
HAL Id: cea-04266150
https://cea.hal.science/cea-04266150

Submitted on 31 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Integrated Circuit Security using
Mathematical Model Based on Clique Covering

Reformulation
Jonathan Fontaine, Mohamed Benazouz, Lilia Zaourar, Roselyne Chotin

To cite this version:
Jonathan Fontaine, Mohamed Benazouz, Lilia Zaourar, Roselyne Chotin. Improving Integrated Cir-
cuit Security using Mathematical Model Based on Clique Covering Reformulation. 9th International
Conference on Control, Decision and Information Technologies (CoDiT 2023), Jul 2023, Rome, Italy.
pp.1717 - 1722, �10.1109/CoDIT58514.2023.10284435�. �cea-04266150�

https://cea.hal.science/cea-04266150
https://hal.archives-ouvertes.fr

Improving Integrated Circuit Security using Mathematical Model Based
on Clique Covering Reformulation

Jonathan Fontaine 1 and Mohamed Benazouz1 and Lilia Zaourar1 and Roselyne Chotin2

Abstract— Integrated Circuits (IC) are increasingly present
in our daily lives through various everyday objects. Many
third-party companies are involved during the manufacturing
process. It introduces many threats to the ICs’ manufacturing,
such as IP piracy and Hardware Trojans. Strong Logic Locking
methodology is generally used to protect from IC piracy,
such as counterfeiting or reverse engineering, and against
Hardware Trojans insertion; however, the lack of automated
tools fully integrated into a CAD flow limits the integration of
countermeasures. This paper proposes mathematical models on
the Strong Logic Locking method to optimize the security and
an automatic security design inserted in an open CAD flow.

We implemented an exact algorithm to maximize the security
measure while implementing a strategy to minimize the impact
of delay and area on the circuit. This algorithm is a custom
branch and bound based on the mathematical model developed
in this paper. In addition, we propose a strategy to limit the
impact of countermeasures on the delay. Furthermore, our
approach takes place inside a standard open CAD flow after
logic synthesis to be as generic as possible.

The experiments carried out that security can be added in a
standard open CAD flow with a reasonable computation time
and a limited impact on the circuit. Our security measure
is more precise than the previous one, with a limited area
overhead defined by a user. The increase of the critical path
is less than 7% for large benches with a limit of 10% area
overhead.

I. INTRODUCTION
Integrated Circuits (IC) are increasingly present in our

daily lives through various everyday objects (phones, health,
games, cars, etc.). It leads to significant complexity in design-
ing them and a challenge to ensure their safety and security.
This increasing complexity and globalization have led third-
party companies worldwide to specialize in carrying out
different stages of the fabrication process, such as Intellectual
Property (IP) vendors, design houses, and foundries (Fig.1).
Despite the fact that these companies offer a much-needed
economic advantage, there are less and less controls in the
fabrication process. It introduces many threats in the ICs’
manufacturing, such as IP piracy and Hardware Trojans (HT)
[1], which must be considered when designing circuits.

Techniques used to counter these threats fall into one of
these two categories: prevention and/or detection. We are
interested in logic locking countermeasure [5] that provides
security but requires advanced expertise to implement and
might have non negligible impacts on the IC’s cost and
performance if not well contained. We aim to provide an

This work is funded by the project ANR MOOSIC 18-CE39-0005.
1 Université Paris-Saclay, CEA, LIST F-91120, Palaiseau, France

jonathan.fontaine / lilia.zaourar / mohamed.benazouz / @cea.fr
2 Sorbonne Universite, CNRS, LIP6 F-75005 Paris, France rose-

lyne.chotin@lip6.fr

automated and optimized tool based on logic locking that
takes into account all the design constraints to be widely
used in an open CAD flow. In that case, we need to conduct
a study on the optimization problem of this method.

In this paper, we propose a reformulation of the problem
to have a more precise security measure in section II-A.
Then we propose two mathematical problems to describe
it in section II-C - II-D. We developed a dedicated branch
and bound algorithm to solve the second model in section
IV. Finally, in section V, we conduct a study on ISCAS-85
benchmark.

A. Logic Locking

There are several approaches to logic locking [3], which
all rely on the same principle, obfuscating the circuit’s logic
by adding a digital key connected to additional logic gates.
These additional logic gates are named key gates. Fig.2 is
an example of logic locking (in red) where xor gates (K1

to K7) are inserted inside a circuit with their corresponding
activation digital key bits (k1 to k7). Note that the digital key
is stored in a tamper-proof memory that reverse engineering
cannot read. Logic locking was first proposed to prevent
counterfeiting, but also hardware Trojans insertion [4].

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

O1

I1

I2

I3I4

I5

I6

I7

K1
k1

K2
k2

K3
k3

K4
k4

K5
k5

K6
k6

K7
k7

O2

Fig. 2. Locked circuit.

Among many methods, we focus in this work on Strong
Logic Locking (SLL) [6], [7] that proposes to measure the
resistance to an attack that wants to recover the digital
key by arguing that if the key is found, then the circuit
is deobfuscated. Even if new methods have been proposed,
some propose a hybrid method with SLL that combines the
advantage of new methods with a limited impact on the
circuit, such as [8].

B. Strong Logic Locking

Strong Logic Locking [7] is a method that locks a combi-
national circuit by adding key gates linked to a digital key. It
measures security using a binary relation P between pairs of
key gates called pairwise secure. The authors of [7] define

Fig. 1. Semiconductor supply chain [2].

two binary relations to construct the pairwise relation. The
first one is the mutable relation that seeks to find an input
vector (assignment value of each input signal of the circuit)
of the combinational circuit to inhibit one key gate A to
observe the influence of another key gate B on the output.
In that case, we say that B mutes A. The second one is the
interference relation, defined by the impossibility of finding
an input vector to mute a key gate A with another key gate
B. In such a case, A is said to interfere with B. Finally, if
a key gate A interferes with a key gate B and vice versa,
A and B are in a pairwise relation. Pairwise relations are
then used to construct a graph called an interference graph
Ginterference(K,P) with K the set of key gates and P the
set of pairwise relations (see Fig. 3).

I1

I2

I6 I7G1

G9

G10

Fig. 3. Interference graph of circuit from Fig.2.

This interference graph is used to compute the security
metric. Let c be the size of the biggest clique (complete
subgraph) in Ginterference. The security metric is given
by 2c. A clique c from Ginterference corresponds to an
irreducible part of the key that needs an exhaustive test to
be recovered. This problem can be summarized as finding an
interference graph that maximizes the maximum clique. The
authors propose a greedy algorithm to solve this problem.
This approach does not provide any guarantees of optimality.
We then want to propose an exact solution to this problem.

II. MATHEMATICAL DESCRIPTION

A. Reformulation of Strong Logic Locking

SLL security is based on the largest clique. However, we
claim that other cliques can significantly improve security.
In fact, this security measurement may underestimate the
quality of some solutions. For instance, in Fig.3, the security
is 24, but ignoring the other clique leads to overlook an

additional 23 security that is 50% more. In order to take
into account other objectives, such as delay, we need a fine-
grained security estimation to avoid missing better solutions.
We propose then to measure the security by

∑
c∈C 2|c| with

C a set of disjoint cliques from the interference graph de-
scribed in [7]. The maximum clique problem is transformed
into a weighted clique covering.

I1

I2

I3 I4

I5I6 I7

G1

G2

G4

G3

G5 G7

G9

G6

G8G10

Fig. 4. Complete interference graph of the circuit (without locking) from
Fig.2.

In order to solve this new problem, we compute the
Complete Interference Graph (CIG), i.e., we determine the
pairwise secure relation between each possible insertion
position, as in Fig.4. Then, we find the subgraph of size K
that maximizes security, with K the number of key gates as
in Fig.5. This number K is a limit of area overhead defined
by the designer. In our model, the impact on the area is
a constraint. The vertices of the subgraph are the insertion
positions. For instance, the optimal subgraph from Fig.5
states that optimal position insertion to maximize security in
integrated circuit (without locking) from Fig.2 is in position
I1, I2, G1 I6, I7, G9, G10, that is the lock circuit from Fig.2.

I1

I2

I3 I4

I5I6 I7

G1

G2

G4

G3

G5 G7

G9

G6

G8G10

Fig. 5. Optimal Subgraph of CIG with 7 key gates from Fig.4.

B. Complete Interference Graph
As depicted in Section I-B, the pairwise secure relation

must satisfy all input patterns. As there is an exponential
number of input patterns, it is impossible to check them
all. The authors of [7] identified this problem and suggested
checking a limited number of input patterns. However, some
of them find more mutable relations than others. ATPG
(Automatic Test Pattern Generation) is an algorithm that
finds interesting input patterns to test the circuit. They are
commonly used in the IC community for test and validation.
These input patterns effectively find mutable relations as
depicted in [7]. To build the CIG, each input pattern is tested
to determine whether it is possible to mute a key gate with
each position pair. Even if this step is time-consuming, it
only needs to be done once per circuit.

C. Mathematical Model
We propose the following mathematical model to represent

our problem. Our input is a graph representation of the
circuit called netlist, where vertices are logic gates, and arcs
represent wires. Let G = (V,E) be the circuit’s netlist with
V the gates and E the wires. Let G′ = (V,E′) be the CIG of
the circuit with E′ the pairwise secure relations. Let K be the
number of inserted key gates, determining the subgraph size.
Let σ ∈ Σ = {1, . . . ,K} be a slot to represent a clique. Since
there is at most K disjoint cliques, |Σ| = K. Let λσ ∈ {0, 1}
equal to one iff the clique σ is selected. Let wσ ∈ {0, . . . ,K}
be the size of the clique σ. Let xv ∈ {0, 1} be set to one iff
vertex v is selected in the subgraph and let avσ ∈ {0, 1} be
set to one iff v is in the clique σ.

Our objective is to maximize the security∑
σ∈Σ (2wσ · λσ). With λ multiplication, empty slots

do not bias the objective. The knapsack constraint (1)
enforces that the subgraph size is limited to K.∑

v∈V

xv ≤ K (1)

The clique constraint (2) requires that two vertices (v, v′) in
the same slot must be adjacent in the CIG. M [v, v′] is equal
to one if v and v′ are adjacent, zero otherwise.

avσ + av
′

σ ≤ 1 +M [v, v′] ∀(v, v′) ∈ V 2, ∀σ ∈ Σ (2)

The disjunction constraint (3) limits a vertex v to be associ-
ated with only one slot.∑

σ∈Σ

avσ ≤ xv ∀v ∈ V (3)

Constraint (4) links the size of a slot σ with the number of
vertices associated with that slot.

wσ =
∑
v∈V

avσ ∀σ ∈ Σ (4)

Selection constraint (5) pushes towards discarding empty
slots whereas constraint (6) includes every slot σ with at
least one vertex in the computation of the security metric.

λσ ≤ wσ ∀σ ∈ Σ (5)
λσ ≥ avσ ∀σ ∈ Σ, ∀v ∈ V (6)

Constraints (1) - (6) form a first mathematical model (P1)
that represents our problem. It contains O(K · |V |) variables
and O(K · |V |) constraints. However, solving this model is
slow in practice due to the size of the exploration space. The
following section proposes a bypass approach that reduces
the exploration space for a more reasonable computing time.

D. Maximal Cliques Approach

Since clique covering uses cliques, we compute the list of
all maximal cliques (maximal for inclusion). This step takes
an exponential time to solve (O(3n)) [10]. Nevertheless, CIG
are sparse graphs, and there are efficient algorithms for listing
all maximal cliques on sparse graphs [11].

Let L be the list of all maximal cliques. Let wc = |c| be
the size of the clique c. The decision variables of the model
are as follows. Let λc ∈ {0, 1}, to be set to one iff the clique
c is selected. Let xv ∈ {0, 1} be set to one iff vertex v is
selected in the subgraph and finally, let avc ∈ {0, 1} be set
to one iff v is in the clique c.

As in model (P1), the objective is to maximize the security∑
c∈L (2wc · λc). The difference is that pre-computed cliques

replace slots. The knapsack constraint (7) limits the size of
the subgraph to a maximum of K.∑

v∈V

xv ≤ K (7)

The disjunction constraint (8) enforces a vertex v to be
associated with one clique c at most.∑

c∈L

avc ≤ xv ∀v ∈ V (8)

Constraint (9) links the size of a clique c with the number
of vertices associated with it.

wc =
∑
v∈c

avc ∀c ∈ L (9)

Selection constraints (10) and (11) enforce selecting
cliques with at least one vertex while discarding empty ones.

λc ≤ wc ∀c ∈ L (10)
λc ≥ avc ∀c ∈ L, ∀v ∈ c (11)

Unlike the model (P1), there is no need for a clique constraint
as this is provided by the pre-computed list L. Constraints
(7) - (11) form a second mathematical model (P2) for our
security problem with O(|L| · |V |) variables and O(|L| · |V |)
constraints.

III. STATE OF THE ART
As introduced above, in a graph with n vertices, there is an

exponential number of maximal cliques: O(3n
3) [9]. Thus,

enumerating these cliques might take exponential time. Many
algorithms have been proposed in the literature for that. Bron
and Kerbosh are the first to reach the theoretical bound and
to prove it [10]. Nevertheless, we have sparse graphs in our
case, and some authors propose a faster algorithm in such
cases [11].

As described in section II-A, our problem can be seen as a
weighted clique covering where the objective is to maximize

1

2 3

4 5

6 7

8

9

10

11

12

13

14

15

Fig. 6. Counterexample where WCC and CC optimal solution are different

the sum of the weight of each clique c with w(c) = 2|c|.
The clique covering problem (CC) is one of the 21 Karp’s
NP-complete problems [12]. The CC problem consists of
finding a partition of the graph into disjoint cliques. It can be
transformed into the graph coloring (GC) problem by taking
the complementary graph. This problem has been widely
studied, and many authors have worked on its complexity
[13]. It has been proved that the approximate chromatic
number to within nϵ, ϵ > 0 is NP-HARD. Therefore, we
know that approximating the optimal solution of the CC
problem is also NP-HARD.

The weighted clique covering (WCC) problem is a close
problem. Maximizing the sum of the clique weights tends to
maximize the number of elements in each clique as much as
possible. This leads to reducing the number of cliques, and
we know it is NP-hard to approach. However, the optimal
solution to the WCC may not be the optimal solution to
the CC problem. In Fig. 6, the optimal solution to the CC
problem is 5 cliques (outsides cliques) with a sum of weights
of 40, and the optimal solution to the WCC is 6 cliques (the
inner clique + 5× cliques of size 3) with a sum of weights
of 52.

Finally, our problem is finding the subgraph of size K <
n, with the best objective value for the WCC problem. This
problem is at least as hard as the WCC.

IV. RESOLUTION

Algorithm 1 is a Branch and Bound that explores all the
possibilities of the P2 model. The first call of the algorithm
must be BranchAndBoundP2(L,K, emptyList(), 0). In
line 2, findNextClique consists of finding the index of the
next clique in the list L with at least one vertex that is not in
the current solution. It avoids computing the same solution
multiple times and ensures that all cliques are disjoint. In
line 5, we branch for all parts of the maximal clique into
L[newIndex], even the empty set. The test at line 6 ensures
that the knapsack constraint (7) is satisfied.

The list L contains an exponential number of cliques:
|L| < 3

n
3 . In order to compute solutions, we can compute

sub-optimal solutions using a subset of this list, repeatedly
increasing until we obtain an optimal solution. Since large

Algorithm 1: BranchAndBoundP2(L, K, current, in-
dex, lowerBound)

Input: L: List of maximal cliques
K: Int to limit the size of the subgraph
current: List of disjoint cliques
index: Int that represents the current position in the
list L
lowerBound: Best solution found so far
Result: List of disjoint cliques that cover the

subgraph and the objective
1 if upperBound(current) ≤ lowerBound then

/* Bounded solution */
2 end
3 vertices ←

⋃
c∈current

c

4 newIndex ← findNextClique(L, current, index)
5 solution ← current
6 security ← objective(solution)
7 forall c ∈ P(L[newIndex] \ vertices) do
8 if |current ∪ c| ≤ K then
9 lsol, lsec ← BranchAndBoundP2(L, K,

append(current, c), newIndex, lowerBound)
10 if lsec > security then
11 solution ← lsol
12 security ← lsec
13 if security > lowerBound then
14 lowerBound ← security
15 end
16 end
17 end
18 end
19 return solution, security

cliques have more impact, the subset is fulfilled by cliques
in decreasing order according to their size. There are three
stopping criteria, firstly, when the subset contains all the
maximal cliques, secondly, when the objective reaches the
upper bound and thirdly, when the smallest clique in the
solution is larger than all the remaining cliques.

So far, the model only takes security as an objective.
Nevertheless, the subgraph size corresponds to the number
of added key gates. It is, therefore, related to the overhead
area and is limited by the constraint (7). In order to reduce
the impact on the delay, we propose an additional strategy in
which we prevent key gates insertion on critical paths. This
can be achieved by removing the vertices of these critical
paths from the CIG. This, as we will see, will not prevent
the delay from increasing. In fact, the insertion of key gates
may still transform some paths into critical ones with even
higher lengths.

V. IMPLEMENTATION AND NUMERICAL RESULT

We propose to add a security extension module to an open
CAD flow, as shown in Fig.7. Yosys [14] performs the logical
synthesis that transforms the RTL into a netlist. Then, our

TABLE I
EXECUTION TIME AND RESULT OF THE ALGORITHM 1.

Circuit information Pre-processing No delay strategy Delay strategy

circuit #nodes #key gates CIG time (s) Cliques time (s) Optimization
time (s) Security Delay (%) Optimization

time (s) Security Delay (%)

c499 205
10 (5%)

21.29 12.22
1.21 210 12.26 0.67 210 23.39

20 (10%) 1.51 220 23.39 1.11 220 23.39
31 (15%) 1.48 231 23.39 0.89 231 23.39

c1355 205
10 (5%)

14.89 7.46
0.36 210 12.27 0.36 210 22.25

20 (10%) 0.45 220 22.26 0.37 220 22.25
31 (15%) 0.44 231 23.4 0.43 231 34.53

c3540 493
25 (5%)

48.91 0.039
1.40 225 3.76 1.39 225 0.44

49 (10%) 1.72 229 + 210 + ... 4.46 1.50 229 + 210 + ... 4.46
74 (15%) 40.15 229 + 210 + ... 12.88 42.86 229 + 210 + ... 12.88

c5315 752
38 (5%)

807.62 0.27
1.70 238 0.0 1.75 238 0.0

75 (10%) 2.083 246 + 229 0.0 1.96 246 + 229 0.0
113 (15%) Timed Out 246 + 212 + ... 21.97 Timed Out 246 + 212 + ... 21.97

c6288 1480
74 (5%)

498.28 0.25
7.96 240 + 28 + ... 9.6 4.49 239 + 27 + ... 6.79

148 (10%) 16.30 240 + 29 + ... 14.96 4.35 239 + 29 7.86
222 (15%) 5.49 240 + 29 + ... 22.9 Timed Out 239 + 29 + ... 11.02

c7552 953
48 (5%)

3010.72 0.59
2.32 248 0.0 2.13 248 0.0

95 (10%) 3.39 295 4.25 2.10 295 3.26
143 (15%) 3.15 2143 13.71 2.72 2143 11.38

Fig. 7. Design flow with the security extension module.

extension performs the automated and optimized insertion of
key gates to maximize security while minimizing the delay
described in section IV. Finally, Coriolis [15] performs the
place and route.

The security extension is written in Julia 1.8. All calcula-
tions were performed on a server Scientific linux 7 64bits,
intel 2x Xeon E5− 2640v4 with: 20 cores, 40 threads, 128
GBytes of memory. The computation time was limited to
3600 seconds. The benchmarks used are ISCAS-85 [16]. We
use a 350nm symbolic library named sxlib. Input patterns
have been generated using Synopsys TetraMax ATPG tool
[17].

As we are using 350nm technology, we can compute the
sum of the gate delay in each path and thus get a close
estimate of the delay. We count the number of logic gates
added to estimate the area overhead. Every computation is
done at the post-synthesis level, which allows us to be as
generic as possible.

In this experiment, we wanted to carry out two points.
The first point is the computation time of the pre-processing
and the optimization algorithm. The second point is how
increasing the limited area will affect the computation time
and delay overhead. Table I summarizes these two points.
It is separated into four parts. The first part summarizes
the circuit information and the number of key gates to be
added (5%− 15% of the nodes). The second part is the pre-
processing, which is the transformation of the netlist into

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

no delay delay no delay delay no delay delay no delay delay no delay delay no delay delay

c499 c1355 c3540 c5315 c6288 c7552

CIG

Optimization

Cliques

C
o

m
p

u
ti

n
g

ti
m

e
(s

ec
o

n
d

s)

Fig. 8. Computation time of the extension module with an area overhead
limit of 5%.

a graph (CIG) used in the optimization algorithm and the
computation for listing all maximal cliques. The third and
fourth parts are respectively the results of Algorithm 1 with
or without the proposed delay strategy.

This work aims to get the best security with a limited
area overhead given by a designer as input. The limit of 5%
area overhead is common in the literature. By increasing area
overhead, we also want to show that our algorithm is still
relevant.

Fig.8 shows that computing CIG takes most of the comput-
ing time. Although the algorithm to list all maximal cliques
takes an exponential time in theory, it only requires few
seconds of computation on sparse graphs in practice. Thus,
our algorithm finds the optimal solution in few seconds.
The computing time for circuit c6288 corresponds to a near-
optimal solution, but the algorithm could not prove it is the
best.

Fig.9 indicates that forbidding the critical path from in-
creasing the delay overhead works in most cases. However,
in some cases, such as circuit c499, the strategy has increased

0

5

10

15

20

25

c499 c1355 c3540 c5315 c6288 c7552

No delay strategy

Delay strategy

D
el

ay
o

ve
rh

ea
d

 (
%

)

Fig. 9. Delay overhead of Algorithm 1 with 5% area overhead without
and with the delay strategy.

the delay, with many key gates inserted in a near-critical
path instead of a few on the critical path. As required, the
delay overhead decreases with the size of the circuit. There
are more insertion positions outsides the critical path. As
expected, using this strategy does not increase the solution
time. As it reduces the CIG, the problem becomes smaller.

Compared to [7] best algorithm (out of the 5 ones
presented in their work) SLJI, globally, our technique is
faster than their technique in terms of computing time but
slower than the Time Improved (TI) version. Even if we did
not implement their time improved technique based on an
identified property of pairwise secure, we plan to implement
this part to improve computation time of our CIG graph in
future work.

We extracted from curves presented in [7] security, area
as well as delay overhead values and reported them in Table
II for benchmarks c5315 and c7552 and algorithms SLJI.

TABLE II
RESULT COMPARISON BETWEEN OUR ALGORITHM 1 AND [7]

ALGORITHM.

Circuit Algorithm 1 SLJI [7]

security delay
(%)

area
(%) security delay

(%)
area
(%)

c5315 215 0 2 ≈ 216 0 2
c7552 2200 0 21 ≈ 2126 0 21

As depicted in Table II, we limit the area to their limit
to compare security values. Our algorithm 1 finds a better
security on bench c7552. However, our algorithm finds less
security than their algorithm on bench c5315, even if we
obtain our optimal security. 2% of area overhead allows us
to add 15 key gates. The authors of SLJI got a better result
because our circuit has fewer gates after logic synthesis. This
difference comes from the limitation of area. Indeed, fixing
a budget of 21% for area, our algorithm finds a security of
2200, with a delay overhead of 13.69%.

VI. CONCLUSIONS

Due to the globalization and specialization of the IC
supply chain, IP Piracy and HT insertion threats increased. It

must be taken into account when designing circuits. In order
to reduce this risk, we propose a security extension module
integrated automatically into an open CAD flow to be widely
used by designers.

This security module is based on an extension of the
security measure proposed in SLL with a novel approach for
its computation. We propose a mathematical formulation of
the problem and different strategies to solve it. Our algorithm
provides an optimal insertion position to maximize security
with a limited area overhead defined by the designer. It
contains the impact on delay to around 7% for large benches
when considering a limit of 10% area overhead.

This security extension is providing great results on IS-
CAS 85 benchmarks, and using our proposed strategy to
limit the impact of delay is effective. In future works, we
plan to test our CAD flow with ITC99 and larger instances.
In addition, we want to use an open-source ATPG algorithm
to be fully open.

As depicted in section V, the delay strategy is efficient,
but a multi-objective exploration approach could find better
trade-offs between maximizing security and minimizing area
and delay overhead.

In addition to this work, we are currently working on
a proof for the approximation complexity of the WCC
problem.

REFERENCES

[1] Bloomberg Businessweek (2018). The big hack: How China used a
tiny chip to infiltrate US companies. Bloomberg, New York, NY, USA.

[2] Xiao, K, et al. ”Hardware trojans: Lessons learned after one decade
of research.” ACM Transactions on Design Automation of Electronic
Systems (TODAES), 2016.

[3] Yasin, Muhammad, and Ozgur Sinanoglu. ”Evolution of logic lock-
ing.” International Conference on Very Large Scale Integration, 2017.

[4] S. Dupuis, et al. “A novel hardware logic encryption technique for
thwarting illegal overproduction and hardware trojans” IOLTS, 2014.

[5] J. A. Roy, et al. “EPIC : ending piracy of integrated circuits,” DATE,
2008.

[6] J. Rajendran, et al. “Security Analysis of Logic Obfuscation,” Design
Automation Conference (DAC), 2012.

[7] M. Yasin, et al. ”On improving the security of logic locking.” Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
2015.

[8] B. Shakya, et al. ”Cas-lock: A security-corruptibility trade-off resilient
logic locking scheme.” IACR Transactions on Cryptographic Hardware
and Embedded Systems 2020.

[9] Moon, J. W., and L. Moser. ”On cliques in graphs” Israel journal of
Mathematics 3 (1965).

[10] Bron, C., Kerbosch, J. ”Algorithm 457: finding all cliques of an
undirected graph” Communications of the ACM, 1973.

[11] D. Eppstein, et al. ”Listing all maximal cliques in sparse graphs
in near-optimal time.” International Symposium on Algorithms and
Computation, 2010.

[12] R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of computer computations, 1972.

[13] Pardalos Panos M., Thelma Mavridou, and Jue Xue. ”The graph col-
oring problem: A bibliographic survey.” Handbook of Combinatorial
Optimization, 1998.

[14] Claire Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/
[15] Alexandre, Christophe, et al. ”Tsunami: An integrated timing-driven

place and route research platform.” DATE, IEEE, 2005.
[16] Brglez F, Fujiwara H. ”Special Session on ATPG (Also introducing’A

Neutral Netlist of 10 Combinational Benchmark Circuits’).” InInt.
Symp. On Circuits and Systems 1985.

[17] TetraMAX ATPG User Guide. Synopsys Inc., 2005.

