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Abstract—This paper discusses the implementation of a Deep
Reinforcement Learning policy, based on DQN, which optimizes
the navigation of the UAV to the front of wind turbine blades.
The UAV was trained in simulation using Unreal Engine V4.27
coupled with AirSim. The action space of the UAV was discretized
while allowing 6 different actions to be executed. A Yolov5
network trained with images of simulated wind turbines was
used for detection and tracking, providing the DQN policy with
state information, upon which it has been trained. In addition to
this, the dynamic reward has been implemented, which combined
both navigation and inspection objectives in the final evaluation
of actions. Our tests showed that after 7500 time-steps the
exploration rate reached near 0, the mean length of the episodes
increased from 10 down to 30, but the mean reward increased
from around -60 to stabilizing the output at 26. These results
suggest that the proposed method is a promising solution to
optimizing the autonomous inspection of wind turbines with
UAVs.

Index Terms—Deep Reinforcement Learning, Deep Q-network,
UAV, Dynamic Reward, Condition Monitoring, Path-planning,
Inspection, Simulation

I. INTRODUCTION

The global need for sustainable energy has led to the
increased use of wind energy, where wind turbines account
for 7% of the worldwide power demand [1]. In order to
maintain their high efficiency, regular inspections are nec-
essary to prevent damages [2], increase their lifespan [3],
and increase annual energy production by up to 5% [4].
Traditional inspection methods for offshore wind turbines
involve human observations with professional climbers [5].
Alternatively, unmanned aerial vehicles (UAVs) controlled by
external operators have been proposed to decrease inspection
costs and improve time efficiency [6]. Automation of the
inspection process can minimize dependence on human inter-
ference and further decrease the expenses [7]. Challenges arise
when fully automating the control of an UAV in an unfamiliar
or unstructured environment [8] [9]. Therefore to ensure safe
and reliable operation is essential to obtain a comprehensive
description of the environmental perception. Including the
UAVs ability to promptly and accurately react to changes,
for example, variation in wind speed and lighting levels.
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Achieving full automation of offshore inspections presents a
new challenge due to the diverse range of navigational tasks
that the UAV is required to perform. To address this challenge,
the controller must be equipped with supervisory rules that
guide the UAV’s behavior, including tasks such as maintaining
a specified altitude, a safe distance from wind turbine blades,
and returning to the launch site in the event of an emergency
or failure.

To enable a UAV to execute a multitude of complex
tasks in a 3D space, an approach could be to use low-
level flight control coupled with a supervisory rule-based
or fuzzy controller to optimize the drone’s navigation [10].
However, traditional controllers, such as PID, are not effective
in handling dynamic changes such as wind gusts or turbulence,
which can significantly affect the UAV’s flight trajectory [11].
Optimizing UAV’s trajectories is one of the aims of automating
inspections, with the goal of enhancing its efficiency. Rather
than employing a rule-based approach, we propose utilizing
Deep Reinforcement Learning (DRL) to optimize searching
the task space.

DRL combines deep and reinforcement learning enabling
the UAV to learn complex behaviors through trial and error
[12]. The UAV learns by interacting with the environment and
receiving feedback in the form of rewards or penalties, making
it effective in handling complex tasks in dynamic and uncertain
environments. Deep neural networks can leverage their ability
to approximate complex functions to learn, represent, and
utilize high-dimensional state and action spaces effectively. As
a result, they are well-suited for tasks that require long-term
planning and decision-making.

Significant progress has been made in recent years in apply-
ing DRL for UAV control. A wide range of DRL policies exist,
examples are Deep-Q-Network (DQN), Deep Deterministic
Policy Gradient (DDPG), Dueling-DDQN [13]. The following
section will investigate different approaches for the automation
of UAV. [14] uses the DQN policy to train UAVs for track-
ing and navigation in virtual environments, with the reward
function being based on the Euclidean distance between the
image and the camera center point. [15] instead employs a
grid-based navigation approach with DDQN networks and
a reward function discouraging negative and emphasizing
positive actions to guide the UAV. Whereas [16] uses DDPG



methods to navigate a UAV in simulation to a target location
without visual tracking, with the reward shaped by the distance
from obstacles to avoid a collision. In [17] they present a tool
that extends the creation of realistic simulated worlds using
the Unreal Engine with OpenCV simulated integration. The
tool provides a set of OpenCV-like cameras to generate data
for computer vision tasks. [18] and [19] focus on using deep
reinforcement learning (DRL) and object detection to enable
collision-free UAV navigation with a single monocular camera.
They both train object detection by incorporating it into DRL
policy, thus using raw pixel images in an unreduced state form.
Lastly, [20] presents using the Proximal Policy Optimization
(PPO) and ADAM optimizer for DRL policy training in
simulation and validation/implementation in the real world for
autonomous multi-view navigation. The proposed system uses
multi-camera sensing and a trained object detection network
to reduce state dimensionality. In addition to this, the system
exhibits robustness in sim2real transfer as it was trained only
with simulated scenarios but performed well in real-world
tests.

In many cases the objectives of UAVs are subject to dynamic
changes, rendering a fixed reward function insufficient in
achieving optimal performance. In such scenarios, it is possible
to implement a dynamic reward function that can adjust to
changes in the objective. The following section discusses
recent work and advances in the utilization of dynamic reward
functions for UAVs. In [21] a dynamic adjustment of the
reward function takes into account three distinct perspectives,
where each of them changes dynamically during operation.
These perspectives include comfort, with the aim of avoiding
risky maneuvers; efficiency, aimed at reducing travel time;
and safety, with the goal of avoiding collisions. The total
reward function is the sum of each of these parameters.
[22] proposes the utilization of the DDPO-IL algorithm for
dynamic adjustment of the reward function. This approach
adjusts the behavior of the agent through dynamic modifica-
tion, incorporating an intrinsic reward calculated based on the
state of the agent into the conventional external reward. The
result is a refined reward function that facilitates improved
performance and stability. [23] introduces Hybrid Reward
architecture (HRA) which decomposes the reward function
into sub-intervals and the agent learns about each reward
function separately and then aggregates it into one, optimizing
the reward based on multiple aspects. [24] proposes Deep
MaxPain as an improvement of HRA where it minimizes the
expected sum of negative rewards and maximizes the sum of
positive rewards. This architecture utilizes knowledge of future
punishment at states for higher probability of avoiding them.

II. SIMULATION ENVIRONMENT

Simulation environments are increasingly important in the
field of robotics, particularly for training and testing au-
tonomous systems that operate in complex and hazardous
environments. In this paper, a realistic simulation environment
is used to enable the training of UAVs for navigation in wind
turbine inspection using DRL.

A. Unreal Engine

Unreal Engine is a software development platform that is
widely used in the video game industry but its advanced
graphics and physics simulation capabilities make it an ideal
tool for creating realistic virtual environments for scientific
research, especially in DRL training and validation.

B. AirSim

The interaction with the UAV inside the simulation is
performed with AirSim [25] which acts as a middleware
bridge, connecting UAV’s model to a C++ or Python API.
One of the key features is its full kinematic, dynamic, and
graphical model of the UAV, which creates the possibility
to design closed-loop control systems. Its main advantage is
using programming scripts outside the Unreal Editor, where
proprietary blueprints must be used.
In addition to this, it allows for different modeling and control
approaches. In the case of this paper, a GPS-controlled drone
is assumed, which is equipped with an internal low-level
controller to counteract external inputs and disturbances (such
as wind) and maintain the same position. The user’s high-level
can then be supplied on top of that, which determines the new
position’s set point.

C. Object Detection

In this project, as YOLOv5s is one of the most popular
single-shot detection network[26], that can easily be retrained
and still provide relatively high performance, it is used to
detect wind turbine blades to find the optimal path to a wind
turbine for a UAV using reinforcement learning. The network
was trained using 1655 images of wind turbine blades in a
simulation environment. Key point here is that even though the
object detection model has been trained on different rotational
positions of the widn turbine’s rotor to ensure high accuracy,
during actual training and implementation the rotor is station-
ary, as this is the usual procedure for inspections. Transfer
learning was used, where the first ten convolutional layers of
the YOLOv5s network, responsible for feature extraction, were
frozen and the last layers retrained to detect wind turbines.
Fig. 1 shows a few examples of the object detection model’s
performance on the testing set. The model detects all of the
wind turbine blades with an mAP ranging between 0.81 and
0.97.

Fig. 1. Confidence scores of some test images



III. DRL IMPLEMENTATION

A. Deep Q-Network

The DQN (Deep Q-Network) algorithm is a well-known
reinforcement learning (RL) technique [12]. DQN uses neural
networks to estimate the optimal quality function Q, where the
neural network is trained to approximate the optimal Q-value
for a given state-action pair. This process can be modeled as a
Markov process since the next state (i.e., the neural network’s
approximation of Q-value) depends only on the current state
(i.e., the given state-action pair) and not on any previous states.
The quality function Q is defined as [14]:

Q′(st, at) = Q(st, at)+α(rt+γmax
a

Q(st+1, a)−Q(st, at))

(1)
Here, Q′(st, at) represents the updated value for Q and

Q(st, at) denotes the current value for Q corresponding to the
state-action pair. The learning rate α controls the rate at which
the network updates the Q-values, while rt represents the
immediate reward at time t. The discount factor γ determines
the weight given to future rewards, and maxa Q(st+1, a) is
the maximum expected Q-value for the next state.

To minimize the loss function shown in Equation (2),
the quality function Q is parameterized with neural network
weight θ, such that Q(st, at) ≈ Q(st, at, θ). By optimizing
over the θ value, the network learns to minimize the expecta-
tion of the square of the temporal difference error. This results
in the neural network approximating the optimal Q-values for
a given state-action pair.

Li = E[(rt + γmax
a

Q(st+1, a, θ)−Q(st, at, θ))
2] (2)

B. Action space

The action space is a set of all valid actions and choices
available to an agent as it interacts with the environment. As
in a real-world situation, when examining a UAV, the possible
movement can be counted in 6 different degrees of freedom,
The real-world action space has been limited to a finite set so
that the UAV can only perform 7 different actions, that last a
predetermined amount of time, with fixed angular and linear
velocities. The main advantage of utilizing a discrete action
space is the simplification of training. As this research acts
as a proof of concept, minimizing the action space allows for
easier and faster computation, as well as creates a higher prob-
ability of convergence of the policy. After the simplification is
implemented, a graphical explanation of possible movements
of the UAV can be seen in Fig. 2.

C. Observation Space

Observation space is a set of observations that can be made
in a given environment. The feedback is constructed from three
sources:

1) YOLOv5 Object Detection
2) Distance measurement from the depth camera

Fig. 2. Visualized Discrete action space of the UAV in this project

3) Kinematics of the UAV
Both color and depth cameras are aligned with the X axis
of the UAV and facing towards the direction of flight. Using
the depth image, the edge detection is performed, as described
in Section III-D. In addition to this, the observation space is
monitoring the kinematics of the UAV, such as its position,
velocity, linear and angular acceleration, as well as collision
detection.

YOLOv5 model, described in Section II-C, is used for
camera feedback processing. With its aid, the wind turbine’s
rotor can be marked with a bounding box, and the outputs are
the coordinates of its corners, which dictate the rewards for
the action of the UAV.

The observation space can be divided into 5 tasks:
1) Obtain kinematic states of the UAV
2) Reset the position of the camera, re-aligning it in the

correct orientation
3) Parse the color camera image and perform object detec-

tion using YOLOv5
4) Parse the depth camera image, interpolate, crop to bound-

ing box size, and measure the distance to the closest point.
5) Using the depth camera image, perform edge detection

for inspection purposes
Using AirSim built-in functions [25], all kinematic state

values are obtained, along with the position, orientation, and
velocity in both global and body-frame world coordinates,
which are necessary for later computation and evaluation.
The position stored in memory from the previous iteration
(time-step) is saved as well. In addition, the observation space
monitors collisions between the UAV and its surroundings.

After yielding the color image from the Unreal Engine,
through AirSim in a correct format, the YOLOv5 Object
Detection Function can be called, which outputs the
coordinates of the two opposing corners of the bounding box,
the width, and height of the image, and a boolean value that
corresponds to wind turbine detection
The second image is the depth camera output. Its resolution
is greatly smaller than the one of the color image, therefore
for this reason the image is being interpolated, based on a
bi-linear function, which creates a new pixel using a weighted
average of the two neighboring pixels before interpolation.
The goal of this approach is to have the same resolution
for both color and depth camera images, which allows for



easy manipulation later when measuring the distance to the
wind turbine. The next step is to crop the interpolated depth
image to the size and location of the bounding box. For this
purpose, coordinates xmin, ymin, xmax, and ymax, which
where retrieved earlier from YOLOv5 model, are utilized. At
this point, the output looks as shown in Fig. 3.

Fig. 3. Cropped depth image and full-size color image

The goal is for the cropped depth image to bind only the
rotor of the wind turbine so that the closest point that the depth
camera can measure a distance to is the wind turbine itself.
The darkest pixel represents the closest object to the camera,
it corresponds to meter unit in the simulation, and it can be
saved directly and used for further evaluation.

Finally, using the uncropped depth image, as described
before, edge detection is performed, which outputs coordinates
of the beginning and end points of the longest detected line.

D. Dynamic Reward function

As the UAV aims to fulfill two tasks sequentially, the reward
evaluation and grading have to be constructed dynamically.
The dynamic reward function consists of a weighted sum of
two sub-functions, as seen in Eq. 3. First is the Rnavigation

reward function, which evaluates the centering of the wind
turbine’s rotor in the camera frame. For this purpose, the piece-
wise linear centering function is used, called center() in the
equation, which output can be seen in Fig. 4). The input to
the function are the x and y coordinates of the corners of the
bounding box that overlays the rotor in the camera view. The
sub-function also monitors the Euclidean distance D between
the UAV’s position posUAV and the wind turbine’s position
posWT , to determine whether the UAV is moving in the correct
direction. Its simplified version can be seen in the Eq. 4.
The second part (Rinspection), as seen in Eq. 5, concerns
inspection in terms of focusing on one of the leading edges of
the rotor’s blade in the camera view. This is done by replacing
the input to the centering function with the detected leading
edge and continuing to track the change in the Euclidean
distance.

Rdynamic = w1Rnavigation + w2Rinspection (3)

Rnavigation = center(rotor)−∆D(posUAV , posWT ) (4)

Rinspection = center(edge)−∆D(posUAV , posWT ) (5)

The factor that determines the values of the weights ω1 and
ω2 is based on the distance between the wind turbine and the
UAV and is adjusted using tanh function to smoothly change
focus between current objectives.

w1 =
1 + tanh (2(distance− 30))

2
(6)

w2 = 1− w1 (7)

Before the design of the final reward function, the available
feedback for both sub-functions has to be determined. In this
project, such feedback is provided by these variables:

• Coordinates of the bounding box opposing corners
• Distance to the wind turbine
• Coordinates of the detected edge that falls on the leading

edge of the wind turbine’s blade
The evaluation is then based on these determining factors,

which should yield specific, ideal results, based on empiric
data from human actions:

• The UAV is moving towards the wind turbine in each
step

• It is learning the environment and making sure not to
collide with it

• Works its way to keep the wind turbine centered in the
camera view

• When the distance to the wind turbine is less then 30m,
instead of focusing on the rotor, try to maximize the blade
in the camera frame

The centering evaluation is based on a piece-wise linear
function, which applies a floating integer value of a reward,
based on the distance between the center of the camera
frame and the center of the bounding box or the edge. An
optimal region was defined where values are positive, linearly
increasing to a reward of 1 when the center of the bounding
box aligns with the center of the region, and decreasing to 0
when the object/edge center is at the border. Negative rewards
are applied, when the center of the detected object/edge is
outside of the optimal region, with a minimum value of -1,
if the center lands on the border of the camera view. Those
rewards can be visualized by applying the function to the
image’s x and y axis, and the result can be seen in Fig. 4.
The image can be interpreted as a heat map, where the RGB
value of the red component is derived based on the output
from the reward function. RGV value of [0, 0, 255], which
represents red, corresponds to a reward of +2, whereas a
value of [0, 0, 255], which represents blue, corresponds to a
reward of −2. Value of [255, 0, 255], visualized as pink is a
reward of 0. If applied to a single direction, the inside of the
green box would contain positive rewards, the outside negative
values, and the border itself is a 0. Additionally, the object or
the edge has to be detected at all times during the flight, and
if such a requirement is not completed, then the episode is
terminated.

The edge detection is performed on the depth camera image,
as thanks to the relative change in the distance measurement



Fig. 4. Visualized piece-wise linear reward function for centering, where the
reward of 1 is pure red, -1 is pure blue, and 0 is pink

between the background and the blade, it is comparatively less
challenging to detect the leading edge, opposite to using only
a color camera. It allows performing a simple segmentation
based on grouping objects by distance, thus verifying that the
correct line is being detected and decreasing the chance of
false positive results.
The process consists of blurring the image, using the canny
function and probabilistic Hough Transform for line detection.
The output has been filtered and sorted to output the longest
line that falls on the leading edge of the blade.
The inspection reward function consists of two aspects upon
which the reward is given:

1) Evaluating centering of the line based on its midpoint
location in the camera frame, utilizing the same centering
function as for navigation

2) Evaluate maximization in the camera frame using a
percentage of the detected line’s length in terms of the
maximum possible line length in the camera frame based
on its slope.

IV. RESULTS

Quantitative improvement in the results have been achieved
after performing several training batches and adjusting the
hyper-parameters of the policy. Fig. 5 shows the mean length
of an episode in terms of time steps. Noticing that the
maximum length is predefined in the reward function III-D
to a value of 30. During the exploration period (until around
7500 timesteps, the policy is looking for the most optimal
approach, constantly looking for the global minimum. After
the exploration rate is close equal to 0.0025, the model’s
training period takes place and illustrates the repeatability of
the policy’s performance.

Fig. 5. The mean episode length curve during the training

Furthermore, as depicted in Figure 6, the policy aims
to optimize the sequence of actions in order to attain the
highest possible global reward. This is achieved by leveraging
observations of the UAV’s movement and selected actions,
aligning with the anticipated outcome resulting from the
implementation of the Bellman equation.

Fig. 6. The mean episode reward curve during the training

The exploration rate is the ratio between exploration and
exploitation of the environment, and it has been set to start
with a value of 1, which ensures exploration at the beginning
of training and a slow decay to full exploitation at the 7500th
timestep. Thanks to this approach, the policy has a substantial
amount of time and a number of possible approaches to
experiment with.

Fig. 7. Position of the drone during the training

This can be seen especially in Fig 7, where trajectories
flown by the drone can be seen. The plot shows paths taken
every 100th episode with a significant improvement after
500th episode, which is approximately the point where full
exploitation has been reached. Last 300 episodes show the
most optimized path, where the drone moved in a nearly
straight line from its starting position and aligns itself in front
of the wind turbine, which is marked with a green, dashed
wireframe box.

V. CONCLUSION

This paper presents our work on utilizing a DQN policy
for navigation optimization of a UAV in a virtual simulation
environment, implemented with the Unreal engine and AirSim
a realistic physics environment. A YOLOv5 network for object
detection was trained using transfer learning and fine-tuned
with a series of virtual images of wind turbines. UAV’s per-
formance in the environment has been evaluated by a dynamic
reward function, which ia a weighted sum of two sub-function
that evaluated different objectives. Integration of both systems



showcased the possibility of training the UAV through the
bounding box pixels obtained by the object detection network.
Our results showed improvements in the average length of
the episode and the total reward. Additionally, plotting the
position of the UAV inside the simulation environment showed
that with a trained network, the optimal trajectory between the
start point and the wind turbine’s rotor has been found. Future
work will be focused on optimizing and improving the current
approach, while implementing more realistic conditions in the
reward function, such as energy consumption and including
object detection confidence in relation to the visibility level
inside the environment.
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