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A Region-Based Approach to Monocular Mapless Navigation Using
Deep Learning Techniques

Zakariae Machkour1 and Daniel Ortiz-Arroyo2 and Petar Durdevic3

Abstract— In recent years, there have been significant ad-
vances in navigation methods for autonomous robotic systems,
giving rise to a diverse range of navigation techniques. These
techniques include GPS-based, SLAM-based, and monocular
depth-based navigation. However, each of these approaches has
its limitations. Typically, these techniques rely on either external
sensors and positioning systems or require the creation of a local
map prior to initiating navigation. This paper introduces a new
approach for autonomous navigation of ground robots: mapless
navigation using a pre-trained monocular depth network. This
technique offers an efficient and cost-effective way of navigating
without the need for a pre-existing map of the environment.
To evaluate and compare the performance of our method, we
conducted experiments using two different depth estimation
models tested within the Gazebo simulation environment.

I. INTRODUCTION

To navigate effectively, a robot must have the ability to
perceive its environment with precision, devise a suitable
path, and manipulate effectively its actuators. Typically, these
abilities are achieved through depth measurements and object
detection sensors, allowing the robot to recognize obstacles
and determine their distances while navigating. These sensors
are combined with actuators and a control system that
governs the robot’s speed and direction of movement.

Various proximity sensors, including LiDAR, RADAR,
and ultrasonic sensors, have been employed to measure
depth, enhancing the perception capabilities of robotic sys-
tems [1, 2, 3]. Compared to other depth sensors, monoc-
ular depth estimation provides a cost-effective solution for
sensing depth. Unlike the previously mentioned alternatives,
utilizing cameras (mono or stereo) for depth estimation
offers a more affordable approach [4]. Although stereo
cameras can provide the required depth information [5], they
are frequently orders of magnitude more expensive than a
monocular camera [6].

Irrespective of the sensors employed, navigation systems
can be categorized into three distinct groups: map-based,
map-building, and map-less systems. Surveys on naviga-
tion systems for robots describing map-based and mapless
methods were presented in [7, 8, 9]. Map-based navigation
systems depend on geometric models or topological maps
of the environment [10]. In this case, the robot has a model
of its surroundings and can detect collisions by calculating
distances. Map-building systems can build maps of the
environment during runtime and localize the robot position
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relative to the created map, typically using the Simultaneous
Localization and Mapping (SLAM) [11, 12] technology.
However, current visual SLAM (vSLAM) technology is
often unstable and prone to error, particularly in complex
dynamic environments that change over time [13, 14, 15].
The limitations of vSLAM in such environments include
issues like error accumulation, illumination changes, fast
motion, dynamic obstacles, and the assumption of static
features in the environment. While deep learning techniques
can enhance object recognition accuracy in complex scenes
when combined with vSLAM, their real-time performance
is often insufficient, limiting their practical applications
[13, 15]. Both map-based and map-building approaches
frequently rely on path planning, using deterministic dis-
cretization techniques or probabilistic-based algorithms [16].
These algorithms generate feasible paths in 2D or 3D for
efficient exploration and collision checking in the mapped
environment using deterministic or probabilistic methods.

Conversely, mapless-based systems function in the absence
of an environment map and instead utilize sensor data to
perceive the environment and generate motion commands
for robot navigation. Unlike map-based and map-building
systems, mapless approaches remove the cost of storing
and maintaining a map, allowing robots with constrained
computing power to operate in arbitrarily large environments.
Furthermore, it is impractical to build and maintain a map
when the robot operates for a short period and has only
one chance to navigate an unknown, dynamic, and complex
environment [17].

The goal of this paper is to investigate the effective uti-
lization of monocular depth estimation (MDE) for robot nav-
igation in indoor environments that differ from the model’s
training settings. The study aims to address the challenges
associated with the accuracy limitations of the depth map.
Specifically, we exploit the relative positions of objects in a
scene, as opposed to relying solely on using accurate depth
estimates for navigation. Additionally, we take advantage
of segmentation techniques to partition the depth map into
regions, allowing the robot to look at the scene in a more
intuitive and structured manner.

II. RELATED WORKS

In [18], a mapless navigation technique using landmark
images was used to route the robot to a target place. The
system employed landmark names and images as input to a
CNN, which produces a bounding box. In the Visual Ser-
voing (VS) system used, the difference between the centers
of the bounding box and the input image was utilized to



compute the direction toward the target point. A second DNN
collected the original and desired images from the target
location, outputting the required movements to reach the
target position. However, the proposed VS method presents
several issues:

1) The navigation system does not consider the dynamic
environment (moving obstacles), whether is cluttered
or sparse.

2) The system learns the relationship between the initial
and reference image, which means that a new network
has to be trained for each reference pose, making it
impractical for new environments.

3) The system is limited to the presence of landmarks.
In a more recent study conducted by Zhang et al. [19],

LiDAR data was employed as visual features in a Visual
Servoing (VS) system for positioning tasks. Their proposed
VS system leverages the pose relationship between the de-
sired and current point clouds to guide the robot’s movement
from an initial position to the desired destination.

Likewise, Tsai et al. [20] employed a mapless LiDAR
navigation control approach for a wheeled mobile robot. The
method proposed by the authors utilizes a deep CNN network
to learn the correlation between the input LiDAR data and
the desired motion behavior, utilizing end-to-end imitation
learning. A motion prediction module predicts the motion
behavior of the robot. The success rate reported was 75% on
average.

In another similar study by Nguyen et al. [21], an au-
tonomous navigation solution called NMFNet is proposed
for a mobile wheeled robot. The authors utilize an RGB-D
camera to capture RGB images and point clouds, while a
Lidar device is used to construct a distance map.

NMFNet comprises three modules designed to learn depth
features from the distance map, extract features from RGB
images, and process 3D point cloud data. The outputs of
these three modules are fused to predict the steering angle,
enabling the robot to navigate autonomously.

In a study by Xiong et al. [22], another Visual Servoing
(VS) approach utilizing RGB-D data for robot navigation
toward a target location is presented. The method proposed
drives the robot by minimizing the depth map error between
the initial and target positions.

Additionally, several recent research papers have con-
ducted surveys on the current advancements in vision-based
robot navigation and visual servoing. Examples include Li et
al. [23], Islam et al. [24], Xiaomotion [25], and Machkour
et al. [26].

Lastly, another approach to implementing mapless navi-
gation is to use deep reinforcement learning techniques. An
example of this method is [27] where navigation policies are
learned using the actor-critic algorithm and a special reward
function that prioritizes curiosity-driven exploration.

It is important to note that previous examples cover various
aspects of vision-based robot navigation but none of them
uses monocular depth estimation (MDE), in their visual
servoing navigation systems. Our system was evaluated
within an indoor environment. Furthermore, our approach
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Fig. 1. Obstacle avoidance problem definition.

uses the two-step navigation method described in reference
[18]. While the method in [18] incorporates landmark images
and uses a CNN for bounding box detection and visual
servoing, our approach identifies gaps within the camera’s
field of view and utilizes a MDE model for segmentation of
the colored map. This segmentation information guides our
robot’s movement toward the target object while avoiding
obstacles.

Our contribution, in this work is the design of a novel
mapless obstacle avoidance algorithm that exploits monoc-
ular depth map estimation. The MDE network feeds the
estimated signal to a PD controller. Our navigation system
integrates object detection networks for object tracking and
obstacle avoidance, with the MDE providing depth infor-
mation for obstacle avoidance. Our approach differs from
previous works by solely relying on a pre-trained MDE
model for obstacle avoidance and segmenting the depth map
into regions to use them in obstacle detection. Finally, we
evaluate and compare the performance of our method with
different depth estimation models, namely BTS [28] and
MiDaS [29]. BTS is a network architecture, that employs
local planar guidance layers to establish a direct connection
between internal feature maps and the desired prediction.
This approach enhances the network’s training process, re-
sulting in improved performance. MiDaS implements a flex-
ible loss function and a dataset mixing strategy to improve
performance.

III. PROBLEM FORMULATION

In our previous work [30], we considered a point-mass
robot in a bounded closed space W ⊂ R3 which consists of
n ∈ N obstacles Oi ⊂ W, i ∈ 1, ..., n. We denote F as the

free space in W as F = W \
n⋃

i=1

Oi.

We utilize a two-wheel nonholonomic differential drive
robot equipped with a monocular camera in our research.
The robot’s goal is to reach a target object in the environment
without relying on a map (see Fig. 2). Instead, it relies solely
on the visual information captured by the monocular camera
for navigation. By leveraging the robot’s differential drive



Fig. 2. The expected successful path towards the target object.

capabilities and the visual input from the camera, we aim
to enable the robot to navigate towards the target object
effectively, without the need for accessing a map.

The robot must detect the free spaces or gaps within its
camera’s Field Of View (FOV), and choose the appropriate
gap through which can navigate without collision. We define
Lg as the gap length between two obstacles, and Lr as
the robot length (see Fig. 1 and 4). The navigation in the
workspace W is plausible if:

∃φ ∈ [0, 2π],∃Oi,Oj ⊂ W, i, j ∈ 1, ..., n | n ∈ N∗, i ̸= j

∀p, q ∈ Oi × Oj , Lg > Lr, Lg = min ∥p− q∥ (1)

with φ being the rotation angle of the robot around the z-
axis. In the implementation, p and q represent the points
of intersection between the circumferences of the obstacles,
denoted as Oi and Oj , respectively, and the line that defines
the safety distance, ds. These points of intersection are
obtained by determining where the circumferences of the
obstacles intersect with the line representing the minimum
allowable distance from the robot.

IV. PROPOSED METHOD

To navigate successfully towards a target object using our
proposed method, the robot must be able to :

1) Detect the obstacles inside a given distance range.
2) Detect the gaps between these obstacles.
3) Choose the appropriate gap and navigate through it.
4) Detect and navigate toward the target object.
We address the aforementioned problems using mainly a

monocular camera as the robot sensor.

A. Obstacle detection

Obstacle avoidance cannot be accomplished solely with
object detection models due to the challenge of learning
about all potential objects that may be present in an unknown
scene. Instead, we rely on a Monocular Depth Estimation
(MDE) model [29] to detect unknown obstacles. The depth
map image used in our approach is estimated with a Deep
Neural Network (DNN) rather than obtained from an active
sensor such as Lidar or Kinect. As a result, the distance
measurements derived from the estimated depth map may

Fig. 3. Estimated distance inaccuracy.

exhibit inaccuracies in real-world scenarios. In our previous
work [30], we compared the estimated distance using the
pre-trained MDE model BTS [28] with the true distance as
a moving robot approaches a target object and it showed big
disparities between the estimated and actual distances (see
Fig. 3).

We propose to use the relative positions of objects in the
scene to overcome the requirement of having a precise depth
map. First, we define a safety distance ds (see Fig.4) within
which we need to keep out all obstacles while navigating.
This safe space can also be considered as the ground space,
which can be tagged in the depth map as a close space to
the robot. The idea is to ignore everything in this space and
consider only the obstacles outside it.

To detect the obstacles within the robot camera’s FOV, we
generate the monocular depth map and apply a threshold on
it based on the distance color related to the accepted range.
This will allow the algorithm to track only the objects that
are within a certain distance range and eliminate all other
objects from the depth map.

B. Free space detection

In this stage, we generate a binary map from the thresh-
olded depth map (see Fig. 4) to detect the obstacles and
the possible gaps between them. We assign 0 to free spaces
and 1 to obstacles. In order to localize the gaps between the
obstacles, we take the horizontal line defining the top edge
of the safe space and we extract the corresponding array
of pixel values (see Fig. 5). Each group of 1s denotes an
obstacle Oi, and each group of 0s is a gap Gj with a length
LGj

.

C. Best gap selection

For plausible navigation, we need to find a free space Gj

with LGj
> Lr (see Eqn. (1)). However, LGj

is expressed
in pixels and should be converted to real-world coordinates.
The two extremities of the gap Gj are defined as (x1, y1)
and (x2, y2), with y1 = y2 = ds. By knowing the camera’s
intrinsic parameters and utilizing the depth map generated
by a Monocular depth estimation model, we can have this
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Fig. 4. Robot navigation. From left to right: input image, colored depth map, binary map. Top: MiDaS-based navigation. Bottom: BTS-based navigation.
ds is the safety distance for robotic navigation. The green arrow points to the best gap.

Fig. 5. Gaps and obstacles detection.

conversion as follows:

X1 = Z1
x1

f

Y1 = Z1
y1
f

X2 = Z2
x2

f

Y2 = Z2
y2
f

(2)

with Z1 and Z2 are the distances towards the point (x1, y1)
and the point (x2, y2), respectively, and f is the camera’s
focal length. The converted value of LGj becomes:

LGj =
√
(X2 −X1)2 + (Y2 − Y1)2 (3)

We define the set of candidate gaps as :

SG = {Gj , j ∈ 1, ..., n ∈ N∗ | LGj
> Lr} (4)

and among this set SG, we choose the most appropriate
gap Ga ∈ SG, with Ca as the center of Ga and ϕa =
∠(OCa,OT) the bearing angle between OCa and OT the
center of the target object, such as:

∀ϕi = ∠(OCi,OT), |ϕa| = min
Gi∈SG

|ϕi|,

if target object within FOV.
LGa

= max
Gi∈SG

LGi
, otherwise. (5)

In our experiments, the target is a person that is visible to
the robot from the beginning of the experiment. The robot
is programmed to autonomously navigate toward the target

using our proposed method, which identifies gaps within
the camera’s field of view. When the target is not visible
to the robot, a fail-safe mechanism makes the robot switch
to an exploring mode, where its primary objective becomes
obstacle avoidance.

D. Navigate towards the target object

The PD controller regulates the robot’s yaw (angular) and
linear speed based on the information extracted from the
monocular depth estimation (MDE) model. Using MDE’s
output the controller determines the appropriate yaw angle
to steer the robot toward the desired direction by determining
gaps. The yaw error (ϵygap) is calculated by subtracting half
of the image width (wimg

2 ) from the gap center (cgap). Based
on the sign of the resulting value, ϵygap is recalculated for
the best performance during navigation:

ϵygap = cgap −
wimg

2
(6)

ϵygap =

{
2 · cgap · 0.25− wimg

2 , if ϵygap < 0

2 · cgap · 0.75− wimg

2 , otherwise
(7)

The values 0.25 and 0.75 in the equation 7 serve to determine
the appropriate position for pointing towards the gaps in the
left and right sides, respectively. When the gap is located
on the left side of the image, the goal is to direct the
attention slightly towards the edge of the gap rather than the
center. To achieve this, we calculate the value 2 ∗ cgap ∗ 0.25,
which represents a position 25% into the gap length from its
left edge. Similarly, when the gap is on the right side, we
calculate the value 2 ∗ cgap ∗ 0.75, which corresponds to a
position 25% into the gap length from its right edge. These
values help adjust the direction of focus towards the desired
portion of the gap, enhancing the navigation and obstacle
avoidance strategy. We also calculate the yaw error (ϵytarget)
by subtracting half of the image width (wimg

2 ) from the target
value (ctarget):



ϵytarget = ctarget −
wimg

2
(8)

The following equation ensures obstacle avoidance while
keeping track of the target. To prioritize obstacle avoidance,
we assign a higher weight or impact β to the gap component.

ϵcombined = β · ϵygap + (1− β) · ϵytarget (9)

The yaw speed ωyaw of the robot is controlled using a PID
controller. The control equation is given by:

ωyaw = − (kp · ϵcombined,t + kd · (ϵcombined,t − ϵcombined,t−1))
(10)

In this equation, kp and kd are the controller parameters
representing the proportional and derivative gains, respec-
tively. The variable ϵcombined,t represents the combined yaw
error between two frames at time step t, while ϵcombined,t−1

represents the combined yaw error at the previous time
step. The value of ωyaw is clipped to limit it within a
specified range. While varying the yaw speed, we maintain a
constant linear speed throughout the experiment. We employ
a PD controller with Ki = 0, Kp = Kd = 0.5 in the
navigation algorithm for the turtlebot3. The P and D gains
were found experimentally. The proportional and derivative
terms perform the robot’s yaw control, allowing precise
maneuvering.

V. RESULTS AND DISCUSSION

We conducted multiple experiments to evaluate the perfor-
mance of our method. Figure 6 illustrates the trajectories of
the robot using 1) our method with the MiDaS model, 2) our
method with the BTS model, and 3) the turtlebot3 navigation
ROS package. The obstacles in the figure are represented
by their geometric centers for illustrative purposes. The
trajectory obtained with the MiDaS-based navigation showed
the best results, successfully making the robot navigate
through obstacles following a shorter path compared to the
ros package and the BTS-based navigation.

Table I shows that, on average, the robot exhibits more
successful navigations towards the target object when the
MiDaS model is employed, as compared to the BTS model.
This result can be attributed to the fact that BTS was
trained only on the NYU dataset that consists of 2.8 GB of
specific types of indoor video scenes captured by a handheld
RGB and Kinect Microsoft camera. Additionally in [30],
we evaluated the BTS model with varying camera heights
and found that when the camera was mounted at 20 cm
height on the TurtleBot3 robot, the depth accuracy was low.
This is illustrated in Figure 4, which provides a comparison
between the BTS model (top) and MiDaS (bottom). The
MiDaS model incorporates a loss function that included
scale- and shift-invariant loss together with multiscale and
a scale-invariant gradient matching term adapted to the
disparity space. Additionally, the MiDaS model was trained
using diverse measurement tools and with multiple datasets.
Lastly, the model was tested with other unseen datasets.
Consequently, MiDaS exhibits state-of-the-art performance

Fig. 6. Comparison of Robot Trajectories: MiDaS vs. BTS vs. turtle-
bot3 navigation ROS package.

in depth estimation and greater adaptability to unknown
scenes compared to the BTS model.

MDE model #Success #Failure Success rate
BTS 17 13 56%

MiDaS 28 2 93%

TABLE I
SUCCESS RATES OF MDE-BASED OBSTACLE AVOIDANCE MODELS

In table I, the column header ”MDE Model” indicates
the results corresponding to the BTS and MiDaS models.
”#Success” is the number of successful navigation instances
where the robot was able to reach the target location without
colliding. ”#Failure” is the number of unsuccessful navi-
gation instances where the robot collided with an obstacle
resulting in failure to reach the target location.

VI. CONCLUSION

Our proposed method demonstrates the benefit of using
multiple deep learning models for monocular mapless nav-
igation. The integration of object detection and monocular
depth estimation networks, along with region-based segmen-
tation, enables the designing of a robust and efficient obstacle
avoidance and object tracking system. Further, our findings
indicate that the performance of our mapless navigation
algorithm significantly depends on the accuracy of the depth
estimator model used. As part of our future work, we plan
to evaluate the system under diverse testing scenarios with
multiple robots, humans, and varying lighting conditions to
further assess its performance.
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