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Abstract— We study a problem of designing “robust” external
excitations for control and synchronization of an assembly
of homotypic harmonic oscillators representing so-called theta
neurons. The model of theta neurons (Theta model) captures,
in main, the bursting behavior of spiking cells in the brain of
biological beings, enduring periodic oscillations of the electric
potential in their membrane.

We study the following optimization problem: to design an
external stimulus (control), which steers all neurons of a given
population to their desired phases (i.e., excites/slows down its
spiking activity) with the highest probability.

This task is formulated as an optimal mean-field control
problem for the local continuity equation in the space of
probability measures. To solve this problem numerically, we
propose an indirect deterministic descent method based on an
exact representation of the increment (infinite-order variation)
of the objective functional. We discuss some aspects of practical
realization of the proposed method, and provide results of
numerical experiments.

I. INTRODUCTION

The phenomenon of synchronization of oscillatory pro-
cesses arise in many physical and natural systems involving
(relatively large) collections of structurally similar interacting
objects. This type of behavior — typically manifested in
practice by a formation of (desired or pathological) time-
periodic patterns — is demonstrated, e.g., by semiconductors
in laser physics [1], vibrating processes in mechanics [2],
biochemical reactions [3], [4], as well as in cardiac and
neural activity [5]–[7].

In connection with oscillatory processes, there naturally
arise problems of designing artificial signals that can drive
open systems towards (or away from) synchronous oscil-
lations and frequency entrainment; important examples are
clinical treatment of neurological and cardiac deceases (such
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as Parkinson’s disease, epilepsy, and cardiac arrhythmias),
control of circadian rhythms [8], organization/destruction of
patterns in complex dynamic structures [9], and in neuro-
computing [10], [11].

Starting from the pioneer works of Y. Kuramoto and
H. Araki, the mathematical imperative in the study of
oscillatory ensembles is the mean field dynamics, which
describes the behavior of an “averaged” representative of
the population instead of tracking all individuals in person.
This approach leads to a treatable (and elegant) mathematical
representation of the ensemble dynamics even in the case
when the cardinality of the population becomes very large,
and is naturally translated to the control-theoretical context:
in the most of applications, it is technically difficult (or even
impossible) to “isolate” the control influence for a particular
oscillatory unit; on the contrary, admissible signals usually
affect a significant part of the system, or the system as a
whole. The topic of control engineering which is focused on
designing “simultaneous” control signals for multi-agent sys-
tems is familiar under the name ensemble control. “Adaptive”
(distributed in the phase space) signals are called mean-field
type controls.

In this paper, we address a particular optimal control
problem of the type [12] based on a classical oscillatory
model [13] from the mathematical neuroscience. Namely, we
study the problem of in-phase synchronization of the mean
field of so-called theta neurons: to steer a given probability
distribution of harmonic phases towards a target one by a
simultaneous (ensemble) or individual (mean-field) control.

To solve our problem numerically, we propose a determin-
istic iterative method of sequential “control improvement”,
entailed by an an exact formula for the variation of the
objective functional. The proposed approach is based on the
optimal mean-field control theory (the dynamic optimization
in the space of probability measures) and is quite flexible:
it admits one to treat arbitrary statistical ensembles, and can
be applied to any problem of a “state-linear” structure, far
beyond the considered specific model.

II. PROBLEM STATEMENT.
MEAN-FIELD CONTROL SETUP

Consider a population of homotypic oscillatory systems
represented by the canonical Ermentrout-Kopell model [13],
[14]. This model describes the time-evolution of excitable
neurons (customary named “theta neurons”) which endure
periodic oscillations of their membrane potential. Each theta
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neuron in the population is characterized by its phase

θ(t) ∈ S1 .
= R/2πZ

which satisfies the ODEs

d

dt
θ
.
= θ̇ = vu(θ, η)

.
= (1− cos θ) + (1 + cos θ) (u+ η) .

Here, η is the baseline current in the neuron membrane,
which varies in a given interval I .= [a, b], and u is an external
stimulus.

Theta model provides a simple mathematical description
of the so-called spiking behavior. By convention, we say that
a neuron produces a spike at time t if θ(t) = π. If η > 0 (and
u ≡ 0) the neuron spikes periodically with the frequency
2
√
η. If η < 0, the neuron is excitable and can produce

spikes after a sufficiently intensive stimulus u.
In what follows, η is viewed as a parameter of the model

fluctuation. In the simplest case, this parameter runs through
a finite set {ηk, k = 1, N}, which corresponds to a finite
ensemble {θk, k = 1, N} of theta neurons,

θ̇k = vu(θk, ηk), k = 1, N. (1)

In a more general setup to be discussed below, η can be
drawn from a given probability distribution.

Remark that (1) falls into the well-recognized Watanabe-
Strogatz class of phase oscillators driven by complex func-
tions t 7→ Hk(t) ∈ C,

θ̇k = ωk + Im
(
Hk(t) e−i θk

)
, k = 1, N,

where ωk is the natural (intrinsic) frequency of the kth
oscillator in the population, and Hk is the associated input,
modulated by a sinusoidal function (sometimes, this model is
called “sinusoidally coupled”); in general, both the natural
frequencies and the inputs can be effected by an external
driving parameter, furthermore, Hk can model interactions
between oscillators inside the population. Note that model
(1) fits the general statement with

ωk = ωk(u)
.
= u+ ηk + 1,

Hk = Hk(u)
.
= i(u+ ηk − 1),

which does not involve interaction terms (formally, equations
(1) are paired only by the common term u). In the context
of applications, this non-interacting model can be viewed
as a “first-order approximation” of a sufficiently sparsely
connected neural network (such are real biological ones),
especially, if the neurons’ activity is studied over relatively
short time periods. The case of interacting neurons will be
briefly discussed in section V.

A. Mean-Field Limit

We are interested in the behavior of system (1) for the case
when N →∞. Introduce extra, “fictitious” states t 7→ ηk(t)
as solutions to

η̇k = 0, (2)

accompanying (1), and consider the empirical probability
measure

µNt =
1

N

N∑
k=1

δ(θk(t),ηk(t)), (3)

(δx stands for the Dirac probability measure concentrated at
at a point x).

The measure-valued function t 7→ µNt designates the
statistical behavior of the ensemble {(θk, ηk), k = 1, N}:
for any Borel set A ⊂ S1 × I, the value µNt (A) shows the
number of neurons whose phase belongs to A.

It is well-known that the curve t 7→ µNt satisfies, in the
weak sense, the local continuity equation [15]

∂tµt(θ, η) + ∂θ
(
vu(θ, η)µt(θ, η)

)
= 0. (4)

Recall that the map t 7→ µt is said to be a weak (distribu-
tional) solution of (4) iff

0 =

∫ T

0

dt

∫
S1×I

(
∂tϕ+∇xϕ · vu

)
dµt

∀ϕ ∈ C1
c ((0, T )× S1 × I).

(C1
c ((0, T )×S1×I) denotes the space of continuously differ-

entiable functions (0, T )×S1×I 7→ R with compact support
in (0, T ) × S1 × I.) Under standard regularity assumptions,
the weak solution exists, it is unique, and it is absolutely
continuous as a function [0, T ] 7→ P(S1× I); here P(S1× I)
denotes the space of probability measures on S1×I endowed
with any Wasserstein distance Wp, p ≥ 1 [15].

Equation (4) provides the macroscopic description of the
population of microscopic dynamical units (1) called the
mean field. This representation remains valid in the limit
N → ∞, when µN converges to some µ ∈ P(S1 × I) in
C([0, T ];P(S1 × I)). Moreover, (4) makes sense if phases
θ and currents η are drawn from an abstract probability
distribution on the cylinder S1 × I,

µ0 = ϑ ∈ P(S1 × I). (5)

Indeed, one can immerse the system of ODEs (1) in a
deterministic (S1 × I)-valued random process

(t, ω) 7→ Θt(ω),

defined on a probability space (Ω,F ,P) of an arbitrary
nature (Ω is an abstract set, F is a sigma-algebra on Ω,
and P is a probability measure F 7→ [0, 1]), and satisfying
the ODE

d

dt
Θt(ω) =

(
vu
(
Θt(ω)

)
0

)
.

It is a simple technical exercise to check that the function

t 7→ µt
.
= (Θt)]P

solves the Cauchy problem (4), (5) with ϑ .
= (Θ0)]P, where

the symbol ] denotes the operation of pushforward of a
measure by a (Borel) function Ω 7→ S1 × I. Note that
empirical ensembles (3) fit this setup if Ω = {1, . . . , N}
and P is the normalized counting measure.



Finally, observe that the variable η enters PDE (4) as a
parameter rather than state variable. This means that (4) can
be regarded as an η-parametric family of continuity equations
on the 1D space S1 rather than a PDE on the 2D space S1×I.
This observation is essential for the numerical treatment of
the problem (4) (see section IV).

B. Control Signals

Now, we shall fix the class of admissible control signal u.
Consider two options:

• u = u(t), i.e., the control effects all neurons of the
ensemble in the same way. We call this type of ex-
ternal influences the ensemble (simultaneous, common)
control. Such a control is statistical in its spirit as
it influences the whole ensemble “in average”. As a
natural space of such controls we choose

u ∈ U .
= L2([0, T ];R). (6)

• u = wt(θ, η), i.e., the stimulus is adopted to the
neuron’s individual characteristics and phase-dependent.
The use of such a distributed, mean-field type control

w ∈ W .
= L2([0, T ];C(S1 × I;R)), (7)

assumes some technical option to variate control signals
over the spatial domain.

It is natural to expect that the second-type control should
perform better. However, let us stress again that the practical
implementation of “personalized” control signals is hardly
realistic as soon as the number of driven objects is large
enough (for experiments that pretend to mimic the biological
neural tissue, this number should be astronomic!). In reality,
a meaningful class of control signals is U , or something “in
the middle” between the mentioned two options.

C. Performance Criterion

We study a generalization of the optimization problem
[12]: to steer the neural population to a target phase dis-
tribution at a prescribed (finite) time moment T > 0 with
care about the total energy of the control action. Assuming
that the target distribution is given by a (bounded continuous)
function η 7→ θ̌(η), our optimization problem reads:

(P1)



min I[u] =

∫
F
(
θ, θ̌(η)

)
dµT (θ, η)

+
α

2

∫ T

0

u2(t) dt, α > 0,

subject to (4), (6),

where

F (θ, ω) =
1

2
(sin θ − sinω)2 +

1

2
(cos θ − cosω)2

=1− cos(θ − ω),

and ∫
.
=

∫
S1×I

.

In this problem, the part of state variable is played by the
probability measure µt.

Note that the functional I and the dynamics (4) are linear
in µ (despite the non-linearity of the map (θ, η) 7→ vu(θ, η)).
At the same time, (4) contains a product of µ and u, which
means that (P1) is, in fact, a bi-linear (non-convex) problem.

Standard arguments from the theory of transport equations
in the Wasserstein space [15] together with the classical
Weierstrass theorem ensure that problem (P1) is well posed,
i.e., it does have a minimizer within the admissible class U
of control signals (refer, e.g., to [16]).

An alternative version of problem (P1) is formulated in
terms of the mean-field type control:

(P2)



min J [w] =

∫
F
(
θ, θ̌(η)

)
dµT

+
α

2

∫ T

0

dt

∫
w2
t dµt,

subject to (4), (7).

In what follows, we shall focus on the “more realistic”
statement (P1), though all the forthcoming results can be
extended, at least formally, to problem (P2).

III. COST INCREMENT FORMULA.
NUMERICAL ALGORITHM

As it was remarked above, problem (P1) is linear in state-
measure. This fact allows us to represent the variation of
the cost functional I with respect to any variation of con-
trol u exactly (without any residual terms). The announced
representation follows from the duality with the co-state
from Pontryagin’s maximum principle [17], and generalizes
the classical exact increment formula for conventional state-
linear optimal control problems [18].

Consider two arbitrary controls

ū, u ∈ U , u 6= ū,

and let
t 7→ µ̄t

.
= µt[ū] and t 7→ µt

.
= µt[u]

be the respective weak solutions to the continuity equation
(4). Let also

p̄
.
= p[ū] : (t, θ, η) 7→ p̄t(θ, η)

be a classical solution to the following (non-conservative
transport) equation:

∂tpt(θ, η)+ ∂θpt(θ, η) · vū(t)(θ, η) = 0. (8)

PDE (8) is known to be dual to the (conservative transport
equation) (4); the duality is formally established by the
observation that the map

t 7→
∫
p̄t dµ̄t

is constant on [0, T ]. One can check that, under the common
regularity of the problem data, this map is an absolutely
continuous function [0, T ] 7→ R (refer to [15] for further
details).



As soon as p̄ is chosen as a solution to (8) with the terminal
condition

pT (θ, η) =− F
(
θ, θ̌(η)

)
, (9)

the discussed duality makes it possible to represent the
increment (variation)

∆I
.
= I[u]− I[ū]

of the functional I as follows:

−∆I =

∫ T

0

(
H (µt, ∂θp̄t, u(t))−H (µt, ∂θp̄t, ū(t))

)
dt,

(10)

where

H(µ, ζ, u)
.
= u

∫
ζ(θ, η) · (1 + cos θ) dµ(θ, η)− α

2
u2.

The derivation of this formula is dropped, since it is com-
pletely similar to [18].

Based on representation (10), we can treat problem (P1)
in the following iterative way: given a reference control ū,
one looks for a new “target” signal u that “improves” the
functional value, i.e such that ∆I < 0. The best choice of
the target control is provided by the maximization of the
integrand of (10) in the variable u:

H (µt, ∂θp̄t, u)→ max, u ∈ R.

The unique solution of the latter problem is obtain in the
analytic form as

ut[µ] =
1

α

∫
∂θp̄t(θ, η) (1 + cos θ) dµ(θ, η). (11)

Here, it is worthwhile to mention that the reference dual
state p̄ enters formula (11) only in the form of the partial
derivative

ξ̄t(θ, η)
.
= ∂θp̄t(θ, η).

Differentiating (8) and (9) in θ one can easily check that
ξ̄ solves the η-parametric family of the same continuity
equations (4) backward in time, starting from the terminal
condition

ξT = −∂θF
(
θ, θ̌(η)

) .
= sin

(
θ̌(η)− θ

)
. (12)

Now, (11) can be reformulated in terms of the variable ξ̄:

ut[µ] =
1

α

∫
ξ̄t(θ, η) (1 + cos θ) dµ(θ, η). (13)

Note that the map (t, µ) 7→ ut[µ] can be used as a feedback
control

[0, T ]× P(S1 × I) 7→ R

of system (4) in the space of probability measures. Injecting
this control into (4), we obtain a nonlocal continuity equation

∂tµt + ∂θ
(
vu[µt] µt

)
= 0, µ0 = ϑ, (14)

which is well-posed (thanks to the fact that function (θ, η) 7→
vu(θ, η) is smooth and bounded). Solving the last equation

Algorithm 1: Numerical algorithm for optimal en-
semble control

Data: ū ∈ U (initial guess), ε > 0 (tolerance)
Result: {uk}k≥0 ⊂ U such that I[uk+1] < I[uk]
k ← 0;
u0 ← ū;
repeat

µk ← µ̂[uk];
uk+1 ← u[µk];
k ← k + 1;

until I[uk−1]− I[uk] < ε;

numerically, and substituting its solution t 7→ µ̂t
.
= µ̂t[ū]

into (11), we construct the “improved” signal:

u(t) = ut[µ̂t].

This idea gives rise to the following Algorithm 1.
By construction, Algorithm 1 generates a sequence

{uk}k≥0 ⊂ U of controls with the property:

Ik+1 .
= I[uk+1] < I[uk]

.
= Ik.

Since the sequence of numbers (Ik)k≥0 is bounded from
below by min(P ) it converges.

Finally, remark that the same line of arguments can be
formally applied to problem (P2). The respective mean-field
type control takes the form

wt(θ, η) =
1

α
ξ̄t(θ, η) (1 + cos θ).

This construction gives rise to an iterative method, similar
to Algorithm 1.

IV. NUMERICAL RESULTS

Let us discuss several aspects of the numerical implemen-
tation of Algorithm 1.

First, note that the method proposed here does not involve
any intrinsic parametric optimization: the most of indirect
algorithms for optimal control require the dynamic adjust-
ment of some internal computational parameters; such are
standard methods based on Pontryagin’s maximum principle
[19], [20] that imply the internal such as line search for the
specification of the “depth” of the needle-shaped (or weak)
control variations.

Each iteration of Algorithm 1 requires numerical solution
of two problems: one is the linear problem (4), (12) (inte-
grated backward in time), and one for the nonlocal continuity
equation (14) (solved numerically forward in time). Since
both (4) and (14) have no terms involving partial derivatives
in η, one can think of η as a parameter and solve the corre-
sponding parametric families of one-dimensional continuity
equations.

Consider the problem (P ) with initial distribution of
neurons µ0 given by the density function

ρ0(θ, η) =
(
2 + 3 cos(2θ)− 2 sin(2θ)

)
η,



and with constant target function θ̌(η) ≡ π. In other words,
our goal is to bring neurons’ states as close as possible to
the segment 0 × I by the time moment T with the aid of
sufficiently small controls.

Parameters for the computation:

T = 6, I = [0.0, 1.0], α = 1;

we used 512 Fourier harmonics in θ and grid steps

∆η = 0.002, ∆t = 0.002.

Equations (4) and (14) are integrated by the standard spectral
method [21] using the trigonometric Fourier expansion in θ
for each η from the grid. Parameters of the algorithm: ū ≡ 0,
ε = 0.01.

0 1 2 3 4 5 6

t

−3

−2

−1

0

1

u
(t

)

Fig. 1. Control input computed by the Algorithm 1

V. CONCLUSION
The goal of this paper is to present an approach based

on the mean-field control paradigm to solve problems of
optimization and synchronization of oscillatory processes
(here, the addressed Theta model is among the simplest
but prominent examples). The proposed technique can be
applied to any state-linear optimal control problem involving
(finite or infinite) non-interacting statistical ensembles of an
arbitrary nature. In particular, Algorithm 1 can be easily
adapted to some other neural model such as SNIPER model,
sinusoidal model etc. [12].

We plan to continue this study in the way of natural
generalization of model (1) by admitting the interaction
between theta neurons,

θ̇k = vu(θk, ηk) +
1

N

N∑
j=1

K(θk, θj), k = 1, N,

where K is certain interaction potential formalizing the
spatial connectivity of neurons in the tissue. This will result
in control problems of the sort (P1,2) stated over the nonlocal
continuity equation

∂tµt + ∂θ
(

[vu +K ? µt] µt
)

= 0

involving the term

(K ? µ)(θ)
.
=

∫
K(θ, ζ) dµ(ζ).

0 π 2π
θ

0.0

0.2

0.4

0.6

0.8

1.0

η

0 π 2π
θ

0.0

0.2

0.4

0.6

0.8

1.0

η

0 π 2π
θ

0.0

0.2

0.4

0.6

0.8

1.0

η

Fig. 2. Trajectory µt(θ, µ) of (4) at time moments t = 0, 3 and 6 (from
top to bottom) computed for the optimal control input shown in Fig. 1. The
standard “rainbow” color table was used to code the isovalues: from black
(minimal values), violet, . . . , to red (maximal values).



Such problems are not state-linear anymore, and the exact
formula (10) becomes inapplicable. For this case, a promis-
ing alternative could be an approach based on Pontryagin’s
maximum principle [16].
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