
HAL Id: hal-04419106
https://univ-angers.hal.science/hal-04419106

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representation of Time Petri Nets using Interval
Weighted Automata

B. Daviaud, S. Lahaye, M. Lhommeau, J. Komenda

To cite this version:
B. Daviaud, S. Lahaye, M. Lhommeau, J. Komenda. Representation of Time Petri Nets using In-
terval Weighted Automata. 2023 9th International Conference on Control, Decision and Information
Technologies (CoDIT), Jul 2023, Rome, Italy. pp.99-104, �10.1109/CoDIT58514.2023.10284333�. �hal-
04419106�

https://univ-angers.hal.science/hal-04419106
https://hal.archives-ouvertes.fr

Representation of Time Petri Nets using Interval Weighted Automata

B. Daviaud1, S. Lahaye1, M. Lhommeau1 and J. Komenda2

Abstract— Interval Weighted Automata are a modeling for-
malism for timed systems that can be viewed as an alternative
(more algebraic) to timed automata. We present here a way
of deriving a deterministic interval weighted automaton to
represent any bounded T-time Petri net subject to strong and
single-server semantics. This approach consequently contributes
to the characterization of the expressiveness of weighted au-
tomata with respect to other formalisms for timed Discrete
Event Systems. In addition, the time language of the obtained
abstraction has the characteristics of being included or equal
to the time language of the T-time Petri net, and, in other
words, any accessible state in the obtained Interval Weighted
Automaton corresponds to an equally accessible state in the T-
time Petri net. This property should allow the future use of this
abstraction for the verification of properties that are expressed
as an accessibility issue and/or for control.

I. INTRODUCTION

Weighted automata (also known as automata with multi-
plicities) generalize finite state automata by adding weights
to their transitions. The weights have values taken from
a semiring, and automata with multiplicities can be con-
veniently analyzed within an algebraic setting. They have
been thoroughly studied in the last fifty years by computer
scientists, with applications in various domains such as
natural language processing (speech recognition) and digital
image compression [1]. This formalism has also been used
to address various important problems for timed Discrete
Event Systems (DES) such as performance evaluation [2]
and control [3], [4].

This paper is a continuation of works that have aimed
to identify the expressiveness of weighted automata w.r.t.
other DES formalisms. In [5] and [6], it is shown that safe
timed Petri nets can be modeled by max-plus automata, i.e.
weighted automata with weights in the max-plus semiring.
The recent contribution [7] generalizes [8] to show that any
bounded timed Petri net under race policy has a behavior-
equivalent representation by means of a deterministic max-
plus automaton. [9] explores the description of safe P-Time
Petri Nets using Interval Weighted Automata (IWA), that is
automata with weights corresponding to intervals defined in
the product of semirings.

In this article, we focus on the transformation of T-
time Petri nets (with the so-called strong and single-server

1Univ Angers, LARIS, SFR MATHSTIC, F-49000
Angers, France. The work of Bérangère Daviaud is fi-
nanced by Angers Loire Métropole and Université d’Angers
{berangere.daviaud, sebastien.lahaye,
mehdi.lhommeau}@univ-angers.fr

2Institute of Mathematics - Brno Branch, Czech Academy of Sciences,
Czech Republic. The work of Jan Komenda is supported by RVO 67985840
and GAČR grant 19-06175J komenda@ipm.cz

semantics) into IWA. Let us stress the difference with [9]
because it is well known that, unlike timed Petri nets, P-
time Petri nets and T-time Petri nets (TPN) are not equally
expressive [10]. To further explain, situate and motivate our
work, several directly related approaches in the literature are
mentioned below. For this purpose, let us first remind that in
a TPN, a state consists of a marking and a set of constraints,
one for each transition enabled at the corresponding marking,
that specify when transitions may actually fire. The state
spaces of TPNs are typically infinite. In order to make
enumerative analysis techniques possible to apply, numerous
finite abstractions have been proposed for the state spaces
of TPNs. Below we mention only a part of the literature on
this subject, limiting ourselves to those references that, to
our knowledge, are most relevant to our work.

The seminal work in [11] proposed a graph of so-called
state classes. State classes represent some infinite sets of
states by a marking of the net and a polyhedron capturing
the times at which the enabled transitions may fire [12].
The State Class Graph (SCG) produced is finite if and
only if the TPN is bounded. In addition, the SCG edges
are labeled by transitions of the TPN, and it has been
shown that the language accepted by the SCG is equal to
the untimed language of the TPN. Then, SCGs have been
successfully used for analyzing TPNs and more precisely
for checking untimed reachability properties. An approach
preserving branching structure has been proposed in [13]
with an alternative definition of state classes, resulting in the
atomic state class graph (ASCG). An alternative construction
of this graph has been proposed in [14], applicable to a larger
class of nets. Nevertheless, the algorithm used to construct
the graph seems inefficient and no results can be exploited
to compare with other methods [15].

In [16], an approach is proposed to build the SCG as a
timed automaton (TA), called State Class Timed Automaton,
thus keeping the temporal information of the TPN and
making it possible to check timed properties. Obtaining a TA
instead of a graph allows one to use all the model checking
tools available for TA. To exploit this opportunity, translation
techniques from TPNs to TA have been proposed in [17] and
[18]. Our work is similar to these approaches dealing with
the translation of TPNs, but differs in the expected result,
since the aim here is to obtain an IWA.

In order to address state estimation and fault diagnosis
problems, the so-called Modified State Class Graph (MSCG)
has been proposed in [19] and [20]. Briefly, the MSCG is
a directed graph whose nodes are called classes, namely a
reachable marking and a set of inequalities that define the
timing constraints pertaining to all enabled transitions. Such

inequalities depend on variables, denoted ∆, which take into
account how long a transition has been enabled. An edge is
labeled by the transition to be fired and an interval which is
function of variables ∆ and that captures the time spent in
the tail node of the edge. The abstraction of TPNs proposed
here is also a graph with each edge labeled by the transition
and an interval, but this interval is computed a priori to cover
the possible enabling durations.

Beyond the differences with the studies from the literature
highlighted above, we must stress that our goal in the pre-
sented approach is to obtain an abstraction that only accepts
time-transition sequences that are firable in the original TPN.
More explicitly, let us denote (a0, τ0), (a1, τ1), . . . a possible
time-transition sequence in the TPN, i.e. τi, i ≥ 1 is a
possible firing date for ai after (a0, τ0), . . . , (ai−1, τi−1).
We propose here to build a finite abstraction that accepts
only time-transition sequences, (a0, τ0), (a1, τ1), . . . which
are possible in the TPN (i.e. the time language of the
abstraction should be included or equal to the time language
of the TPN). To the best of our knowledge, to efficiently
obtain an abstraction of a TPN that satisfies this objective
is an originality of our approach compared to the literature
on the subject, which is motivated by the prospect of being
able to use it for control synthesis or for the verification
of properties. Indeed, obtaining a sub-approximation of the
TPN semantics guarantees that any state accessed in the
IWA corresponds to an accessible state in the TPN, which,
by extension, guarantees that the verification of properties
expressing an accessibility problem in the IWA implies these
properties to be satisfied by the TPN.

In summary, this contribution proposes a procedure to
derive a deterministic IWA to represent any bounded TPN
(considering single-server and strong semantics) so that
all the accepted time-transition sequences in the IWA are
possible timed sequences of firings in the TPN.

In the next section, Interval Weighted Automata are de-
fined. Time Petri Nets are introduced in Section III and
preliminary results are given to describe their time-behavior
according to the selected semantics. The proposed represen-
tation of a TPN by an IWA is presented and illustrated
in Section IV. Conclusions together with hints on future
developments are given in Section V.

II. INTERVAL WEIGHTED AUTOMATA

In this section, some necessary concepts on idempotent
semirings are briefly recalled, and interval weighted automata
(IWA) are then introduced. For more exhaustive presenta-
tions, the reader is invited to consult the references BICOQ)
and [1].

Definition 1 An idempotent semiring is a set D equipped
with two operations, denoted respectively ⊕ and ⊗. Addition
⊕ is commutative, associative, has a zero element ε (ε⊕a =
a for all a ∈ D), and is idempotent (a ⊕ a = a for each
a ∈ D). Multiplication ⊗ is associative, has a unit element
e, and distributes over ⊕.

Example 1 Let Q denote the set of rational numbers, Qmax

is the set (Q∪{−∞}) endowed with the maximum that plays
the role of addition ⊕ and the standard addition playing the
role of multiplication ⊗, with e = 0 and ε = −∞.

The direct product of semirings simply consists of the
Cartesian product of their underlying carrier sets, and it is
equipped with componentwise addition and multiplication.
We consider here the direct product of semiring Qmax with
itself, denoted Qmax

max.

Definition 2 The idempotent semiring Qmax
max is defined by

⟨(Q ∪ {−∞})× (Q ∪ {−∞}),⊕,⊗⟩ with

[c1, d1]⊕ [c2, d2] = [max(c1, c2),max(d1, d2)]

[c1, d1]⊗ [c2, d2] = [c1 + c2, d1 + d2]

ε = [−∞,−∞]

e = [0, 0]

We observe that this product of semirings is related to the
set of intervals. In particular, product ⊗ coincides with the
addition of intervals.

To be able to introduce weighted automata, let us recall
that if A is an alphabet (a finite set of letters), A∗ is defined
as the set of finite words (or strings) with letters in A. A
word w ∈ A∗ can be written as a sequence w = a1a2 . . . ap
with a1, a2, . . ., ap ∈ A and p a natural number. The empty
word is denoted by λ.

Definition 3 A D-weighted automaton over an alphabet A
is a quintuple G = (Q,A, α, µ), where Q is a finite set of
states, α : Q → D defines the input weights, and µ : A →
D|Q|×|Q| defines the transition weights.

The morphism µ represents the state transitions given by
the family of matrices µ(a) ∈ D|Q|×|Q|, a ∈ A. For q, q′ ∈
Q, µ(a)qq′ represents the possible activation weights for label
a before it can occur for the transition from q to q′. If there
is no transition from q to q′ labeled by a, µ(a)qq′ = ε. For
a string w = a1a2 . . . ap, we have µ(w) = µ(a1)⊗ µ(a2)⊗
. . . ⊗ µ(ap). A state q ∈ Q is said to be an initial state iff
α(q) ̸= ε.

Equivalently, a D-weighted automaton G can be defined
by the tuple (Q,A,Qi, σ, t), in which Qi denotes the set of
initial states, t : Q×A×Q → D is the transition function,
σ : Qi → D is the initial weights function:

Qi ≜ {q ∈ Q : αq ̸= ε}; ∀qi ∈ Qi, σ(qi) ≜ αqi ;

∀q, q′ ∈ Q, t(q, a, q′) ≜ µ(a)qq′ .

Interval weighted automata (IWA) are defined here as
weighted automata with weights in semiring Qmax

max. We
restrict our attention to deterministic IWA, that is IWA for
which

• there exists only one initial state,
• ∀a ∈ A, t(q, a, q′) ̸= ε and t(q, a, q′′) ̸= ε implies
q′ = q′′.

An IWA can be represented by a graph (see Example 2)
as follows:

1[0, 0] 2 3

b/[2, 3]

a/[0, 10]

a/[2, 4]

b/[1, 1]

Fig. 1. An interval weighted automaton

• the states q ∈ Q are represented by nodes;
• there is an arrow from state q ∈ Q to state q′ ∈ Q

whenever there exists a ∈ A such that t(q, a, q′) ̸= ε :
the arrow is then labeled by a/t(q, a, q′).

• an input edge entering a state means this state is an
initial state.

Example 2 Figure 1 shows an IWA. We have A = {a, b},
Q = {1, 2, 3}, Qi = {1}, σ(1) = [0, 0], t(2, a, 1) = [0, 10],
t(2, a, 3) = [2, 4], t(1, b, 2) = [2, 3], t(3, b, 2) = [1, 1], and
t(q, a, q′) = ε all the other tuples (q, a, q′).

III. TIME PETRI NETS

This section recalls the definition of Time Petri Nets (TPN)
and specifies the selected semantics. Preliminary results are
also stated in order to describe the behavior of such TPN.

A. Definitions

Definition 4 A Petri net is defined as a quintuple :

(P, T, Pre, Post,M0)

• P is a finite set of places,
• T is a finite set of transitions,
• Pre : T → NP and Post : T → NP are the backward

and the forward incidence functions, and
• M0 ∈ NP is the initial marking.

A marking M associates, to each place, a number of
tokens. For all a ∈ T , Pre(a) ∈ NP establishes the number
of tokens in each place required for a to be fired. Transition
a is said enabled at marking M , iff M ≥ Pre(a). Notation
En(M) refers to the set of transitions enabled at M . If
transition a is fired, Post(a) ∈ NP corresponds to the
number of tokens released by a to each of its output places.

A TPN is a Petri net with time intervals associated with
transitions.

Definition 5 A T-time Petri net is a tuple

(P, T, Pre, Post,M0, Is)

in which (P, T, Pre, Post,M0) is a Petri net and Is : T →
Q≥0 × (Q≥0 ∪ {∞}) is the static firing interval function. In
this paper, we denote I (resp. I), the lower bound (resp. the
upper bound) of an interval I . It is assumed that I ≤ I .

In a TPN, two transitions are said to be non conflicting, or
parallel, if they have no common input place, i.e. a and b are
parallel if Pre(a)∩Pre(b) = ∅. Otherwise, both transitions
are said to be conflicting.

Fig. 2. Example of a Time Petri net

A TPN can be represented by a graph (see Example 3) as
follows:

• a node corresponds to a place p ∈ P (circle) or a
transition a ∈ T (box),

• tokens into places symbolize available resources,
• an edge from place to transition specifies an input place

for that transition, defined by the backward incidence
function,

• an edge from transition to place specifies an output place
for that transition, defined by the forward incidence
function.

Example 3 Fig. 2 shows a TPN (P, T, Pre, Post,M0, Is)
where the set of places is P = {p1, p2, p3, p4} and the set of
transitions is T = {t1, t2, t3, t4, t5}. The incidence functions
for each transition are :

• Pre(t1) = (1000), Post(t1) = (0100),
• Pre(t2) = (1001), Post(t2) = (0011),
• Pre(t3) = (0010), Post(t3) = (0100),
• Pre(t4) = (0100), Post(t4) = (0000),
• Pre(t5) = (0001), Post(t5) = (0000).

The static firing interval function is defined by: Is(t1) =
[0, 1], Is(t2) = [0, 1], Is(t3) = [0, 2], Is(t4) = [0, 1] and
Is(t5) = [3, 4]. The initial marking is M0 = (1001).

B. Semantics

In this paper, as in [12], the single-server and strong se-
mantics are considered for bounded TPNs. When a transition
is multi-enabled, only one enabling instance is considered
(single-server semantics). The strong semantics forces an
enabled transition to fire if the elapsed time since its last
enabling reaches its maximum static firing time, i.e. the
firing of this transition disables other potentially enabled
transitions that are in conflict with it, but whose firing is
not urgent (the upper bound of their firing interval is not
yet reached). Furthermore, let us repeat that the static firing
interval function is limited to Is : T → Q≥0 ×Q≥0.

The behavior of a TPN is characterized by its states and
the transitions between states.

First, a state of a TPN is a pair denoted (M,E), where
M is a marking, and E reflects temporal information on
each of the enabled transitions. In the literature, E can

be formalized in several different ways, see [21]. In this
paper, E is defined as a vector of intervals associated with
transitions. A component Ea is an interval capturing the
possible times elapsed since the last enabling of a ∈ T . This
way, E can be seen as a vector of clocks. By convention,
the notation Ea = ‡ means the transition a is not enabled.
Hence, the initial state is (M0, E0) where M0 is defined in
Def. 4, and E0 is defined by:

∀a ∈ T, E0,a =

{
[0, 0], if a ∈ En(M0),

‡, otherwise. (1)

Secondly, a TPN may evolve according to discrete and
continuous transitions. A discrete transition occurs when a
transition a is fired and is denoted

(M,E)
a−→ (M ′, E′). (2)

The following conditions must be satisfied for such a discrete
transition:

(i) a ∈ T and a ∈ En(M),
(ii) M ′ = M − Pre(a) + Post(a) (the standard marking

transformation),
(iii) ∀b ∈ En(M ′), E′

b = [0, 0] if b is newly enabled, E′
b =

Eb otherwise.
For (iii), let us give more precision on newly enabled
transitions. Considering discrete transition (2), a transition a′

is said to be newly enabled by marking M ′ if a′ is enabled
by M ′ and it was not enabled by intermediate marking M ′′

obtained by removing the tokens from the upstream places
of a involved in the firing of a (while the tokens are not yet
added to the downstream places of a). For a multi-enabled
transition, the transition is considered as newly enabled if it
is still enabled after its firing, or the firing of a conflicting
transition.

A continuous transition reflects the progression of time
and is denoted

(M,E)
θ−→ (M,E′), (3)

with the conditions:
(iv) θ ∈ Q≥0,
(v) ∀b ∈ En(M), Eb + θ ≤ Is(b)

(vi) ∀b ∈ En(M), E′
b = Eb + θ

C. Aggregated transition

In this contribution, we propose to describe the behavior
by transitions which aggregate both discrete and continuous
transitions. More explicitly, such a transition is denoted

(M,E)
a/Da−→ (M ′, E′), (4)

in which conditions (i)-(vi) must all be satisfied. In this
transition, da ∈ Q≥0, da ∈ Da can be interpreted as
the duration that may elapse since its last enabling before
transition a is fired. In the following lemmas, we identify
several constraints on the value for da that come from the
TPN semantics.

It is essential to specify that we seek here to define the
widest possible evolution domain for da such that the TPN

semantics is respected for sure. Hence, we define a lower
and upper bound for the value of da, and doing so, Da is
defined as an interval in Q≥0 ×Q≥0.

This is done with the objective of obtaining in the next
section an abstraction of the time behavior of the TPN for
which each accepted sequence includes only time-transition
sequences (a0, da0

), (a1, da1
), . . . that are firable in the TPN,

i.e. where each dai
, i ∈ N, of the sequence is a possible

firing date for ai. In other words, we are looking for an
abstraction whose time language is included or equal to the
time language of the TPN. Based only on conditions (i)-
(vi), the SCGs proposed in [12] may lead to so-called firing
domains which accept time-transition sequences that are not
firable in the corresponding TPN. As illustrated in Section
IV-C, the approach in [19] and [20] may also lead to an
abstraction which accepts time-transition sequences that are
not firable in the TPN. And to our knowledge, to efficiently
obtain an abstraction of a TPN that satisfies this objective is
an originality of our approach.

Lemma 1 From state (M,E), a transition a ∈ En(M)
can effectively be fired (i.e. transition a can be fired while
respecting the TPN semantics for sure) if ∃da ∈ Q≥0

satisfying the following inequalities

da ≥ max(0, Is(a)− Ea) (5)

da ≤ Is(b)− Eb , ∀b ∈ En(M) (6)

For a ∈ En(M), we define the set Para(M,a) of enabled
transitions that are in parallel (or nonconflicting) with a:

Para(M,a) ≜ {b ∈ En(M) : Pre(a) ∩ Pre(b) = ∅}

The following lemma makes explicit a constraint on da,
original to the best of our knowledge, which derives from
the order of occurrence between the firings of parallel tran-
sitions. Indeed, while defining transition (4) it is implicitly
considered that any parallel transition b is to be fired after a.
This aspect is not explicitly taken into account in conditions
(i)-(vi) and we believe that this omission leads to so-called
firing domains in [12] for SCGs, so that these SCGs may
accept time-transition sequences that are not firable in the
corresponding TPN.

Lemma 2 Let a be a transition that can effectively be fired
from (M,E) as defined in Lemma 1, da ∈ Q≥0 must satisfy
the following inequality so that the TPN semantics can be
respected for parallel transitions, i.e. ∀b ∈ Para(M,a):

da ≤ Is(b)−Eb−max(0, (Is(b)−Eb)−(Is(a)−Ea)). (7)

IV. REPRESENTATION OF TPN BY IWA

A. Procedure

The proposed construction for a deterministic IWA G =
(Q,A,Qi, ρ, t) from a bounded TPN P = (P, T, Pre, Post,
M0, Is) is based on the behavior of the TPN described in
sections III-B and III-C.

The alphabet A of G is defined as the set of transitions T
in P .

The initial state of G is defined as Qi = (M0, E0) (where
E0 is given by (1)) with initial weight [0, 0].

The set of states Q and the transition function t are now
defined in an iterative way. Let us consider that a state
(M,E) has been defined in Q, with M a marking of the TPN
and E a vector of intervals where Ea captures the possible
times elapsed since the last enabling of a ∈ T (with the
convention Ea = ‡ if a /∈ En(M)). For all transition a
that can effectively be fired (as stated in Lemma 1), a state
(M ′, E′) and a transition in G are defined by

t((M,E), a, (M ′, E′)) = Da (8)

where
• M ′ is given by the standard marking transformation (see

(ii)),
• Da ∈ Q≥0 × Q≥0, Da = [Da, Da] is defined in (4)

and is computed as the largest solution (according to
the inclusion-order of intervals) of the following set of
inequalities from Lemmas 1 and 2:

Da ≥max(0, Is(a)− Ea) (9)

Da ≤Is(b)− Is(b), ∀b ∈ En(M) (10)

Da ≤Is(b)− Eb −max(0, (Is(b)− Eb)− (Is(a)− Ea)),

∀b ∈ Para(M,a) (11)

• E′ is the updated vector given for all b ∈ T by

E′
b =

 ‡, if b is disabled by M ′,
[0, 0] , if b is newly enabled by M ′,

Eb ⊗Da, otherwise.
(12)

To conclude with the description of the procedure, two
states (M,E) and (M ′, E′) in G are considered as equivalent
if M = M ′ and E = E′ (just as for state-classes in [12] and
[22]), and they can be merged in G.

B. Properties

We now mention important characteristics of the IWA
obtained through the procedure introduced in Section IV-A.

Proposition 1 Let P be a bounded TPN. The IWA G built
according to the proposed procedure is deterministic.

Proposition 2 Let P be a bounded TPN. The IWA G built
according to the procedure proposed is finite, i.e. its set of
states Q is finite.

Proposition 3 Let P be a bounded TPN. Any time-transition
sequence accepted in the IWA G built according to the
procedure proposed is a possible timed sequence of firings
in the TPN.

C. Illustrations

Let us first illustrate the application of the proposed
procedure in section IV-A. Below, we detail several of the
steps involved in constructing the IWA of Fig. 4 as an
abstraction of the TPN in Fig. 3.

The initial state of the IWA (M0, E0) = (21, ([0, 0][0, 0]))
is defined with the initial marking of the TPN and consid-
ering that the transitions enabled by this marking are newly
enabled.

Fig. 3. A bounded TPN

Fig. 4. IWA obtained with the proposed procedure for the bounded TPN
in Fig. 3

At state (M0, E0), the set of enabled transition is
En(M0) = {t1, t2}, and applying Lemma 1, we obtain that
both transitions a and b can be effectively fired. For the
transition according to a, (9)-(11) can be written as

Da ≥ max(0, 0− 0) (applying (9))

Da ≤ 2− 0 (applying (10) for a ∈ En(M))
Da ≤ 3− 0 (applying (10) for b ∈ En(M))

Da ≤ 3−max(0, 2− 0) (applying (11))

which leads to Da = [0, 1]. This weight may seem surprising
whereas the enabling time of a in the TPN is [0, 2] but is
justified by the interpretation and purpose of our abstrac-
tion. Indeed, transition b is enabled in parallel with a and,
therefore, transition b is to be fired after a. However, if we
accept [0, 2] as the weight associated with a, we should have
a weight associated with b at least equal to 2 (to respect
its minimum enabling time) and the weight associated with
sequence ab should then include [0, 2] + [2, 2] = [2, 4]. This
would result in a timed sequence that does not correspond
to a possible firing sequence in the TPN, and one can be
convinced that [0, 1] is the largest possible interval to weight
a such that timed sequence ab in the IWA remains a possible
firing sequence in the TPN. Let us note also that since we
consider a single-server semantics, transition a is considered
as newly enabled by M1, that is by the second token in P1

after the first firing of a. This is why we have E1,a = [0, 0].
The construction (not detailed here) of the other states and
transitions of the IWA shown in figure 4 proceeds in the
same way as presented in the Procedure of the section IV-A.

Let us now consider the TPN depicted in Fig. 2. Note
that this example is considered in [20] to illustrate the
construction of a Modified State-Class Graph (MSCG). The

(M0, E0) = (1001, ([0, 0][0, 0] ‡ ‡[0, 0]))[0, 0]

(M1, E1) = (0101, (‡ ‡ ‡[0, 0][0, 1])) (M2, E2) = (0011, ‡ ‡ [0, 0] ‡ [0, 0])

(M3, E3) = (0001, (‡ ‡ ‡ ‡ [0, 1])) (M4, E4) = (0000, (‡ ‡ ‡ ‡ ‡))

t1/[0, 1]

t2/[0, 1]

t4/[0, 0]

t3/[0, 1]

t5/[3, 3]

Fig. 5. IWA obtained with the proposed procedure for the bounded TPN
in Fig. 2

application of our procedure leads to the IWA shown in
Fig. 5. The obtained IWA may differ significantly from
other abstractions proposed in the literature. In particular,
the MSCG obtained in [20] accepts from the initial state
the sequence, t1t5 whereas it is not firable in the TPN.
Indeed, after the firing of t1, t5 is still enabled and t4 is
newly enabled. At least 2 units of time must elapse before
t5 is firable. However, no more than 1 unit of time may
elapse before the strong semantic forces t4 to fire. So, t4
is necessarily fired before t5. Fig. 5 shows that the IWA
obtained with the proposed procedure does not accept the
sequence t1t5.

V. CONCLUSION

A procedure has been proposed to derive a deterministic
IWA representing any bounded TPN subject to strong and
single-server semantics. This approach helps to characterise
the expressiveness of weighted automata with respect to other
formalisms for DES. Moreover, it provides an abstraction in
which any timed sequence is a possible firing sequence in
the TPN.

This will allow future work to address algebraically the
verification of guaranteed properties. Note that since the
resulting abstraction (IWA) is a deterministic WA, this
enables efficient verification of properties and computation
of controllers. However, since it is a sub-approximation of
the TPN, it will be useful for some particular properties
based on reachability (accessibility) and minimal required
behavior. This is why it is interesting to provide also a non
deterministic IWA abstraction, which will cover the behavior
of the TPN exactly, but the verification of properties and
supervisory control are no longer efficient unless we choose
a finite horizon.

REFERENCES

[1] M. Droste, W. Kuich, and H. Vogler, Handbook of Weighted Automata.
Springer Publishing Company, Incorporated, 2009.

[2] S. Gaubert, “Performance Evaluation of (max,+) Automata,” IEEE
TAC, vol. 40, no. 12, pp. 2014–2025, 1995.

[3] J. Komenda, S. Lahaye, and J. Boimond, “Supervisory control of
(max,+) automata: A behavioral approach,” Discrete Event Dyn Syst,
vol. 19, no. 525, 2009.

[4] R. Su, J. van Schuppen, and J. Rooda, “The synthesis of time optimal
supervisors by using heaps-of-pieces,” IEEE TAC, vol. 57, no. 1, pp.
105–118, 2012.

[5] S. Gaubert and J. Mairesse, “Modeling and Analysis of Timed Petri
Nets using Heaps of Pieces.” IEEE TAC, vol. 44, no. 4, pp. 683–698,
1999.

[6] S. Lahaye, J. Komenda, and J.-L. Boimond, “Compositions of (max,
+) automata,” Discrete Event Dynamic Systems, vol. 25, pp. 323–344,
June 2015 2015.

[7] L. Triska and T. Moor, “Behaviour equivalent max-plus automata for
a class of timed petri nets,” IFAC PapersOnLine, vol. 53-4, pp. 75–82,
2020.

[8] J. Komenda, S. Lahaye, and J.-L. Boimond, “Determinization of timed
Petri nets behaviors,” Discrete Event Dynamic Systems, pp. 1–25,
2015.

[9] J. Komenda, A. Lai, J. G. Soto, S. Lahaye, and J. louis Boimond,
“Modeling of safe time petri nets by interval weighted automata,”
IFAC-PapersOnLine, vol. 53, no. 4, pp. 187–192, 2020.

[10] M. Boyer and O. Roux, “On the compared expressiveness of arc, place
and transition time petri nets,” Fundamenta Informaticae, vol. 88, pp.
225–249, 01 2008.

[11] B. Berthomieu and M. Diaz, “Modeling and verification of time
dependent systems using time petri nets,” IEEE Transactions on
Software Engineering, vol. 17, no. 3, pp. 259–273, 1991.

[12] B. Berthomieu and F. Vernadat, “State space abstractions for time petri
nets,” in Handbook of Real-Time and Embedded Systems, 2007.

[13] T. Yoneda and H. Ryuba, “On the compared expressiveness of arc,
place and transition time petri nets,” IEICE Transactions on Informa-
tion and Systems, vol. 1-2, pp. 123–133, 1998.

[14] B. Berthomieu and F. Vernadat, “State class constructions for branch-
ing analysis of time petri nets,” in Tools and Algorithms for the
Construction and Analysis of Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 442–457.

[15] G. Gardey, O. H. Roux, and O. F. Roux, “State space computation
and analysis of time petri nets,” Theory and Practice of Logic
Programming, vol. 6, no. 3, p. 301–320, 2006.

[16] D. Lime and O. H. Roux, “Model checking of Time Petri Nets using
the State Class Timed Automaton,” Discrete Event Dynamic Systems,
vol. 16, no. 2, pp. 179–205, 2006.

[17] F. Cassez and O. H. Roux, “Structural translation from time Petri nets
to timed automata,” Journal of Systems and Software, vol. 29, no. 1,
pp. 1456–1468, 2006.

[18] B. Berard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, “The
Expressive Power of Time Petri Nets,” Theoretical Computer Science,
vol. 474, pp. 1–20, 2013.

[19] F. Basile, M. P. Cabasino, and C. Seatzu, “State estimation and
fault diagnosis of labeled time petri net systems with unobservable
transitions,” IEEE Transactions on Automatic Control, vol. 60, no. 4,
pp. 997–1009, 2015.

[20] Z. He, Z. Li, A. Giua, F. Basile, and C. Seatzu, “Some remarks on
“state estimation and fault diagnosis of labeled time petri net systems
with unobservable transitions”,” IEEE Transactions on Automatic
Control, vol. 64, no. 12, pp. 5253–5259, 2019.

[21] H. Boucheneb and K. Barkaoui, “Relevant timed schedules/clock
vectors for constructing time petri net rachability graphs,” Discrete
Event Dyn Syst, vol. 21, pp. 171–204, 2011.

[22] B. Berthomieu and M. Menasche, “An enumerative approach for
analyzing time petri nets,” in IFIP Congress Series, 1983.

