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Model-based adaptation for sample efficient transfer in reinforcement learning control of
parameter-varying systems

Ibrahim Ahmed!* and Marcos Quinones-Grueiro

Abstract—1In this paper, we leverage ideas from model-
based control to address the sample efficiency problem of
reinforcement learning (RL) algorithms. Accelerating learning
is an active field of RL highly relevant in the context of time-
varying systems. Traditional transfer learning methods propose
to use prior knowledge of the system behavior to devise a
gradual or immediate data-driven transformation of the control
policy obtained through RL. Such transformation is usually
computed by estimating the performance of previous control
policies based on measurements recently collected from the
system. However, such retrospective measures have debatable
utility with no guarantees of positive transfer in most cases.
Instead, we propose a model-based transformation, such that
when actions from a control policy are applied to the target
system, a positive transfer is achieved. The transformation
can be used as an initialization for the reinforcement learning
process to converge to a new optimum. We validate the per-
formance of our approach through four benchmark examples.
We demonstrate that our approach is more sample-efficient
than fine-tuning with reinforcement learning alone and achieves
comparable performance to linear-quadratic-regulators and
model-predictive control when an accurate linear model is
known in the three cases. If an accurate model is not known, we
empirically show that the proposed approach still guarantees
positive transfer with jump-start improvement.

I. INTRODUCTION

Transfer learning in control seeks to reuse knowledge
gained from past source tasks to speed up or improve
performance on related, target tasks. This is an especially
attractive proposition in applications where time or training
samples are sparse. For example, consider data-driven fault-
tolerant control, as surveyed by [1], where a controller
needs to adapt quickly and sufficiently well to a changed
environment.

However, the questions underlying transfer are: what
knowledge to transfer, and how do we transfer it well? Poorly
related tasks may cause negative transfer when conventional
transfer learning methods are applied, especially if the
relationship between tasks is not considered in the transfer
process [2], [3]. Fundamentally, the performance of transfer
learning between tasks is dependent on the relationships
between tasks. Tasks that are similar will have similar control
policies, therefore will need lesser time and data for their
policies to adapt to each other.

Thus far, a substantial body of work has addressed
transfer in the data and algorithm space. Task similarity
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measures have been developed from the statistical properties
of measurements across tasks. Stochastic algorithms have
been proposed (sections that leverage model
architectures, machine learning hyperparameters, and control
policy parameter update rules to achieve faster, jump-start,
or asymptotically higher performance improvement on the
target task, all the while being agnostic to the underlying
process dynamics.

This work makes contributions in a related direction. We
address transfer in the space of process dynamics. While our
approach is applicable to a broad class of dynamical systems,
we demonstrate strong theoretical results for systems with
linear, time-invariant dynamics. By modeling the relationships
between source and target task dynamics as linear transfor-
mations, we develop a transformation of the source policy to
transfer on the target task. We demonstrate conditions where
the transformation will produce behavior optimal in the least
squares sense. Generally, for approximately identified target
tasks or locally optimal source policies, the transformation
may be used as a policy initialization to get a jump-start
improvement, prior to further optimization.

The following section describes the transfer learning
problem for this work in the context of reinforcement learning.
Following that, in section we review different approaches
toward transfer. Section motivates cases for invariance
of optimal policies and cases for the derivation of policy
transforms. Finally, experiments are done on dynamical
systems using stochastic and classical control approaches
to demonstrate these concepts.

II. THE TRANSFER LEARNING CONTROL PROBLEM

In this work, we discuss the transfer of control across
systems modeled as Markov Decision Processes (MDPs). An
MDP control problem is a task 1" € T, characterized by the
process dynamics P : X x U — X, which map the current
state z; to the next state x;4;, given an input u;y;. Each
state transition is assigned a reward based on the state and
the action taken to reach there r : X x U — R. An episode
is a sequence of interactions until a terminal or goal state is
reached. The objective for T is to derive a policy 7 : X —
U, such that each action picked maximizes expected future
returns E[G(z;)], where G(z;) = >, ~'r(zi, mr(2:))
is the discounted sum of rewards starting at x; following
some policy. The discount factor v € (0, 1] prioritizes the
immediacy of feedback. Expected returns under an optimal
policy are known as its value, V' (z) = max,, E[G(z)]. Then,
me(x) <— argmax,, V(x).



The transfer problem is summarized as follows. A task T'
consists of the process dynamics P and the reward function 7.
Given a target task T; and a population of source tasks 7, € T,
find a source task T, € 7, and a transfer mechanism, such
that the performance of its policy fine-tuned on 7} provides
an optimal solution for 7;. In other words,

Ty : 7rpea% Glx ~T; | m7ro1,) (1)

T and T; may differ on process dynamics and reward. For
example, due to a fault or a changed control objective. Both
affect evaluated returns GG. The objective in equation [I| can
only be achieved retroactively, when candidate source tasks
have been evaluated on the target task. However, exploring
with transfer of each source task may violate time and safety
constraints in specific applications. Therefore, the challenge
is to preemptively select a favorable source task and transfer
mechanism. For this work, we assume homogeneous transfer:
that the state and action spaces of all tasks are identical.
Practically, this applies to cases where a single MDP’s state
transitions are disturbed due to faults, degradation etc. For
the remainder of this work, subscripts g, *; refer to source
and target parameters respectively.

The goal, ultimately, is to achieve high returns on the target
task. This may be done by either picking a source task liable
to transfer well, or by tweaking the transfer process such that
the source policy converges swiftly to an optimum on the
target task. Prior related work has addressed both of these
approaches.

III. RELATED WORK

This section reviews prior work done in this and related
fields. The aforementioned goal of transfer learning for control
overlaps with multi-task learning [4], reward shaping [5], and
few-shot learning [6]. The body of research is divided into
two broad categories: optimizing transfer learning informed
by task similarity, and optimizing transfer once a source task
is picked.

A. Selecting Similar Tasks for Transfer

A multitude of similarity measures have been used in
transfer learning looking at task similarity in classifica-
tion and regression problems. Work by [7] builds on top
Model-Agnostic Meta-Learning (MAML) [8] to develop task
similarity-aware MAML. They represent task similarity as
Euclidean distance between parameters of models trained
on sampled tasks. Clusters are made for similar tasks, and
the cluster closest to the target task is used during meta-
initialization. [9] propose a general transfer approach, where
task similarity is used to regularize the transferred model.
[10] formalize the intuition that similar tasks have similar
performances, and use the performance gap as a regularizer
for transfer learning. Euclidean distance between model
coefficients is used for this. Alternatively, [11] hypothesize
that, given samples, two (classification) tasks are similar
if the accuracy on the source task and the target tasks is
high. [12] propose a reconstruction classifier, which attempts

to reconstruct samples from the target task using samples
from the source task. The assumption being that samples
from T3 U 7, lie on a subspace and can be modeled as
combinations of each other. The sparser the coefficients
for reconstruction, and the lower the error, the higher the
similarity. Whereas [13] looks at the utility of explicitly
including task similarity measures in the learning process.
They use H divergence and Wasserstein distance between
probability distributions in adversarial multi-task learning for
classification tasks. Recently, [14] develop physics-guided
models to develop an initial reinforcement-learned control
policy under inaccurate rewards, which in turn is transferred
to the target process. The initialization of the source policy
reduces the sample size needed to adapt to the target task.

B. Optimization of the Learning Process

Another class of approaches has addressed the learning
process itself, once a source task is selected. Such methods
are not restricted to transfer learning, but are applicable to
learning algorithms in general. Relevant work in this area
touches on meta-learning [15], neural architecture design [16],
[17], and hyperparameter tuning [18], [19].

In recent work in classical control, [20] propose the design
of a transferrable controller via system identification. They
stimulate the target process with tailored exploratory actions
from the same initial state to identify relationships with the
source process. The source policy can then be transformed
to the identified target process.

IV. PoLICY TRANSFER VIA TRANSFORMATION

In this section, we derive a policy transformation for a
category of tasks such that the source policy is as close to
optimal in the target task in the least squares sense, assuming
the same reward function.

The optimal policy 7 - the control law - is derived to reach
the optimal set of states and using optimal actions, since the
reward is a function of both state and action. However, if the
reward is only a function of performance (x), the optimal
policy would depend only on the states traversed, not the
effort (u) it took to traverse them.

r:X—-R = V,r=0

7t argmax g x Y77 (Plai, ()
Jj=t

VPV(I') =0 (2)

That is, the optimal states remain the same. The same
set of states optimal under T, are optimal under 7;. This
comes with one caveat: P; is controllable for the same set
of states ([21]). Meaning, the dynamics in P; allow those
optimal states to be reached by some actions. Therefore if
m, can bring about the same state change in P; as ms does
in P,, m; can be guaranteed to be optimal.

Reward being a function of state only is a strong assump-
tion. However, it is possible in many cases. For instances,
where the cost of actions is dwarfed by the incentive to drive



the state variables to a certain point. In real world scenarios
such as vehicle navigation, the battery or fuel levels may be
included in the state vector as a proxy for action magnitudes.

To that end, sequential MDPs are framed as deterministic,

dynamical time-invariant processes from a control theory lens.

A process P has a state x € R”, and inputs v € R™. The
process itself is characterized by the rate of change of its state
= F;: X xU — X. For systems with linear dynamics,
F; = Ax + Bu, where A € R™*"™ B € R™™ ™ are constant
matrices. A is the response to internal state, and B is the
response to external inputs.

&y = Fp(xi, tit1)

Tit1 = P(fi,uiﬂ | Fz)

t=i+1
t

=1

~x;+ 0t 3)

Where 6t is a discrete sampling interval. For linear systems,
P can be approximated as a linear transformation,

T; = Ax; + Bujyi
Tip1 ~ P wg,uiq)”
= [1 + 6tA, 6tB][zs, uip1]” 4)

We assume Fy : R"*" — R™ ™ Fp : R?X™ — RnX™
are transformations of A, By under a fault, and 7, is the
control policy of the source task. The control policy 7 already
has optimized inputs to change states to optimal positions.
Since the optimal states remain invariant, we want a policy
m; such that the change of state under the target process is
the same as the source process.

Ty = Asx + Byug
Ty = FuAsx + FpBsuy
If ©; = &, then,
— uy = (FpB,) (I — Fa)Asx + (FpB,) ' Byus
5)
= w = ((FgBs)"'(I — Fa)As + (FgB;s) ' Bsmry) @
(6)

Equation [5 represents a multiplicative transformation of the
source policy by (F'zB)~!Bj, representing a change in the
input’s effect on state dynamics. And an additive correction
by (FpBs)~ (I — Fa)A,, representing the changed internal
dynamics of the system. Equation [f] factors out us < 7,z to
get an equivalent representation for w,. Figure [I] depicts how
these transformations can be appended in series and parallel,
respectively to an existing policy function 7.

The transformation will change the policy’s response to
each state. The range of new actions may be different from
that of the source policy. If the target policy’s range is a subset
of the source’s range, or if actions are unconstrained in the
process, this will not be notable. For constrained actions,
actions can be clipped. For linear systems, this will not affect

(FgBs)™'Bg

(FgBs) ™' — Fo)As

Tt

Fig. 1: A schematic of the policy transformation. The nominal
action u is transformed as u, to bring about the same change
in state in the target system that was considered optimal by
7, in the source system. The source policy can be any control
algorithm for e.g. LQR, MPC, RL etc.

Algorithm 1 Policy transformation via system identification.
Input: 7, T, T;
Parameter: Data buffer D,, D;

Output: 7,
1: Collect (z;, ujt1,2;+1) into Dy using Ps,
2: Collect (z;,uit1,Zi+1) into Dy using Py, s
3: Use equations [7, @] to learn A, Bs, Fa, Fp
4: Use equation [f] to get 7
5: return m,

their eventual dynamics. That is, a sequence of actions scaled
down by a factor of kK € R over k intervals will result in
the same change in state as the unscaled action applied for
one interval.

The transformation of state dynamics, F'4 is not required
to be invertible. The only functions needing inversion are the
action dynamics By and their transformation F'z. In cases
where a perfect inverse does not exist, the Moore-Penrose
Pseudo-inverse may be used as the closest approximation
in the least squares sense. The approximation error of the
pseudo-inverse may be a measure of the suitability of the
transformed policy.

Ag, Bs, Fy, Fp are learned through system identification
strategies. For the specific case where process dynamics
P(z,u | A,B) and their transformations F4, Fp can be
linearized in the region of interest, they can be learned from
measured data by solving a least squares problem:

X = [.To,xl,...],X—i_ = [1‘1,1‘2, LU = [ul,ug, }
P=[X*-[X;U]"] - (Ix:U] - [x;0)7) " (7

Then, P can be decomposed and solved for A, B as in
equation EI If A,, A; are known, then Fy = A; - AL
Similarly, for Fg, B, B;. Since B is not necessarily square,
Fp = (B;-BT)-(B,-BT)~1. The whole approach is outlined
in algorithm [1]

For non-linear transformations of the linear system matrices
A, B, non-linear basis functions such as neural networks can
be used to approximate the target transformation. Since F'g B,



requires inversion, a monotonic constraint should be put on
their learned models (by constraining hidden layer weights
to be positive, for example). Or, probabilistic models which
learn a posterior distribution of a variable, given the output
of a function [22] can be used, from which the likely inverse
of the function can be sampled.

In summary, if reward is a function of only the state, and
if optimal states in P, are reachable in P, then optimal
change in state remains invariant. Thus 7; can be derived as
a transformation of 7, in terms of P, and P, to bring about
the same change in state to optimize the target task.

The worst-case computational cost of our approach is lower
than that of approaches that will evaluate states and actions
anew on the target task, such as RL and MPC. Our approach
relies on system identification to transform 74, which is
already known. As an illustration, we consider determin-
istic, continuous MDPs, assuming unique actions lead to
unique states. Identifying an arbitrary system P requires
sampling each state transition once to learn that mapping
Zir1 < P(x;,u;41). The complexity of identification then
is the space X € R™ x U € R™. The Bellman equation
([23]), which is foundational to RL and MPC approaches,
traverses all possible state trajectories to evaluate states,
where state transitions may be traversed multiple times,
thus giving a higher computational complexity. Therefore,
learning the target dynamics to transform the source policy is
computationally cheaper than evaluating states in the target
task. Even when a source RL policy is re-used and fine-tuned
on the target task, it may yet need to sample every state
trajectory in the worst case. The source policy has learned to
drive towards valuable states under Ps. It needs to re-sample
the transformed trajectories under P; to reevaluate each state.
The amount of trajectories needing revision will measure,
and depend on, the similarity between P, and P;.

V. EXPERIMENTS

This approach is demonstrated using linear and non-linear
systems. We demonstrate our case with Linear Quadratic
Regulator (LQR) ([24]), Model-Predictive Control (MPC),
and RL. For RL, the Proximal Policy Optimization (PPO)
algorithm is applied. The reward r and cost ¢, where r = —c,
are specified as quadratic functions of state « with weights @,
where () is a diagonal matrix. The function minimizes cost
and maximizes reward around z = O, which is the desired
state vector. However, the system can be driven to some
other point xg by substituting < x — xo without a loss
in generality. For the sake of comparison with LQR, we
introduce a small action weight R = 10~° in reward, which
otherwise does not affect other approaches. Similarly, to
accommodate LQR, the optimization assumes unconstrained
actions. However, during testing, the actions are clipped to
[—1, 1] for each time interval.

c=—-r= xTQx +u’Ru (8)

A simple one-dimensional temperature (x) regulation
system 1is first used as a test bed, where positive and negative

actions control a heating or cooling element (u). System
parameters are set as a = —0.1,b = 1, = I. Faults
represent a change in conductivity a, and a reversal in action
polarity b, such that the nominal action of increasing heat
will now cool the system.

r,u,a,b, Fy, Fg € R
Ttemp = 0T + bu 9)
A higher dimensional, but still linear, spring-mass system
is described in equation [I0} with @@ = I, and actions u as

forces. The dynamics are governed by the mass m = 1,
spring constant £ = 10, and dynamic friction ky = 0.2.

r€R? ueR, kkp,m € R, Fy, Fp € R**2

. 0 1 0
Tspring = _k ky T+ 1 u

m m m

(10)

A yet more complex non-linear, continuous system is a
pendulum in equation [T} with ) = I, and actions u as
torques. The dynamics are governed by the mass m = 0.1,
pendulum length [ = 1, gravitational acceleration g = 10,
and dynamic friction £y = 0.02.

r€R? ueR, g,l,kf,m R Fa, Fp € R?*?

ipendulum = |: ggin(~) ];Cf :| z + |: (1) :| u (11)
I Y P2 ml2
Finally, a cartpole system is used to demonstrate a more
complex non-linear case. The state vector = comprises of the
angle of the pole 1, its angular velocity s, the position of
the cart x3, and the cart’s velocityxy. Actions u are forces
applied to the cart. The system is parametrized by the cart
and pole masses, m. = 0.5, m,, = 0.1, the length of the pole
I =1, gravitational acceleration g = 10, and the coefficient
of friction ky = 0.01. The state weights for reward are () =
[[L 0,0, 0]; [07 0.1,0, O]v [Oa 0, 10757 0}7 [07 0,0, 01]]; R =
10~5. For the reinforcement learning controller, each time
step the pole is upright gains a constant reward of 1. The
state equations are factored into terms that are functions of
x and u, and F4, Fp € R*** are applied as disturbances.

1;1 = T2
. g . kyxo  x4coszy
To = — ST, —

l ml? l

37.3:.%'4

my sin a4 (g cosxTy — laz'12) + u(t)

Ly = 12)

me + m, — my cos? T4

Experiments are carried out by obtaining a source policy
s on the nominal process Ps. Then, a fault, denoted by a
parametric change in the equations of state, is introduced. The
change is characterized by F4, a positive definite matrix, and
Fp, a negative definite matrix. A buffer of measurements D;
is collected to estimate the target process P;. The transformed



policy 7 is derived from 75 by approximating both Ps and
P; as linear systems about the buffer.

We evaluate jumpstart improvement, asymptotic improve-
ment, and time to threshold. These metrics describe short
and long term advantages of our approach and its computa-
tional complexity. Jumpstart improvement is the immediate
difference in rewards when a policy interacts with a new task.
Asymptotic improvement is the limit of accumulated rewards
as the policy continues to learn. And time to threshold is the
time taken for accumulated rewards to reach an acceptable
level of performance.

Two sets of experiments are carried out. First, LQR and
MPC are used with our approach. They are model-based,
deterministic, and have complete knowledge of task dynamics
and the relationship to the target task. Thus, variables such
as hyperparameter selection, system identification, and policy
function formulation in RL are removed to make results
of this work more apparent. F's, F'g are provided instead
of estimated. The results are tabulated in table [l As both
tables [Tal and [[b] show, the episodic rewards from m; (our
transformation) are within a standard deviation of, if not
better than, the benchmark ;4 and 7.

In the second set of experiments, RL is applied (table [II).
For RL, 7, is obtained by running PPO algorithm until the
episodic rewards converge. The policy transformation applied
to ms can be further fine-tuned via gradient descent. We
represent the transformed policy as ;, the source policy fine-
tuned on P; as 7%, the policy fine-tuned with transformation
parameters as 7,7, and the one excluding parameters as 7; .
In the first subset of experiments, the F'4, F'g are known a
priori (table[[Ta). Then, the same experiments are repeated but
where the transformations F'4, F'g have to be learned from
measured data (table . For both cases, D, D; use at most
five episodes, amounting no more than 2,500 interactions
with the system. This will notably contrast with the time
steps taken by RL to converge to a policy.

Figure 2] shows the effect the fault has on accumulated
rewards, and how our policy transformation causes a jumpstart
improvement as the RL policy tunes control after the system
has changed. A parametric fault is introduced once RL
has converged to a policy on Ps. There is an abrupt fall
in rewards on P;. Using RL iteratively to learn on P; is
slow, and sometimes unable to recover at all. However, the
policy transformation leads to a jumpstart improvement in
rewards. For simple linear systems such as temperature, the
transformation is instantly optimal. For non-linear systems
like cartpole, there is a smaller jumpstart improvement, along
with a faster time to convergence. For both sets of experiments
involving RL, the results show that the transformed source
policy, derived from the identified target system, is able to
achieve comparable, if not better, performance than the source
policy fine-tuned directly on the target task.

VI. DISCUSSION AND CONCLUSION

The results demonstrate several key points. Our approach
gets a jump-start improvement in peformance after a para-
metric fault. Secondly, during RL, if not already converged,

rewards are faster to reach convergence threshold (figure [2).
Thirdly, when knowledge of transformation and dynamics
is known, the source policy’s transformation gives results
similar to LQR and MPC being trained on P; (tables
. However, unlike MPC, an optimization problem does
not need to be solved recurrently when applying control,
saving computational complexity. Finally, when knowledge
of transformation and dynamics is not known, an approximate
transformation using measured samples and fine-tuning using
RL gives similar, albeit marginally lesser, results (table [IIb).

Therefore, our approach may lend itself as an initialization
strategy for data-driven controllers to mitigate sample ineffi-
ciency. After the adaptation step, the controller can proceed
with further reinforcement learning to fine-tune parameters.

We looked at transforming control policies by reasoning
about task dynamics as a means of adaptive control, instead
of the statistical properties of parameters as in machine
learning. Our main contribution was the transformation of a
nominal control policy that leverages system identification.
It is applicable to a host of control algorithms, and tasks
where the objective function is agnostic to actions. The
transformation is such that a source policy would transfer
positively on the target process with a higher sample efficiency
than reinforcement learning.

There are several interesting venues of future research.
First, using the error in policy transformation, which may
use pseudo-inverses, as a measure and guarantee of the
quality of transfer. Secondly, extending the transformation to
a broader class of MDPs with non-linear disturbances. Thirdly,
using parameter estimation, by relying on fault identification,
instead of system identification to further reduce the data
samples to adapt to a new task.
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Temperature Spring Pendulum Cartpole
s on Py —51123.05 £ 17246  —233.23+53 —271.66+2 40.4+3
Tigr on P —904.00 + 1624 —233+2 —7.15+8 500 £ 0
¢ on P —904.01 +£ 1624 —4.22+5 —7.61+82 500+0

(a) Applying transformation to LQR. m; is compared with the policy 4, derived directly on P;. LQR policy is derived on the system
linearized about equilibrium state.

Temperature Spring Pendulum Cartpole
s on Py —36478.06 £ 15043 —208.92+67 —23.53+£24 T79+16
Tmpe on Py —1138.50 &+ 2075 —2.82+3 —729+8 155 + 45
¢ on P —533.23 £ 954 —4.56 £ 6 —7.60£8 168 + 48

(b) Applying transformation to MPC. 7, is compared with the policy 7y, derived directly on P, with a receding horizon of 5 time steps.

TABLE I: Mean episodic rewards using LQR and MPC, compared with ;.

(b) Policy transformation with unknown F4, F'g. They are

Mean episodic reward

~20000
~40000

~60000

(a) Temperature system.

Temperature Spring Pendulum Cartpole

s on Pt —51123.05 £ 17246 —295.39 £70 —271.66+2 56.8 £ 15.16

7 on P, —1076.92 £ 1597 —281.33£70 —271.66+2 486.1 & 23.33

7 on P —904.02 + 1624 —2.50+3 —7.24+8 500.00 £ 0

m, on P —904.02 +1624 —2.46+3 —7.16 + 8 500.00 =0

7rj' on P, —904.02 + 1624 —248+3.14 —7.17+8 500.00 £ 0

(a) Policy transformation with known Fa, F'g.
Temperature Spring Pendulum Cartpole

ms on Py —51123.05 +£ 17246  —295.39 £ 70 —271.66 £2 56.8+15.16
wk on Py —1076.92 £+ 1597 —281.33 £ 70 —271.66 £2 486.1 £ 23.33
7t on Pt —904.02 + 1624 —171.15 £ 175 —19.84 £ 7 156.5 + 88.67
m, on P,  —904.33 + 1624 —110.60 + 169 —12.79£8 500.00 = 0
7rzr on Py —904.02 + 1624 —134.11£168.62 —10.96+8 493.8+18.6

approximated using a buffer of measurements for 5 episodes of 75 on P;.

TABLE II: Mean episodic rewards using RL.

o

-200 _[

— nsonPs
ng on Py -400
— nronpk

— n# onPy -600

Mean episodic reward

-100

-200

Mean episodic reward

/_/ 400
200

1

Mean episodic reward

° 0 55000500045000,16003,500350009 150090000

Learning time steps

50000,00009500086000950009000%5000950000
Learning time steps.

(b) Spring system.

0 5000,0000350009000950009000950009,5000° o
Learning time steps

10009900009000G1000000§50009000%1000°

Leamning time steps

(c) Pendulum system. (d) Cartpole system.
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