τ2

x + τ2
τ1+τ2

ve(θe)
is used to control the VCO frequency ωvco(t), which is
proportional to the control voltage:

ωvco(t) = θ̇vco(t) = ω
free
vco +KvcovF(t)

where Kvco > 0 is a gain and ω free
vco is a free-running frequency

of the VCO.
The behavior of PLL baseband model in the state space

is described by a second-order nonlinear ODE:

ẋ =− 1
τ1 + τ2

x+
τ1

τ1 + τ2
ve(θe),

θ̇e = ω
free
e −Kvco

( 1
τ1 + τ2

x+
τ2

τ1 + τ2
ve(θe)

)
.

(2)

where ω free
e = ωref−ω free

vco is a frequency error and ve(θe)
is defined in (1). It is usually supposed that the reference
frequency (hence, ω free

e too) can be abruptly changed and
that the synchronization occurs between those changes. Thus,
existence of locked states, acquisition and transient processes
after the reference frequency change are of interest.

The PLL baseband model in Fig. 1 is locked if the phase
error θe(t) is constant. For the locked states of practically
used PLLs, the loop filter state is constant too and, thus, the
locked states of model in Fig. 1 correspond to the equilibria
of model (2) [31].

Definition 1: [5], [27], [31] A hold-in range is the largest
symmetric interval of frequency errors |ω free

e | such that an
asymptotically stable equilibrium exists and varies contin-
uously while ω free

e varies continuously within the interval.

Observe that system (2) is 2π-periodic in θe and has an
infinite number of equilibria (xeq, θ

eq
e ) which satisfy

ve(θ
eq
e ) =

ω free
e

Kvco
,

xeq =
τ1ω free

e

Kvco
.

From the boundedness of the PD characteristic it follows that
there are no equilibria for sufficiently large ω free

e . Further we
suppose that ω free

e < Kvco and the equilibria are(
τ1ω free

e

Kvco
, (−1)m

π

2 ω free
e

Kvco
+πm

)
, m ∈ Z. (3)

The characteristic polynomial of system (2) linearized at
stationary states (3) is

χ(λ ) = λ
2 +
( 1

τ1 + τ2
+

Kvcoτ2

τ1 + τ2
v′e(θ

eq
e )
)

λ +
Kvco

τ1 + τ2
v′e(θ

eq
e ).

1If τ2 = 0 then such filter is called a lag filter, if τ2 > 0 then it is called
a lead-lag filter [26].

The nonlinearity ve(θe) decreases(
v′e(π−

π
2 ω free

e
Kvco

+2πm) =− 2
π
< 0
)

for π

2 + 2πm ≤ θe(t) <

−π

2 +2π(m+1), and equilibria(
τ1ω free

e

Kvco
, π−

π

2 ω free
e

Kvco
+2πm

)
are saddles. The nonlinearity ve(θe) increases(

v′e(
π
2 ω free

e
Kvco

+πm) = 2
π
> 0
)

for −π

2 + 2πm ≤ θe(t) <

π

2 +2πm, and equilibria(
τ1ω free

e

Kvco
,

π

2 ω free
e

Kvco
+2πm

)
are asymptotically stable ones, which can be either nodes,
degenerate nodes or foci (see Appendix). Since an asymptoti-
cally stable equilibrium exists for any frequency error ω free

e <
Kvco, the hold-in range of model (2) is [0,ωh) = [0,Kvco) for
any τ1 > 0, τ2 ≥ 0.

III. GLOBAL STABILITY ANALYSIS

Definition 2: [5], [27], [31] A pull-in range is the largest
symmetric interval of frequency errors |ω free

e | from the hold-
in range such that an equilibrium is acquired for an arbitrary
initial state.

A. Pull-in range estimate by Lyapunov function

To obtain an estimate for the pull-in range of system (2),
we apply the direct Lyapunov method and the corresponding
theorem on global stability for the cylindrical phase space

Theorem 1: (see, e.g., [32], [33]). If there is a continuous
function V (x,θe) : R2→ R such that

(i) V (x,θe +2π) =V (x,θe) ∀x ∈ R,∀θe ∈ R;
(ii) for any solution (x(t),θe(t)) of system (2) the function

V (x(t),θe(t)) is nonincreasing;
(iii) if V (x(t),θe(t)) ≡ V (x(0),θe(0)), then

(x(t),θe(t))≡ (x(0),θe(0));
(iv) V (x,θe)+θ 2

e →+∞ as ||x||+ |θe| →+∞

then any trajectory of system (2) tends to an equilibrium.

Following [32], [34], consider the following Lyapunov
function:

V (x, θe) =
1
2
(x− τ1ω free

e

Kvco
)2+

+
τ1

Kvco

θe∫
0

(
ve(σ)− ω free

e

Kvco
+β0|ve(σ)− ω free

e

Kvco
|
)

dσ

(4)

where

β0 =−
∫ 2π

0 (ve(σ)− ω free
e

Kvco
) dσ∫ 2π

0 |ve(σ)− ω free
e

Kvco
| dσ

> 0.

Such form of the integrand expression makes the Lyapunov
function 2π-periodic. For triangular PD characteristic coef-
ficient β0 is

β0 =
2ω free

e Kvco

(ω free
e )2 +K2

vco
. (5)



The Lyapunov function derivative along the trajectories of
system (2) is

V̇ (x,θe) =−
1

τ1 + τ2

(
(x− τ1ω free

e

Kvco
)2−

−β0τ1(x−
τ1ω free

e

Kvco
)(ve(θe)−

ω free
e

Kvco
)+

+ τ1τ2(1−β0)(ve(θe)−
ω free

e

Kvco
)2
)
.

If the loop filter parameters satisfy the inequality

β0 < 2(−τ2

τ1
+

√
τ2(τ1 + τ2)

τ1
) (6)

then the Lyapunov function derivative along the trajectories
of system (2) is as follows:

V̇ (x,θe)< 0, x 6= τ1ω free
e

Kvco
, ve(θe) 6=

ω free
e

Kvco
.

Since the derivative along any solution other than equilibria
is not identically zero, condition (6) provides the global
stability of the system. Taking into account (5) and (6), the
following estimate for the pull-in range is obtained:

ωp >
(

τ1

2
√

τ2(τ1 + τ2)−2τ2
−

−

√
τ2

1

(2
√

τ2(τ1 + τ2)−2τ2)2
−1
)

Kvco.

(7)

B. Analysis of cycles of first and second kind

Firstly, let us analyse the dissipativity domain. Consider
the following Lyapunov function:

V (x, θe) =
1
2

τ1x2.

Its derivative along the trajectories of system (2) is:

V̇ (x,θe) =−
τ1

τ1 + τ2
x
(

x− τ1ve(θe)
)
.

If |x|> τ1ve(θe), then V̇ (x,θe)< 0. Hence, limsup
t→+∞

|x(t)|< τ1

and an estimate for the dissipativity domain is |x(t)|< τ1.
Using change of variables z =− Kvco

τ1+τ2
(x− τ1ω free

e
Kvco

), system
(2) becomes system (4.3) from [35] with α = 1

τ1+τ2
, β =

1
τ1+τ2

Kvco, a = τ2
τ1+τ2

Kvco. Applying Theorem 4.1 from [35]
we get that any trajectory of system (2) which is bounded in
R2 tends to an equilibrium, hence, there are no the cycles of
the first kind. If there is a homoclinic orbit in the system, then
it envelops an asymptotically stable equilibrium and a cycle
of the second kind exists in this case due the dissipativity
[21] (thus, a homoclinic orbit does not determine the global
stability and the pull-in range).

Thus, depending on the system parameters Kvco, τ1, τ2
there are three possibilities of the global stability loss in
system (2):
• disappearance of equilibria (in this case [0,ωp)= [0,ωh)
• appearance of separatrix cycle
• appearance of semi-stable cycle (cycle of the second

kind)

Applying Theorem 4.2 from [35] it can be shown that there
are no either the separatrix cycles or the cycles of the second
kind in domain x > xeq. Since the system is piecewise-linear,
its trajectories can be analytically integrated (see Appendix)
and exact frequency error values for separatrix and semi-
stable cycles (hence, the pull-in range) can be obtained (see,
e.g., [21], [22], [36]–[38]).

IV. CONSERVATIVE LOCK-IN RANGE

Although a PLL model can be globally stable, the acqui-
sition process can take long time. To decrease the synchro-
nization time, a lock-in range concept is frequently exploited
[13], [26], [28].

Definition 3: [5], [27], [31] A lock-in range is the largest
interval of frequency errors |ω free

e | from the pull-in range
such that the PLL model being in an equilibrium, after
any abrupt change of ω free

e within the interval acquires an
equilibrium without cycle slipping (sup

t>0
|θe(0)−θe(t)|< 2π).

From a mathematical point of view, system (2) can initially
be in an unstable equilibrium (at one of the saddles) or
can acquire it by a separatrix after a change of ω free

e
(see [38], [39]). Corresponding behavior is not observed
in practice: system state is disturbed by noise and can’t
remain in unstable equilibrium. Thus, two cycle-slipping-
related characteristics of the system can be considered:
the lock-in range |ω free

e | ∈ [0,ωl) where the equilibria are
considered to be stable and the conservative lock-in range
|ω free

e | ∈ [0,ωc
l )⊂ [0,ωl) which takes into account the unsta-

ble behavior described above. In this article, we analyse the
conservative lock-in range [0,ωc

l ).

For the considered model boundary values ωl and ωc
l are

determined as follows: The system being in an equilibrium
state is exposed to an abrupt change of ω free

e , and the
corresponding trajectory of the system after the switch tends
to the nearest unstable equilibrium by the corresponding
saddle separatrix. In other words, sup

t>0
|θe(0)−θe(t)|= π for

θe(0) = 2π (see Fig. 3, lower left picture) and sup
t>0
|θe(0)−

θe(t)|= 2π for θe(0) = 3π (see Fig. 3, upper right picture).
For a larger ω free

e supremum sup
t>0
|θe(0)− θe(t)| > 2π and

cycle slipping occurs. Since the lock-in range is defined as a
half-open interval, boundary values ω free

e =ωl and ω free
e =ωc

l
are not included in it.

Using changes of variables we represent system (2) as
the first-order differential equation [38], [40], analytically
integrate it on the linear segments, formulate, and prove the
theorem providing an exact value for the conservative lock-in
range.

Theorem 2: The conservative lock-in frequency of model
(2) with triangular PD characteristic (1) is ωc

l which is the
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Fig. 3. Phase portraits for model (2) with the following parameters: F(s) = 1+τ2s
1+(τ1+τ2)s

, τ1 = 0.0633, τ2 = 0.0225, Kvco = 250. Black dots are equilibria of
the model with positive ω free

e = |ω|. Red color is for the model with negative ω free
e =−|ω|. Separatrices pass in and out of the saddles equilibria. Upper

left subfigure: ω = 65 < ωc
l , upper right subfigure: ω = ωc

l ≈ 73.732, lower left subfigure: ω = ωl ≈ 77.7583, lower right subfigure: ω = 79 > ωl .

unique solution of system of two variables (ωc
l , yAB):



(2ωc
l )

2
(√

τ1+τ2
2
π

Kvco
− η−κ

2
π

Kvco

) κ−η

κ
(√

τ1+τ2
2
π

Kvco
− η+κ

2
π

Kvco

) κ+η

κ

=

=
(

yAB− (η−κ)
ωc

l +Kvco
2
π

Kvco

) κ−η

κ
(

yAB− (η +κ)
ωc

l +Kvco
2
π

Kvco

) κ+η

κ

,

(
yAB− (ξ −ρ)

ωc
l +Kvco
2
π

Kvco

) ρ−ξ

ρ
(
yAB− (ξ +ρ)

ωc
l +Kvco
2
π

Kvco

) ρ+ξ

ρ =

= (κ−η +ξ −ρ)
ρ−ξ

ρ ·

·(κ−η +ξ +ρ)
ρ+ξ

ρ

(Kvco−ωc
l

2
π

Kvco

)2
, if ξ > 1,

Kvco+ωc
l

Kvco+ωc
l −

2
π

KvcoyAB
+ ln(2|yAB−

π(Kvco+ωc
l )

2Kvco
|) =

= 1
κ−η+1 + ln

(
2(κ−η +1)π(Kvco−ωc

l )

2Kvco

)
, if ξ = 1,

1
2 ln(y2

AB−2ξ yAB
π(Kvco+ωc

l )

2Kvco
+(

π(Kvco+ωc
l )

2Kvco
)2)−

− ξ

ρ
arctan

( yAB−ξ
π(Kvco+ωc

l )
2Kvco

−(
π(Kvco+ωc

l )
2Kvco )ρ

)
+ ξ

ρ
arctan

(
κ−η+ξ

ρ

)
=

= 1
2 ln

((
(κ−η)2 +2ξ (κ−η)+1

)(Kvco−ωc
l

2
π

Kvco

)2
)
+

+πξ

ρ
, if ξ < 1

(8)

where

ξ =
2
π

τ2Kvco +1

2
√

2
π

Kvco(τ1 + τ2)
, η =

2
π

τ2Kvco−1

2
√

2
π

Kvco(τ1 + τ2)
,

ρ =
√
|ξ 2−1|, κ =

√
η2 +1.

Proof: [Proof of Theorem 2] The proof given in Ap-
pendix is based on the fact that system (2) is piecewise-linear
and can be integrated analytically on the linear segments.

V. COMPUTER SIMULATION

Based on Theorem 2 an analytical-numerical method of
the conservative lock-in range calculation was implemented
(see Appendix B and Fig. 4).

VI. CONCLUSIONS

In this work, the exact value of the conservative lock-in
range was obtained for a classical PLL with lead-lag filter
and triangular phase detector characteristic.

APPENDIX A: PROOF OF THEOREM 2

Proof: Let’s find the conservative lock-in range of
model (2) with triangular PD characteristic (1). The conser-
vative lock-in frequency can be determined by such an abrupt
change of ω free

e that the corresponding trajectory tends to the



Fig. 4. The conservative lock-in frequency. Parameters: τ1 = 0.5, τ2 =
0.0225.

nearest unstable equilibrium (by the corresponding separa-
trix). Suppose that initially the frequency error was equal to
ω free

e =−ω < 0, but then changed to ω free
e = ω > 0. Hence,

initially the system was in equilibrium xeq =− τ1ω

Kvco
, θ

eq
e =

−π +
π
2 ω

Kvco
, but after the switch the corresponding trajectory

tends to xeq = τ1ω

Kvco
, θ

eq
e =

π
2 ω

Kvco
without cycle slipping if

ω < ωc
l .

Such ωc
l is determined by such frequency error ω free

e that
a trajectory being in unstable equilibrium (before the switch)
xeq =− τ1ωc

l
Kvco

, θ
eq
e =−π +

π
2 ωc

l
Kvco

tends to the closest unstable

equilibrium (after the switch) xeq =
τ1ωc

l
Kvco

, θ
eq
e = π−

π
2 ωc

l
Kvco

by
the corresponding separatrix. Thus, the conservative lock-in
frequency ωc

l corresponds to the case

−
τ1ωc

l
Kvco

= Q
(

π

2 ωc
l

Kvco
−π, ω

c
l

)
(9)

where τ1ω free
e

Kvco
is x-coordinate of equilibrium of model (2) and

x = Q(θe,ω
free
e ) is the lower separatrix of saddle equilibrium

( τ1ω free
e

Kvco
, π−

π
2 ω free

e
Kvco

) (see Fig. 5).
After the change of variables

y =

√
π(τ1 + τ2)

2Kvco
ω

free
e −

√
πKvco

2(τ1 + τ2)

(
x+ τ2ve(θe)

)
,

τ =

√
2Kvco

π(τ1 + τ2)
t

(10)

system (2) in intervals θe(t) ∈ (−π

2 + 2πm, π

2 + 2πm) and
θe(t) ∈ (π

2 + 2πm, −π

2 + 2π(m+ 1)), m ∈ Z is represented
as follows:

ẏ =−π

2
ve(θe)−

√
π√

2Kvco(τ1 + τ2)
(1+Kvcoτ2v′e(θe))y+

πω free
e

2Kvco
,

θ̇e = y.
(11)

Upper separatrix y = S(θe) of the phase plane of (11)
corresponds to separatrix x=Q(θe,ω

free
e ) from (2) (see Fig. 5

-3 -2 - 0 2
-0.05

0

0.05

Fig. 5. Separatrix x = Q(θe,ω
free
e ) of the phase plane of (2). Parameters:

τ1 = 0.0633, τ2 = 0.0225, Kvco = 250, ω free
e = 73.732.

and Fig. 6) and has the form

S(θe) =

√
π(τ1 + τ2)

2Kvco
ω

free
e −

−

√
πKvco

2(τ1 + τ2)

(
Q(θe, ω

free
e )+ τ2ve(θe)

)
.

Thus, relation (9) takes the form

S
(

πωc
l

2Kvco
−π

)
= 2ω

c
l

√
π(τ1 + τ2)

2Kvco
. (12)

The computation of ωc
l consists of the following stages.

Let’s divide the phase plane to the following domains:
• A = {(y, θe) | π

2 −2π ≤ θe(t)≤−π

2 ; θe,y ∈ R},
• B = {(y, θe) | −π

2 ≤ θe(t)≤ π

2 ; θe,y ∈ R}.
In the open domains, system (11) is a linear one and can be
integrated analytically. Firstly, we compute S(π

2 ), which is
possible due to the continuity of (2), and use it as the initial
data of the Cauchy problem (see Fig. 6). Secondly, finding
its solution in the domain B, we compute S(−π

2 ), which is
used as the initial data of the Cauchy problem. Its solution in
the domain A is used for the conservative lock-in frequency
ωc

l computation due to (12).

A. S( π

2 ) value

The saddle separatrix is locally described by the saddle’s
eigenvectors

V s
+ =

(
1

−κ +η

)
, V s

− =

(
1

−η−κ

)
where

η =
2
π

τ2Kvco−1

2
√

2
π

Kvco(τ1 + τ2)
,

κ =
√

η2 +1.



0

0

Fig. 6. Separatrix y = S(θe) of the phase plane of (11) integration. Firstly,
we compute S( π

2 ) and use it as the initial data of the Cauchy problem.
Secondly, finding its solution in the domain B, we compute S(− π

2 ), which
is used as the initial data of the Cauchy problem. Its solution in the domain
A is used for the conservative lock-in frequency ωc

l computation due to
(12). Parameters: τ1 = 0.0633, τ2 = 0.0225, Kvco = 250, ω free

e = 73.732.

Eigenvector V s
− points to a saddle and V s

+ has the opposite
direction. Since in the considered domain the system is
a linear one, then the separatrix coincides with the line
corresponding to V s

−:

S(θe) = (κ−η)(−θe +π− πω free
e

2Kvco
),

π

2
< θe < π.

(13)
Let’s obtain the limit value in θe =

π

2 :

S(
π

2
) = (κ−η)(

π

2
− πω free

e

2Kvco
).

B. Analytical integration in domain B

In domain B, ve(θe) =
2
π

θe,v′e(θe) =
2
π

and (11) can be
rewritten as

ẏ =−θe−2ξ y+
πω free

e

2Kvco
,

θ̇e = y
(14)

where

ξ =
2
π

τ2Kvco +1

2
√

2
π

Kvco(τ1 + τ2)
> 0.

In the domains {y > 0} and {y < 0}, variable θe(t) changes
monotonically and the behaviour of system (14) can be
described by the first-order differential equation:

dy
dθe

=−2ξ −
θe− ω free

e
2
π

Kvco

y
. (15)

The obtained equation is Chini’s equation [41], [42], which
is a generalization of Abel and Riccati equations. The change

of variables z= y

θe− ωfree
e

2
π Kvco

maps equation (15) into a separable

one:
zdz

z2 +2ξ z+1
=− dθe

θe− ω free
e

2
π

Kvco

. (16)

If θe 6= ω free
e

2
π

Kvco
and z2 +2ξ z+1 6= 0 then the solutions of sys-

tem (15) and system (16) coincide in domains 0< θe <
π

2 and
−π

2 < θe < 0. Depending on the type of an asymptotically
stable equilibrium, the following cases appear:

• ξ > 1 (the equation z2 + 2ξ z+ 1 = 0 corresponds the
eigenvectors of the stable node),

• ξ = 1 (the equation z2 + 2ξ z+ 1 = (z+ ξ )2 = 0 corre-
sponds the eigenvector of the stable degenerate node),

• 0< ξ < 1 (here the case z2+2ξ z+1= 0 is not possible).

It can be shown that if ξ ≥ 1 then in domain B separatrix
y = S(θe) satisfies N(y,θe) = N(S(π

2 ),
π

2 ) where

N(y,θe) =
1
2

ln
((

y+(ξ −ρ)(θe−
πω free

e

2Kvco
)
) ρ−ξ

ρ ·

·
(
y+(ξ +ρ)(θe−

πω free
e

2Kvco
)
) ρ+ξ

ρ

)
, ξ > 1,

N(y,θe) =
θe− πω free

e
2Kvco

y+θe− πω free
e

2Kvco

+ ln(2|y+θe−
πω free

e

2Kvco
|), ξ = 1,

ρ =
√
|ξ 2−1|.

(17)
Similarly, if ξ < 1 then

• in domain −π

2 < θe <
πω free

e
2Kvco

separatrix y = S(θe) satis-
fies N(y,θe) = N(S(π

2 ),
π

2 )+
πξ

ρ
,

• in domain πω free
e

2Kvco
< θe <

π

2 separatrix y = S(θe) satisfies
N(y,θe) = N(S(π

2 ),
π

2 )

where

N(y,θe) =
1
2

ln(y2 +2ξ y(θe−
πω free

e

2Kvco
)+(θe−

πω free
e

2Kvco
)2)−

− ξ

ρ
arctan

(y+ξ (θe− πω free
e

2Kvco
)

(θe− πω free
e

2Kvco
)ρ

)
.

(18)
Let us denote yAB = S(−π

2 ) and use this value as the initial
data of the Cauchy problem:

N
(

yAB, −
π

2

)
= N(S(

π

2
),

π

2
) ξ ≥ 1,

N
(

yAB, −
π

2

)
= N(S(

π

2
),

π

2
)+

πξ

ρ
ξ < 1.

(19)

Taking into account equations (17) and (18), equations (19)
provide the last three formulae in (8).



C. Analytical integration in domain A

In domain A, ve(θe) = − 2
π

θe + 2,v′e(θe) = − 2
π

and (11)
can be rewritten as

ẏ = (θe +π)+2ηy+
πω free

e

2Kvco
,

θ̇e = y.
(20)

In the domains {y > 0} and {y < 0}, variable θe(t) changes
monotonically and the behaviour of system (20) can be
described by the first-order differential equation:

dy
dθe

=
2
µ

η +
θe +π + πω free

e
2Kvco

y
. (21)

The change of variables z = y

θe+π+
πωfree

e
2Kvco

maps equation (21)

into a separable one:

zdz
z2−2ηz−1

=− dθe

θe +π + πω free
e

2Kvco

. (22)

If θe 6= −(πω free
e

2Kvco
+π) and z2−2ηz− 6= 0 then the solutions

of system (21) and system (22) coincide.
It can be shown that in domain A separatrix y = S(θe)

satisfies M(y,θe) = M(yAB, −π

2 ) where

M(y,θe) =
1
2

ln
((

y+
θe +π + πω free

e
2Kvco

κ +η

) κ−η

κ ·

·
(

y+
θe +π + πω free

e
2Kvco

η−κ

) κ+η

κ
)
.

(23)

Finally, the first equation in (8) is obtained by consideration
(12) and (23):

M

(
2ω

c
l

√
τ1 + τ2

kKvco
,
(π− 1

k )ω
c
l

Kvco
−π

)
= M(yAB, −

1
k
).

APPENDIX B: CALCULATION OF THE CONSERVATIVE
LOCK-IN FREQUENCY

Calculation of the conservative lock-in frequency for PLL
with lead-lag filter and triangular phase-detector characteris-
tic.

f u n c t i o n o u t = o m e g a l c o n s e r v a t i v e (
t a u 1 , t a u 2 , k , K vco )

o u t = 0 ;
mu = pi *k − 1 ;
x i = ( k* t a u 2 * K vco + 1) / ( 2 * s q r t ( k*

K vco *( t a u 1 + t a u 2 ) ) ) ;
e t a = ( k* t a u 2 * K vco − mu) / ( 2 * s q r t ( k

* K vco *( t a u 1 + t a u 2 ) ) ) ;
rho = s q r t ( abs ( x i ˆ2 − 1) ) ;
kappa = s q r t ( e t a ˆ2 + mu) ;

syms y ab zomega lc ;

c u r ve 1 = (2* zomega lc ) ˆ 2 * . . .
( s q r t ( ( t a u 1 + t a u 2 ) / ( k* K vco ) )

− . . .
( e t a − kappa ) / ( k* K vco ) ) ˆ ( ( kappa

− e t a ) / kappa ) * . . .
( s q r t ( ( t a u 1 + t a u 2 ) / ( k* K vco ) )

− . . .
( e t a + kappa ) / ( k* K vco ) ) ˆ ( ( kappa

+ e t a ) / kappa ) == . . .
( y ab − ( e t a − kappa ) * ( (

zomega lc + K vco ) / . . .
( k* K vco ) ) ) ˆ ( ( kappa − e t a ) / kappa

) * . . .
( y ab − ( e t a + kappa ) * ( (

zomega lc + K vco ) / . . .
( k* K vco ) ) ) ˆ ( ( kappa + e t a ) / kappa

) ;

i f x i > 1
c u r ve 2 = ( y ab − ( x i − rho ) * ( (

zomega lc + K vco ) / . . .
( k* K vco ) ) ) ˆ ( ( rho − x i ) / ( rho ) )

* . . .
( y ab − ( x i + rho ) * . . .
( ( zomega lc + K vco ) / ( k*

K vco ) ) ) ˆ ( ( rho + x i ) / ( rho
) ) == . . .

( kappa − e t a + x i − rho ) ˆ ( (
rho − x i ) / . . .

( rho ) ) * ( kappa − e t a + x i +
rho ) ˆ ( ( rho + x i ) / ( rho ) )
* . . .

( ( K vco − zomega lc ) / ( k*
K vco ) ) ˆ 2 ;

e l s e
i f ( abs ( x i − 1 ) < 0 . 0 0 1 )

c u r ve 2 = ( −( K vco +
zomega lc ) / ( k* K vco ) ) / . . .

( y ab −( K vco + zomega lc ) / (
k* K vco ) ) + . . .
l o g (2* abs ( y ab −( K vco +

zomega lc ) / ( k* K vco )
) ) == . . .

1 / ( kappa − e t a + 1) +
. . .

l n ( 2 * ( kappa − e t a + 1) * (
K vco − zomega lc ) / ( k
* K vco ) ) ;

e l s e
c u r ve 2 = 1 /2* l o g ( y ab ˆ2 − 2*

x i * y ab *( K vco +
zomega lc ) / . . .



( k* K vco ) + ( ( K vco +
zomega lc ) / ( k* K vco ) ) ˆ 2 )
− . . .
x i / rho * atan ( ( y ab − x i * (

K vco + zomega lc ) / ( k
* K vco ) ) / . . .

( −( K vco + zomega lc ) / ( k
* K vco ) * rho ) ) == . . .

1 /2* l o g ( . . .
( ( kappa − e t a ) ˆ2 + 2* x i * (

kappa − e t a ) + 1) * . . .
( ( K vco − zomega lc ) / ( k*

K vco ) ) ˆ2 . . .
) − x i / rho * atan ( ( kappa − e t a

+ x i ) / rho ) + pi * x i / rho ;
end

end

r e s = v p a s o l v e ( [ curve1 , c u r v e2 ] , [0
I n f ; 0 K vco ] ) ;

i f ˜ i sempty ( e v a l ( r e s . zomega lc ) )
o u t = e v a l ( r e s . zomega lc ) ;

end
end
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