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Abstract— Drones are prone to abuse due to their low
cost and their pool of potential illegal applications that can
compromise safety of national infrastructures and facilities.
Hence, drone detection and predict its behaviour is crucial
to ensure smooth operation of services. In this paper, an
unsupervised/supervised statistical learning algorithm for drone
behaviour prediction is proposed. The algorithm is based on
drone detection data collected from any radar or RF- sensor.
The architecture of the approach is comprised of two stages: i)
the first stage attempts to study the drone detection data using
either unsupervised or supervised learning methods to model
low dimensional expert’s features, and ii) in the second stage a
real time drone behaviour predictor model is proposed based on
the Kolmogorov-Smirnov and Wasserstein distances. Simulation
studies using synthetic data obtained from the AirSim simulator
are given to provide the evidence-base for future improvements
in the field of drone behaviour prediction.

I. INTRODUCTION

The aerospace industry is witnessing a rapid growth in

unmanned aerial vehicles (UAVs) technologies. With ever

increasing advantages of UAVs in many fields like agri-

culture, security, search and rescue, surveillance, etc., this

technology is increasingly irreplaceable. However, the threat

space is also increasing since many incidents have been

reported where drones perform some anomalous activities,

e.g., operating in private and other restricted places without

prior permissions [1]. To deal with this issue, significant

advances in drone detection have been developed using a

wide variety of sensors and multi-sensor fusion [2]–[5].

However, pure detection does not serve as a preventive

measure of a potential drone’s malicious activity [6]–[8],

because these sensors capture instantaneous information of

the drone, e.g., positions and velocities, that do not inform

the hidden drone’s intention [9]. Hence, there is need to

develop a real-time system to identify the potential malicious

drones out of all-other regular drones operating in a particular

geographic zone before they execute any illegal activity.

A. State of the Art & Gaps

Recent studies have focused on drone’s short-time tra-

jectory prediction to classify the drone’s potential risk of

entering to a restricted area. The most common methods used
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in the literature are linear models based on Kalman-filter or

state-estimation techniques [10], support vector regression

(SVR), deep neural networks [11], recurrent neural networks

[12]–[14], and their variants. However, this simplistic geo-

metric approach does not exhibit significant changes in terms

of the algorithm in use and may produce a high-number of

false positives. Table I summarizes some of the advantages

and disadvantages of some recent works in intent prediction

and the embedded sensor. Authors in [15], [16] have done

attempts to identify the type, payload weight and flight mode

of drones, though it was not mentioned clearly whether

it was used to classify the intent or not. However, these

approaches may provide a motivation to analyse the flying

patterns associated to malicious and non-malicious drones

behaviours which is exploited in this paper.

TABLE I

PREVIOUS WORKS IN DRONE BEHAVIOUR ANALYSIS: PROS AND CONS.

Methods Sensor Pros Cons

Bayesian Kalman-
filter based linear

prediction [17]
Radar

Simple implementation
Memory-less prediction

No Historical dataset

Inference based on trajectory
intersection with restricted area

Less reaction time for
preventive control

SVR, Kinematics
linear motion
equations [18]

Radar
Better performance than

a linear model

Inference based on trajectory
intersection with restricted area

Less reaction time for
preventive control

Deep Neural
Network [15]

RF-sensor
Analysis of RF signals

of drones

Inference limited to identifying
drone type, payload, and

flight mode prediction

Encoder-Decoder [19]
transformer model

neural network

Optical
(camera)

Only rely on optical
sensor data

Inference based on trajectory
intersection with restricted area

Visual trajectory prediction
suffers from large inaccuracies

Less reaction time for
preventive control

Gradient Boost
Classifier [20]

Radar Use historical data
Not applicable for real-time

intent classification

GRU time series
prediction [21]

Radar

Better prediction of
short-time flight path

in comparison to
linear models

Inference based on trajectory
intersection with restricted area

Less reaction time for
preventive control

Softmax regression
LSTM [16]

Radar,
Acoustic

Better prediction of
short-time flight path

in comparison to
linear models

Inference based on identifying
the formation prediction of a
group of drones and payload

weight prediction

The majority of the above approaches are biased towards

using the short time trajectory prediction as the main basis

for drawing the inference of malicious and non-malicious

drones [22]. The research work [23] has made a good attempt

to use a different approach by using drone’s RF and acoustic

signatures to make predictions regarding the payload and

flight mode. Drawing the motivation from this work, an

attempt was made to look for more works on this approach,

but nothing very promising could be found out. However,

in the car driving field, several research works [24], [25]

have been found where different approaches are developed

to assess and classify the different driving behaviours and

styles.

Whilst driving a car is completely different from piloting
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Fig. 1. Proposed methodology for drone’s behaviour prediction

a drone, the humans’ typical signatures are always attached

to the way in how they perform the controlling actions

[26], [27], that is, the way a person drives a car is always

somewhat different from any other person that drives the

same car due to differences in: i) the acceleration pattern

used, ii) frequency of breaks applied or iii) relative distance

maintained with the vehicle ahead. Similarly, two operators

piloting a drone in similar conditions will use the similar

controlling actions, that is, the way that the drone has

been kinematically moved throughout the trajectory [28], the

sharpness of the turns while changing direction, the adopted

altitude variation, etc. Hence, the exploitation of the humans’

driving signatures have been used to classify the driving be-

haviours and styles. Therefore, a similar approach is adopted

in this paper to study and classify drones behaviours by

analysing the kinematic variables recorded in the historical

drone detection datasets.

All the drone detection techniques discussed previously

have one common objective, that is to detect and track

the drone in real-time and provide the trajectory data [29]

which should be as accurate as possible. The accuracy

of the technique being used may depend on the location,

surroundings, type of drone being tracked, etc. For the scope

of this research, the drone detection technique to be focussed

upon is either a radar or a cooperative RF sensor like DJI

Aeroscope which can track the drone in real time.

B. Innovation

The proposed high level system architecture is shown in

Fig. 1. The system basically works in two stages. First stage

of the system aims to use either unsupervised or supervised

learning methods to classify malicious and non-malicious

trajectories. In the case of unsupervised learning methods,

they utilise unlabelled drone detection datasets to obtain two

clusters to classify drones’ behaviour. On the other hand,

supervised learning methods use labelled data extracted from

the incident reports and also by the knowledge of the experts

of concerned agencies to train an efficient machine learning

model. The second stage is based on a statistical learning

model trained with the outcome of stage 1 for real-time drone

behaviour prediction.

II. METHODOLOGY

Drones are used for a wide range of applications due to

their different sizes and workloads, e.g., in surveillance, navi-

gation, etc. Drones used in these applications exhibit specific

trajectory patterns (e.g., altitude variations, acceleration and

velocity values) which are usually smooth trajectories with

small abrupt changes in the kinematic variables. On the other

hand, drones used for criminal and other malicious activities

(e.g., surveillance of restricted spaces, spying, suicide, etc.)

may exhibit flying patterns that are entirely different from

regular ones. This is because criminals are usually in a

different state of mind caused by emotional factors [30]–[32]

such as: state of anxiety, guilty feeling, emotion of crime,

depression, fear and anger.

The flying patterns associated to malicious drones can be

observed from the drones kinematic variables, i.e., velocity

and acceleration values, altitude variations, hovering dura-

tions and the randomness of the trajectory. However, from

the basic knowledge of the drone’s flight mechanisms, it can

be observed that the kinematic variables (speed, position)

are governed by the longitudinal, lateral and vertical accel-

erations values. So, the drone’s behaviour can be inferred

from the acceleration patterns which gives an initial insight

for the data collection.

A. Synthetic Data Generation

The AirSim platform is used to simulate the drone trajecto-

ries due to the unavailability of open-source real-world drone



detection datasets. A total of 369 trajectories are generated

where 79 are an attempt to represent malicious drone’s be-

haviours and 290 trajectories represent non-malicious drone’s

behaviours. Fig. 2 exhibits two representative trajectories.

Table II defines low dimensional expert’s features that serve

as guidance for data collection. In addition, specifications of

the four most used drones are compared (see Table III) to

adopt the average technical specifications for the trajectories

simulations.
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Fig. 2. Sample trajectories of the Data Generation

TABLE II

DISSIMILARITY BETWEEN MALICIOUS AND NON-MALICIOUS DRONES

Malicious Drones Non-Malicious Drones

Higher frequency of occurrence of abrupt
acceleration & deceleration throughout

the flight

Very low frequency of occurrence of abrupt
acceleration & deceleration throughout

the flight

Zig-zag flight path in most of the
trajectories

Smoother flight paths

Higher number of altitude limit
violations

Minimum occurrence of altitude limit
violations

Flying at higher velocities during most
of the flights

Flying at normal velocities most of the
times

TABLE III

TECHNICAL SPECIFICATIONS OF COMMONLY USED DRONES

Specifications
Four Most Commonly Used Drones

DJI Mini 2
DJI Matric

300 RTK

DJI Mavic

Air 2

DJI Air

2S
Average

Max Ascend Speed 5 m/s 6 m/s 4 m/s 6 m/s 5.25 m/s

Max Descend Speed 3.5 m/s 5 m/s 3 m/s 6 m/s 4.375 m/s

Max Horizontal Speed 16 m/s 23 m/s 19 m/s 19 m/s 19.25 m/s

Max Flight Time 31 min 55 min 34 min 31 min 37.75 min

Each drone flight trajectory was performed for a duration

of 600 seconds. The sampling rate for data extraction was

kept as 1 second and in each time-stamp, the following infor-

mation was extracted and stored for each flight: coordinates

X,Y, Z (which represents Longitude, latitude and Altitude),

velocities Vx, Vy , Vz (which represents velocity in longitu-

dinal, lateral and vertical directions), accelerations Ax, Ay ,

Az (which represents acceleration in longitudinal, lateral and

vertical directions). These data define the information that

we expect that the drone detection systems like radars or RF

sensors like DJI Aeroscope can provide after data processing.

Fig. 3 depicts the acceleration pattern of a time window

of 100 seconds. Notice that for malicious drones, the ac-

celeration pattern presents high variations in comparison to

the non-malicious behaviours which gives an insight of how

abruptly changes of the acceleration can be related to drone’s

misbehaviours.
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Fig. 3. Acceleration pattern of different drones’ behaviour

B. Stage 1: Unsupervised and Supervised Learning Methods

The aim of this stage is to tackle two different scenarios

for classification of misbehaviour, that is, when the available

drone detection data is either not labelled or labelled.

When the data provided by the detection system is not

labelled, then unsupervised learning methods are used to

classify the data in two clusters, i.e., malicious and non-

malicious drone trajectories. In this case, the data generated

through simulation is treated as unlabelled data and the

quality of the computed clusters is verified with respect to the

real ground truth labels. The unsupervised machine learning

methods used in this scenario are: K-means clustering [33],

hierarchical clustering, K-means clustering based on the

dynamic time warping (DTW) distance [34], and principal

component analysis (PCA) [35].

When the data is labelled, then supervised learning meth-

ods are used to obtain a binary classifier of the drone’s

behaviours. Here, the supervised-learning classifier aims

to obtain a behaviour classifier that considers the low-

dimensional expert’s features of Table II and Table III with

high accuracy. The classifier should guarantee small false

positive and negative rates to avoid disruption and potential

attacks on national infrastructures and facilities. In other

words, we seek a supervised learning model which has



good recall and a reasonable F-1 scores. The supervised

learning methods used in this scenario are: support vector

machines (SVM), logistic regression, Gaussian Naive Bayes,

and decision trees.

C. Stage 2: Statistical Learning methods

This is the most important stage of the proposed system

architecture and require good classification capabilities of the

stage-1. Previous works [24]–[26], classify the driving styles

of different drivers using off-line data, that is, they are not

real-time. Hence, it is easy to implement any supervised or

unsupervised learning classifiers based on these independent

data by fixing the trajectories length and size. However, for

drone’s behaviour prediction, the algorithm needs to be fast

in predicting the drone’s intention using a small proportion

of the on-line flight data.

The core issue in the implementation of any supervised

machine learning model for prediction is the use of distance

metrics. The most common distance metrics used in machine

learning models like Euclidean, Minkowski, Manhattan and

Hamming cannot be used for real-time prediction due to

the uneven length of the feature vectors. However, from

Fig. 3 we can observe that the acceleration is not an

ever increasing or a decreasing feature, instead is a pattern

which is composed of smaller patterns that the drone creates

throughout the flight trajectory in a repeated manner. Hence,

the acceleration pattern followed by the drone throughout

the trajectory may be regarded as a distribution. A fixed

length acceleration pattern observed during the flight of

the drone may be considered as a sample drawn from the

acceleration distribution of a completed flight of a particular

drone. Therefore, any distance that enables the comparison

of distributions may be used for the design of the real-time

drone behaviour prediction algorithm. Here, the best methods

that fits the scope of the approach are: the Kolgomorov-

Smirnov test (K-S test), and the Wasserstein distance.

The Kolmogorov-Smirnov statistic measures the separa-

tion between the empirical distribution functions of two

samples, or between the empirical distribution function of

the sample and the cumulative distribution function of the

reference distribution. The two sample K-S test is one of

the most helpful and broad non-parametric approaches for

two samples comparison. On the other hand, the Wasserstein

distance measures how far apart two probability distributions

are from each other.

III. RESULTS

The available data is a matrix of size 369 × 6000 where

each row vector represents a flight trajectory. However, it is

decided to remove the geographic coordinates data from the

dataset because the machine learning models tend to learn

the geographic information from it. This learning tendency

may cause that the geographic area to be specific and may

not be useful in a general implementation scenario. Hence,

the final data is a matrix of 369× 3600.

A. Stage 1: Unsupervised and Supervised Learning Methods

PCA is used to reduce the dimensionality of the data

and observe if it is possible to observe a tendency to

classify drones behaviour using only the first two principal

components (PC). Here, two scenarios are considered: i)

features composed by the velocity and acceleration patterns,

and ii) features composed by only acceleration patterns.

The results are exhibited in Fig. 4. PCA analysis suggests

that the acceleration patterns give a better visualization to

classify drone’s behaviour. On the other hand, using both the

velocity and acceleration patterns makes difficult to visualize

a boundary to classify drone’s behaviour. Notice that the

non-malicious trajectories are close together and verifies the

assumptions of Table II. The results of the clustering methods

are summarized in Table IV.

TABLE IV

STAGE 1: UNSUPERVISED LEARNING ACCURACY RESULTS

Algorithm
Accuracy %

Features

(Vx, Vy , Vz , Ax, Ay , Az)
Features

(Ax, Ay , Az)
K-Means

(Euclidean distance)
64.4 91.0

Hierarchical Clustering

(Agglomerative)
63.4 88.0

K-Means (DTW) 58.8 93.7

It can be observed that the classification results are no-

tably improved when only acceleration patterns are used.

This means that the velocity features add redundancy to

the data which compromises the accuracy results. These

results allow to conclude that the acceleration patterns are

the most informative feature for behaviour classification. In

addition, the distance metric is a factor that can improve the

accuracy results. Here, DTW distance outperforms the results

of the Euclidean distance by considering larger trends for

comparison amongst the trajectories.

The results of the supervised learning case are shown in

Table V. Here, the Gaussian Naive Bayes model has the

most promising recall and relatively good F1-score. However,

the unsupervised learning results outperforms the supervised

learning models. Hence, the unsupervised learning models

are used for the prediction purposes of stage 2.

TABLE V

METRIC RESULTS OF THE SUPERVISED LEARNING METHODS

Algorithm
Metric Results

Class Precision Recall F1-score Accuracy

SVM
Malicious 1.00 0.42 0.59

0.86
Non-Malicious 0.85 1.00 0.92

Logistic

Regression

Malicious 0.89 0.62 0.73
0.89

Non-Malicious 0.89 0.98 0.93

Gaussian Naive

Bayes

Malicious 0.74 0.88 0.81
0.90

Non-Malicious 0.96 0.91 0.93

Decision Tree
Malicious 0.79 0.58 0.67

0.83
Non-Malicious 0.88 0.95 0.92

B. Stage 2: Statistical Learning Methods

The k-nearest neighbours algorithm [36] is used to apply

the Kolgomorov-Smirnov test and Wasserstein distance as

distance metrics. The complete dataset of 369 flight trajec-

tories is divided into training and test subsets. Here, the
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Fig. 4. Stage 1 Unsupervised Learning Results

prediction accuracy is verified on the test subset using only

the first 100 seconds of each flight trajectory.

TABLE VI

METRIC RESULTS OF THE STAGE 3- STATISTICAL LEARNING

Algorithm
Metric Results

Class Precision Recall F1-score Accuracy

Kolmogorov-

Smirnov test

Malicious 1.00 0.82 0.90
0.97

Non-Malicious 0.97 1.00 0.98

Wasserstein

Distance

Malicious 1.00 0.76 0.87
0.96

Non-Malicious 0.96 1.00 0.98

The performance of the prediction models are depicted

in Table VI. Both distance metrics have good accuracy

results. A low number of false positives is crucial to avoid

economic damage and closing national infrastructures. On

the other hand, a low number of false negatives is required

to avoid damage in national facilities. Whilst the precision

results show zero false positives, the recall results show some

number of false negatives. This results are informative since

there are some malicious trajectories that are considered non-

malicious which require further analysis to overcome any

false positives problem.

IV. CONCLUSIONS

In this paper a two-stages drones behaviour prediction

algorithm is proposed. The first stage is given by either

a supervised or unsupervised machine learning method to

classify malicious and non-malicious trajectories in accor-

dance to expert’s low dimensional features associated to

kinematic values and constraints. The second stage is given

by a statistical learning method based on the Kolgomorov-

Smirnov test and the Wasserstein distance to predict in real-

time the drone’s potential malicious activity. The results

show good accuracy results using these low dimensional

features, however, further work will analyse the study of

high-dimensional features to improve the prediction accuracy

of methods in stage 1 and hence, increase the reliability of

stage 2. In addition, the complementary merits from both

expert systems with deep patterns is topic of our future work.
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