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Daisy Chaining Kalman Filter Control Allocation

Wissam Sayssouk1,2, Rodolfo Orjuela1, Mario Cassaro2, Clement Roos2 and Michel Basset1

Abstract— In this article, a novel Control Allocation (CA)
approach based on Daisy Chaining and Kalman Filter CA
(DCKFCA) approaches is presented. The proposed algorithm
aims at overcoming the most common limitations of the existing
algorithms: compensation of the different actuator dynamics
and switching between different groups of actuators. These
two limitations impact negatively the performance of the overall
system and the closed loop stability. Daisy Chaining rearranges
the actuators into groups, and then the CA problem is solved
using the Kalman Filter. This approach has already shown
promising results on a realistic simulator of the longitudinal
control of an autonomous vehicle.

I. INTRODUCTION

In recent years, control allocation (CA) has become an
important topic in the field of control systems, as it plays a
crucial role in the design of over-actuated systems. Control
allocation refers to the process of distributing a limited
control effort among multiple control inputs to achieve a
desired system behavior [1]. It is commonly used in aero-
nautics and autonomous vehicles to assign control inputs to
various actuators in order to achieve a desired performance
or behavior [2], [3], [4]. The need to specify several goals
has appeared with input-redundant systems, a system with
more inputs than degrees of freedom (DOF).
A typical CA problem as seen in Fig. 1 consists of finding
the optimum control input ucmd to realize the desired virtual
control input vdesire. Traditional methods, such as pseudoin-
verse and weighted pseudoinverse [5] are widely used when
solving the control allocation problem. However, these meth-
ods have some limitations, such as poor performance in the
presence of control constraints. To address this issue, most of
the existing techniques try to solve a constrained optimiza-
tion problem by taking into account the physical limitations
of the actuators [1]. For example, [6] formulates the problem
using linear and quadratic programming. However, among
the various existing control allocation techniques, only few
researchers take into account the actuator dynamics.

This latter is often neglected under the following two
assumptions: actuators respond very quickly to a command
and they all have the same dynamics. But when differ-
ent dynamics are considered, the control strategy becomes
challenging. It is because switching from one dynamics to
another can negatively impact performance and therefore
affect the closed loop stability. It is then a trade-off between
performance and stability. In [7], the model predictive control
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is adopted to solve the control allocation problem, called
MPCA. This method deals with different actuator dynamics.
However, it requires a high computation effort. In [8] the
Kalman Filter (KFCA) is used to solve the problem under
the assumption that all actuators have the same dynamics.

To cope simultaneously with actuator saturations and dif-
ferent dynamics, this article proposes a novel control alloca-
tion approach, called Daisy Chaining Kalman Filter Control
Allocation (DCKFCA). This approach allows the distribution
of control commands among a group of actuators. It uses
the Kalman Filter which facilitates the compensation of the
actuator dynamics. The Daisy Chaining method is used to
redistribute control commands in case of saturation and/or
prioritization of actuators. This allows smooth transition
between the different groups of actuators with the same
dynamics. The effectiveness of the proposed approach is
demonstrated through simulation results in a case study of
longitudinal control for autonomous vehicles.

The paper is structured as follows. The actuator dynamics,
control allocation background, as well as current control allo-
cation approaches based on the Kalman Filter and the Daisy
Chaining methodologies, are covered in Section II. In Section
III, the new DCKFCA approach, including its pseudo-code,
is described. Section IV proposes an application to the
longitudinal control of autonomous vehicles. DCKFCA is
compared first to the KFCA [8], then tested alone in both
the nominal and saturated cases. Finally, Section V concludes
the paper and suggests areas for future research.

II. PROBLEM FORMULATION

In this section, the actuator dynamics and the control allo-
cation problem are presented first in subsections II-A and II-
B. Subsection II-C then provides an overview of the Kalman
Filter control allocator [8] and the Daisy Chaining method
[9]. This sets the stage for the new approach presented in
Section III.

A. Actuator Modeling
The actuator dynamics is represented as a first order

system, described as follows:

ui
act(t)

ui
cmd(t)

=
Ki

τis+1
(1)

where τi and Ki are the time constant and the gain of the
actuator. ui

cmd and ui
act are the commanded and realized

commands of the ith actuator shown in Fig. 1.
The transfer function (1) is then discretized using the first

order Euler method to be used later in the CA formulation:

ui
act(k+1) = ui

act(k)+
∆t
τi
(Kiui

cmd(k)−ui
act(k)) (2)



where ∆t is the sampling time, and:

Ai
act =

∆t
τi

Ki ; Bi
act = 1− ∆t

τi
(3)

will be used when formulating the KFCA.

B. Control Allocation Background

The control allocation layer is essential to split the con-
trol design into two parts: a control law for producing
the desired virtual control input (i.e. total moments, total
forces...), represented by vdesire, and a control allocation
layer for distributing it on the available actuators as seen in
Fig. 1. This approach has several advantages, such as ease
of reconfiguration in the event of actuator dynamics changes,
and decoupling of the control allocation from the high-level
controller design.

Fig. 1. Control allocation problem scheme.

Consider now the equation:

vdesire = Bucmd (4)

where vdesire ∈ Rk is the desired virtual control input,
B ∈ Rk×m the control effectiveness matrix and ucmd ∈Rm the
control input. As the system is over-actuated, the number of
actuators m is larger than the number of degrees of freedom
to be controlled k. The control allocation problem can be
described as finding a control input vector ucmd satisfying
equation (4). It is noteworthy that equation (4) is applied
in situations where the actuator dynamics are not taken into
account during the control allocation process.

Additionally, the control input vector ucmd is usually
bounded and subjected to position and rate limits as follows:

up,min
cmd ≤ ucmd(t)≤ up,max

cmd

ur,min
cmd ≤ u̇cmd(t)≤ ur,max

cmd

(5)

where the superscripts p and r denote the position and the
rate limits, and min and max stand for the minimum and
maximum.

In discrete time domain and using the first order Euler
forward discretization, the position and rate limitations are
formulated as follows:

ucmd(k)≤ ucmd(k)≤ ucmd(k) (6)

where:

ucmd(k) = min{up,min
cmd ,ucmd(k−∆t)+∆t ur,min

cmd }
ucmd(k) = max{up,max

cmd ,ucmd(k−∆t)+∆t ur,max
cmd }

(7)

C. Existing Control Allocation Techniques

From an exhaustive control allocation literature review
[1], [2], numerous control allocation techniques have been
identified. Most of them consist on solving the control
allocation problem neglecting the actuator dynamics under
the assumption that actuators react instantaneously to
command. Only those that will be useful in the rest of the
article are described below.

Daisy Chaining:
Daisy chaining control allocation is a technique that orga-
nizes the actuators in a system into different priority levels
and assigns control inputs to them in a sequential or ”daisy
chain” way [9]. This process is repeated until all actuators
have been used. The aim of this method is to enhance
the system performance by making the best use of the
available actuators. This is because the most critical actuators
are controlled first, which can help to stabilize the system
and prevent it from reaching an unsafe or unstable state.
This method is commonly used in aerospace and robotics
applications, such as aircraft and robot control [10], [5].

The concept is as follows, consider m control inputs that
are divided into M groups of decreasing priority:

ucmd =
[
u1

cmd . . . uM
cmd

]T (8)

Accordingly, the control effectiveness matrix is partitioned
as follows:

B =
[
B1 . . . BM

]
(9)

The control allocation problem is now reformulated as fol-
lows:

vdesire = B1u1
cmd + . . .+BMuM

cmd

The aim behind the daisy chain is to realize the virtual
control vdesire with only the first group of actuators:

vdesire = B1u1
cmd (10)

Problem (10) can be solved using any control allocation
technique. Let’s assume that the solution is given by:

u1
cmd = P1vdesire (11)

where P1 is any right (pseudo)inverse of B1. When u1
cmd

satisfies the actuator position and rate limits, the allocation is
successful and the algorithm is interrupted. Otherwise, u1

cmd
is saturated according to its position and rate constraints:

u1
cmd = SATū1

cmd
(P1vdesire) (12)

and the unrealized virtual control is realized using the
secondary actuator group:

B2u2
cmd = vdesire−B1u1

cmd (13)

Again, when u2
cmd fails to satisfy (13) or violates some

constraints, the solution is saturated and the same process
is repeated until either the virtual control demand is met, or



all actuator groups have been employed. The Daisy Chaining
algorithm can be summarized as follows [9]:

u1
cmd =SATū1

cmd
(P1vdesire)

u2
cmd =SATū2

cmd
(P2(vdesire−B1u1

cmd))

...
uM

cmd =SATūM
cmd

(PM(vdesire−∑
M−1
i=1 Biui

cmd))

(14)

where Pi are the solutions of the CA problem.

Kalman Filter Control Allocation (KFCA):
It consists of solving the control allocation problem based on
Kalman Filtering [8]. The main concept is to reformulate the
CA as a state observer, in which the observer states are the
commanded and realized actuator commands (ucmd and uact ).
The observer measurements are the desired virtual control
input vdesire calculated by the high-level controller. The
main idea is to estimate the state of the actuator dynamics
in the process model and to employ this information for
determining the optimal control input for each actuator.
The control allocation is then performed by solving an
optimization problem that considers the actuator dynamics
and performance criteria.

Consider the following discrete-time model:

x(k+1) = Fx(k)+n(k)

y(k) = vdesire = Hx(k)+w(k) = Buact +w(k)
(15)

where x =
[
ucmd uact

]T ∈R2m is the state vector, y∈Rk the
output vector. n(k) and w(k) are uncorrelated white Gaussian
noises with zero mean and diagonal covariance matrices
Q ∈ Rm×m and R ∈ Rk×k respectively.

The process model for the design of the KFCA of equation
(15):

F =

[
Im×m 0m×m

Aact Bact

]
; H =

[
0k×m B

]
Q =

[
Q1 0m×m

0m×m Q2

]T

; R ∈ Rk×k
(16)

where the matrices Aact = diag[A1
act , . . . ,A

m
act ] and

Bact = diag[B1
act , . . . ,B

m
act ] are the parameters of the

different actuators calculated using equation (3).

As previously stated, the states of the Kalman Filter consist
of the commanded and realized actuator commands, ucmd and
uact , respectively. Hence, the following process equation is
modeled as a process with zero derivative as follows:

ui
cmd(k+1) = ui

cmd(k)+n1(k) (17)

where n1(k) is the noise related to this process equation.
Furthermore, the realized actuator commands and referring

to equation (2) is modeled as follows:

ui
act(k+1) = ui

act(k)+
∆t
τi
(Kiui

cmd−ui
act(k))+n2(k) (18)

where n2(k) is the noise related to this process equation.

In the case of control allocation, the covariance matrices
Q and R are a design parameters allowing the modification
of the control command dynamics as it will be explained
later.

The behavior of the CA is heavily dependent on the values
of Q1, Q2 and R. These matrices represent the noise asso-
ciated with actuator inputs and outputs, and measurements,
respectively. Q2 pertains to the noise in the actuator dynamics
(18), which is assumed to be known. Therefore, the values
of Q2 is typically smaller than Q1 to ensure that the actuator
dynamics are respected when estimating the actuator inputs
ucmd . On the other hand, under the assumption that the
virtual control inputs vdesire are calculated with high accuracy
using the high-level controller, R is also relatively small
compared to Q1. The values Q2 and R are assigned as design
parameters to be tuned. They allow to handle the trade-off
between minimizing the error between the vdesire and Buact ,
and increasing/reducing the response time of the system with
respect to (18).

III. DAISY CHAINING KALMAN FILTER CONTROL
ALLOCATION

In this section, a new algorithm for dynamic state esti-
mation for control allocation in the presence of different
actuator dynamics and saturation is presented. The proposed
algorithm, called Daisy Chaining Kalman Filter, combines
the principles of Daisy Chaining and Kalman Filtering pre-
sented before.

The algorithm uses the Daisy Chaining technique to di-
vide the actuators into different groups, with each group
prioritized in a specific order. The Kalman Filter is then
used to solve the control allocation problem for the highest
priority group first. The parameters of the entire group are
frozen when one or more actuators in that group saturate.
The second group then allocates the gap between allocated
and desired virtual control inputs. When a feasible solution
is still not achieved and there are more than two groups, the
process is repeated using Kalman for each sub-groups. By
using this method, the algorithm prioritizes the allocation of
control to the most important actuators while also taking into
account actuator saturation. However, it should be noted that
depending on the groups chosen, the solution may not fully
employ all actuators, resulting in sub-optimal solutions due
to physical limitations.

As previously stated, let’s consider m actuators rearranged
in M different groups of decreasing priority as follows:

ucmd =
[
u1

cmd . . . uM
cmd

]T (19)

where

u1
cmd =

[
u1,1

cmd . . . u1,n1
cmd

]
uM

cmd =
[
uM,1

cmd . . . uM,nM
cmd

] (20)

and m = ΣM
i=1ni. The first superscript of ucmd indicates the

group number, while the second superscript indicates the
actuator index.



In line with the previous equation, the actuator outputs are
also divided in the same manner, whereby:

uact =
[
u1

act . . . uM
act
]T (21)

where

u1
act =

[
u1,1

act . . . u1,n1
act

]
uM

act =
[
uM,1

act . . . uM,nM
act

] (22)

Algorithm 1: DCKFCA Algorithm

Input: x1
k . . .x

M
k ,P1

k . . .P
M
k , vdesire

Output: ucmd ,P1
k+1 . . .P

M
k+1

Initalize: F1 . . .FM, H1 . . .HM, Q1 . . .QM, R1 . . .RM

v1← vdesire
i← 1
while vi ̸= 0 do

[xi
k+1,P

i
k+1] = KF (xi

k,P
i
k,v

i,Qi,Ri,F i,H i)
ui

act ← xi
k+1(

ni

2
+1 : ni)

if Biui
act > SAT(Biui

act) then
ui

cmd ← SAT[xi
k+1(1 :

ni

2
)]

vi+1 ← vi− SAT[Biui
act ]

else
ui

cmd ← xi
k+1(1 :

ni

2
)

end
i← i+1

end
return ucmd =

[
u1

cmd . . . uM
cmd

]
function KF (xk,Pk,y,Q,R,F,H)

% Time Update (’Prediction’)
xk+1 = Fxk
Pk+1 = FPkFT +Q
% Measurement Update (’Correction’)
Kk = Pk+1HT (HPkHT +R)−1

xk+1 = xk+1 +Kk(y−Hxk+1)
Pk+1 = Pk+1−KkHPk+1
return xk+1,Pk+1

end function

The aim is to use the Kalman Filter to solve the control
allocation problem for group 1. The filter uses the mea-
surements provided by the high-level control vdesire. When
any actuator in group 1 saturates, the value of u1

cmd is
frozen and the algorithm proceeds to allocate the remaining
necessary generalized desired virtual control input to group
2. Then, the Kalman Filter is used again to solve the control
allocation for group 2. The process is repeated for all the
groups until a feasible solution is achieved. The DCKFCA
algorithm prioritizes the allocation of control to the most
important actuators (group 1) while also taking into account
the actuator’s saturation constraints. This way, the algorithm
improves the accuracy of the control allocation problem in
the presence of different actuator dynamics and saturation.
The proposed algorithm can be adapted to various actuator

dynamics by rearranging the different dynamics into sub-
groups and considering the actuators’ bandwidth during the
implementation process. This makes the algorithm a versatile
tool for different applications. Algorithm 1 summarizes the
main steps of the proposed algorithm. The matrices P1

k . . .P
M
k

represent the covariance matrices, initialized to zero, and SAT
the saturation function. As described in Section II-C, the
KFCA method involves the rearranging of the input ucmd
and output uact as state observer. In the case of DCKFCA,
actuators with similar dynamics are grouped together. Con-
sequently, the matrices F , H, Q, and R in equation (16) are
partitioned into distinct groups of appropriate dimensions,
resulting in the following:

F →
{

F1 . . . FM
}

; H→
{

H1 . . . HM
}

Q→
{

Q1 . . . QM
}

; R→
{

R1 . . . RM
} (23)

By virtue of this partitioning, it becomes possible to con-
struct different discrete-time models, denoted as x1

k . . .x
M
k ,

based on different dynamic actuator models, as elaborated
in Section II-C.

Moreover, the Kalman Filter function consists of two main
steps: the prediction step and the update step. During the
prediction step, the filter uses the dynamical model to predict
the system’s state at the next time step, based on its current
state. In the update step, the filter compares the predicted
state xk+1 with the actual measurements y = vi of the system
and adjusts the state estimate to account for any errors in the
measurements. More details can be found in [11].

IV. A CASE STUDY: APPLICATION TO LONGITUDINAL
CONTROL FOR AUTONOMOUS VEHICLE

In this section, the proposed algorithm is employed for the
longitudinal control of a vehicle equipped with 4 in-wheel
electric motors. A nonlinear vehicle model is introduced
first, and then the high-level control and control allocation
strategies are proposed. The suggested algorithm is then
evaluated using MATLAB/Simulink on this benchmark.

A. Nonlinear Vehicle Model

In this study, the vehicle is modeled using a 7 degrees of
freedom (DOF) nonlinear model to investigate the longitu-
dinal control [12]. The impact of the suspension system is
not considered in the model.

The longitudinal dynamics equation, used to balance the
forces acting in the longitudinal direction, is given as [12]:

m(v̇x− vyψ̇) = (Fx f l +Fx f r)cos(δ f )+(Fxrl +Fxrr)

− (Fy f l +Fy f r)sin(δ f )
(24)

vx, vy and ψ̇ are the longitudinal and lateral speeds, and
yaw rate respectively. Fxi and Fyi denote the longitudinal and
lateral tire forces respectively. They are computed using the
Magic Formula model [13]. The subscript i ∈ { f l, f r,rl,rr}
refers to the front, rear, left and right wheels. These sub-
scripts will continue to be used in the subsequent equations.
The vehicle front steering angle is represented by δ f , and
the vehicle mass by m.



The wheel dynamics is represented as follows:

Iω ω̇i = Ti−FxiRω (25)

where ω̇i is the wheel speed and Ti is the drive or brake
torque at wheel i, Iω its rotational inertia, and Rω the effective
radius of the wheel.

B. High-Level Longitudinal Controller
A high-level controller is required to generate a virtual

total torque vdesire which is then distributed using the CA
among the available actuators.

The Lyapunov theory approach is employed to design
a model-based longitudinal controller, which is synthesized
using the longitudinal dynamics equation (24) and the wheel
dynamics equation (25). Under the assumption of small
wheel slip, negligible vy, and δ f = 0 the following equation
holds:

mvv̇x =
4T
Rω

(26)

where mv = m+
4Iω

R2
ω

.

To ensure a good velocity reference tracking and the
convergence towards zero, the following positive definite
Lyapunov candidate is chosen:

V =
1
2

e2
v

ev = vxre f − vx

(27)

To achieve exponential stability, it is necessary to fulfill
the following condition [14]:

V̇ =−KxV (28)

where Kx is a strictly positive parameter representing the
decay rate. With respect to the stability condition (28), the
following longitudinal control law holds:

T ∗ =
Rω

4
(mv(axre f +Kxev)) = vdesire (29)

where axre f and vxre f are respectively the references acceler-
ation and speed and T ∗ is the desired virtual control input
vdesire.

C. Low-Level Control Allocation
The low-level control allocation refers to the process

of distributing to the actuators the virtual control input
vdesire = T ∗ calculated using the high-level controller. The
total longitudinal forces is described as follows:

Fx = Fx f l +Fx f r +Fxrl +Fxrr (30)

At the steady state, equation (25) is written as:

Fxi =
Ti

Rω

(31)

The used in-wheel motor can operate in one mode at a
time, torque vectoring or braking.

The desired virtual control input vdesire = T ∗ is the total
torques calculated using the high-level control (29) and
the input vector ucmd =

[
Tf l Tf r Trl Trr

]T . Hence, the
control effectiveness matrix for this case is defined as

B =
[
1 1 1 1

]
(32)

D. Results and Discussions

In this section, the efficiency of the proposed control
allocation algorithm is evaluated by using the highly accu-
rate 7 DOF vehicle model under MATLAB/Simulink. The
performance of the Daisy Chaining Kalman Filter control
allocation approach is evaluated using two scenarios. It is
compared to a similar approach found in the literature,
Kalman Filter CA, and then tested independently in normal
and saturation conditions.

The application at hand involves different dynamics for
the four in-wheel electric motors at the front and rear of
the vehicle. The different actuator parameters are as follows:
K f l = K f r = 1 and Krl = Krr = 0.8, τ f l = τ f r = 40 (ms),
τrl = τrr = 20 (ms), and the maximum input torques umax

cmd =[
350 350 380 380

]T (Nm). The other parameters are
given in Table I.

TABLE I
VEHICLE, CONTROLLER AND ALLOCATOR PARAMETERS

Vehicle parameters
Iω 0.99 (mKg2) m 1828 (Kg)
Rω 0.313 (m)
Controller parameters
Kx 5
Allocator weighting matrices
RKFCA 0.001 RDCKFCA 0.001
QKFCA diag([10,10,10,10,0.001,0.001,0.001,0.001])
Q1

DCKFCA diag([10,10,0.001,0.001])
Q2

DCKFCA diag([10,10,0.001,0.001])

In the two presented scenarios, a linear acceleration
profile is employed, starting with a rate of 1 m/s2 for the
first 20 seconds and subsequently increasing to 1.5 m/s2 for
the following 10 seconds.

Scenario 1: KFCA vs DCKFCA
In this scenario, the proposed DCKFCA approach is com-
pared to the Kalman Filter Control Allocation (KFCA)
approach previously presented in Section II-C. As the front
and rear actuators have different dynamics, the actuators
with similar dynamics are grouped together in the DCKFCA
approach to form two distinct groups. The total torque is then
divided equivalently between the two groups and distributed
among the individual actuators within each group to allow
the comparison with the KFCA. The weighting functions Q
and R for KFCA and DCKFCA are given in Table I.

As shown in Fig. 2, the input and output torque distribution
for the various actuators are depicted in order to evaluate and
compare the performance of the proposed control allocation
approach to the KFCA one. The objective of the control al-
location is to compensate the actuator dynamics by ensuring
similar actuators outputs to avoid asymmetric behavior. As
depicted in Fig. 2, it is clear that the actuator outputs are not
equal in the case of the KFCA approach, in contrast to the
proposed approach. This enhances the overall performance
of the system ensuring to have similar actuator outputs.
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Fig. 2. Actuator Inputs/Outputs in Scenario1.

Scenario 2: DCKFCA in normal and saturated cases
In this scenario, the proposed DCKFCA approach is evalu-
ated under both normal and saturated conditions. The front
actuators are designated as high-priority group (group 1)
when utilizing the proposed DCKFCA approach to solve
the control allocation problem. The reason for this choice
is that the rear actuators operate faster than the front ones,
enabling more effective tracking in situations of saturation
by utilizing the faster actuators in group 2. The weighting
functions remain the same as in scenario 1. In Fig. 3,
the total torque calculated using the high-level controller
(29) is compared to the actuator outputs. It can be seen
that there is a good tracking with a relative small error
between what is demanded, vdesire, and what is realized.
Furthermore, as shown in Fig. 4, during the initial period
of [0 s− 20 s], the total torque is compensated completely
by the first group (front actuators). Once this group reaches
saturation, between [20 s−30 s], the remaining torque is sent
to the second group, thus allowing for accurate reference
tracking. Although utilizing the same effectiveness matrix B,
the approach allowed for the compensation of the different
actuator gains. Thus, a greater input is anticipated for the
rear actuators since they have a different gain from one
(Krl = Krr = 0.8) as seen in Fig. 4.
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Fig. 3. Total torque commanded and its relative error in Scenario 2.
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Fig. 4. Actuator Inputs/Outputs using DCKFCA in Scenario 2.

V. CONCLUSIONS

The approach presented in this article, the Daisy Chaining
Kalman Filter Control Allocation (DCKFCA), has been
shown to be more effective than another method found in
the literature, the Kalman Filter Control Allocation (KFCA),
when different actuator dynamics are involved. Through
detailed analysis and simulation, it has been shown that the
proposed approach offers improved performance and greater
efficiency in the case of different actuator dynamics and
saturation, allowing smooth transition between the different
groups in the case of saturation. The proposed approach has
the potential to be efficient and can be considered for future
research and implementation.
As future work, the nonlinear actuator models will be
investigated to improve the performance in more complex
environment.
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