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Abstract

Markets with time dependent goods are special cases of multi com-
modity markets.The design of large flexible markets with time depen-
dent goods is a computational challenge. In this article we present
a computationally tractable mechanism for time dependent markets.
By a number of predefined bid types, it offers useful flexibility to the
bidders.

We present the market mechanism and the corresponding matching
algorithm together with some analysis of its behaviour. With s1 and
s2 the size of the search space in volume and prices, respectively (in a
proper resolution), and bids on h hours simultaneously, the computa-
tional complexity of the algorithm is O

(

h log s1 log2 s2

)

.

Keywords: multi commodity markets, electronic markets, computa-
tional markets, equilibrium markets, resource allocation, power markets,
bandwidth markets, computational complexity.

1 Introduction

Markets with time dependent goods are special cases of multi commodity
markets. In time dependent markets, such as power markets, a set of con-
secutive time slots are often traded simultaneously. However, although the
participants may have various types of dependencies and constraints between
the time slots, there is typically no, or very weak, support for the expression
of such dependencies. In this article, we propose a market mechanism1 that
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1We use the notion of a market mechanism to denote the rules of the market, whereas
market protocol includes the behaviour of the actors on the market.
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allows for a fairly large flexibility in expressing time dependencies, at the
same time as it is computationally tractable. The computational aspects
are important since the most general way to allow the expression of time
dependencies is by a combinatorial auction, which presents us with an NP-
hard computational problem. Therefore, it is interesting to have a trading
mechanism which (i) allows for sufficient flexibility, (ii) is natural and un-
derstandable for participants, and (iii) has a low computational complexity.

Our mechanism has some carefully selected combinatorial features that
increase the market flexibility compared to markets where each time period
is treated as an independent commodity. The gain is that it enables partic-
ipants to express preferences more accurately and hence it possibly gives an
improved market outcome.

An application area of high interest is day-ahead power markets. If these
are to be opened for consumer side bidders and local production bidders,
the number of actors on the market grows dramatically, and new market
mechanisms and algorithms are needed. Another interesting application area
with many similarities is bandwidth markets.

The work of this article was presented at the IEEE International Con-
ference on E-Commerce, CEC’03 [6].

2 Main Idea

We consider a market for a set of consecutive time units, here denoted hours.
A bid is assumed to be given as a continuous (positive or negative) demand
function, expressing one of the following:

1. hourly bids: separate bids for each hour,

2. block bids: bids on the same volume each hour,

3. adaptive consumer bids: bids describing a consumer demand that is not
related to any specific hour; the consumer is prepared to buy whenever
the price is low enough, the consumption can even be split between
hours,and

4. adaptive producer bids: Corresponding to the adaptive consumer bids.

On a k hour market each bidder can give k + 3 different demand functions,
hence we say that there are k + 3 bidding tracks.

Please note that all demand functions of a track may be aggregated into
one function describing the net demand of the track.

The four types of bids allow for a fairly flexible market. Compared to
a fully implemented combinatorial market, the hourly bids correspond to
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Figure 1: For each bidding track, the demand functions may be aggregated
into one, giving full information on supply and demand of that track. Supply
is expressed as negative demand.

single bids, block bids correspond to traditional combinatorial bids express-
ing synergies, and the adaptive bids corresponds to XOR bids, expressing
substitutability.

If the expressiveness of these bids is not sufficient, for example if there are
large synergies in smaller blocks, an after-market could be used to improve
further. However, we regard this as outside the scope of this article.

As shown below, although we combine single bids, block bids, and XOR-
type of bids, the market can be handled optimally in a computationally
efficient way.

3 The Existence of an Equilibrium

We state the problem as follows:
Given one market with the four bid types, compute

• a price for each hour, and

• an allocation of the adaptive bids,

such that supply meets demand.
In the following we show:

1. that there exists a solution, and

2. how to compute it.

As said above, supply and demand bids are assumed to be given as con-
tinuous (positive and negative) demand functions. We assume that they
are expressed as sample arrays. The bids are aggregated along the separate
tracks, giving a set of demand functions, one for each track. These functions
give full information on supply and demand and an equilibrium can be cal-
culated without any further communication. An equilibrium is expressed as
a set of prices where the excess demand for each hour on the market as a
whole, but not necessarily on each bidding track, is zero.
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The mechanism relies on following prerequisites; (i) demand is continuous
and decreasing in price, and (ii) the goods traded on the adaptive tracks are
divisible.

Before we prove the existence of an equilibrium, we give some definitions
starting with the notation on different demand functions is presented. (Note
that we need only discuss demand, since supply can be viewed as negative
demand.)

Definition. 3.1 Let db be the demand function defined by the aggregated
demand for the same volume over all hours of the set of consecutive hours,
i.e. of the block track, di the aggregated demand of hour i, dac the aggre-
gated adaptive consumer demand, and dap the aggregated adaptive producer
demand.

The outcome of the trade depends on a trade or reallocation between
on one hand the hourly tracks and on the other hand the block and the
adaptive tracks. The resources reallocated between tracks are expressed as
follows. (To distinguish the demand for reallocation between tracks from
their internal demand we use a notation with a t as in transfer, instead of d
as in demand.)

Definition. 3.2 Let tb be the resource reallocated from the block track to the
hourly tracks (the same resource level for all hours). Let ta,i be the resource
reallocated between any one of the adaptive tracks and hour i. Further, let
tac,i be the adaptive consumer demand allocated to hour i, and tap,i the cor-
responding producer demand, and let tc be the resource reallocated between
the adaptive tracks.

The dynamics of the set of prices is expressed as follows:

Definition. 3.3 Let pb(tb) be the equilibrium price of the block track when tb

is reallocated from the block to the hourly tracks, c.f. Figure 2. Let pi(tb, ta,i)
be the equilibrium price of hour i with tb as before and ta,i traded with one
of the adaptive tracks, and let p∀h(tb, ta) be

∑

∀i pi(tb, ta,i).

Note that with a demand that is not strictly decreasing, the inverse demand
is an interval valued function, i.e. for most tb the inverse demand is an
ordinary, distinct function value, but for some2 it is an interval (and when
tb hits such an interval any price within it may be picked).

3.1 Specification of the Problem

The problem is to determine a price of each hour and an allocation of the
adaptive bids as said in the beginning of Section 3, i.e. to determine a price

2The demand of some actor(s) is the same for any price within the interval.
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Figure 2: If the block track is treated independently, the equilibrium price —
a price where excess demand on the market is zero — is pb(0). When the
sub-markets interact, the equilibrium price on the block is a function of the
reallocation between block and hours, pb(tb).

vector p∗:

p∗ = {p∗1, p
∗
2, . . . , p

∗
k}

s.t. ∀i : di(p
∗
i ) + tap,i(p

max) + tac,i(p
min)− tb = 0, (1)

where pmin = mini (p∗i ) and pmax = maxi (p∗i ).

3.2 Hourly Demand and Adaptive Participants

To show that a solution to the problem exists we start with a market with
the hourly and the adaptive bid types. The following lemma defines what is
needed for an equilibrium in all hours.

Lemma 3.1 If

dap(p
max) = −

∑

i

max (di(p
max), 0) − tc (2)

dac(p
min) = −

∑

i

min
(

di(p
min), 0

)

+ tc (3)

pmax ≥ pmin (4)

tc ·
(

pmax − pmin
)

= 0 (5)

then
∀i : di(p

∗
i ) + tap,i(p

max) + tac,i(p
min) = 0 (6)

Proof. Eq. (2), (3), and (5), together with inequality (4) are necessary and
sufficient for an equilibrium on a market with hourly actors and adaptive
production and consumption.

Necessary: In Eq. (2) we note that dap(p
max) is the volume sold by

adaptive production at price pmax,
∑

i max (di(p
max), 0) is the aggregated

positive hourly demand at pmax, and tc is the volume traded between adap-
tive production and consumption, evenly distributed over the hours. By
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this we have that equality gives a balance between buying and selling side.
Eq. (3) is similar.

Inequality (4) is needed, since if it is not fulfilled, then the adaptive
production and consumption would be better off with a larger tc. Similarly,
Eq. (5) is needed, since if it is not fulfilled, the hours would be better off
with a smaller tc.

Sufficient: Given that inequality (4) and Eq. (5) hold, Eq. (2) and (3)
define the equilibrium expressed by Eq. (6). 2

Eq. (2) and (3) rely on the existence of prices pmax and pmin such that
they hold for a given tc.

Lemma 3.2 Given tc

∃pmax : Eq. 2 holds, and (7)

∃pmin : Eq. 3 holds. (8)

Proof. All (positive and negative) demand is decreasing and continuous.
Hence, dap is decreasing in pmax, and −

∑

i di(p
max) is increasing in pmax.

Continuity gives Eq. (7). The proof of Eq. (8) is similar. 2

With this, if there exists a tc such that the equations and the inequality
of Lemma 3.1 hold, we conclude that there exists an equilibrium on a market
with hourly and adaptive bid types.

Lemma 3.3

∃tc : Eq. 2, Eq. 3, inequality 4, and Eq. 5 hold. (9)

Proof. All (positive and negative) demand is decreasing and continuous.
Decreasing demand gives that pmax is increasing in tc, while pmin is decreas-
ing in tc. Continuity give the lemma. 2

3.3 All Bid Types

From this we move on to a market with all four bid types (including block
bids). Then Eq. (2), (3), and (6) have to be modified to take tb into account.
Furthermore, we need to show that there exists a tb such that the equations
hold.
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Theorem 3.1 Assume that the price
∑

i p
∗
i gives a net demand of −tb from

the block. If

dap(p
max) = −

∑

i

max (di(p
max)− tb, 0)− tc (10)

dac(p
min) = −

∑

i

min
(

di(p
min)− tb, 0

)

+ tc (11)

pmax ≥ pmin (12)

tc ·
(

pmax − pmin
)

= 0 (13)

then
∀i : di(p

∗
i ) + tap,i(p

max) + tac,i(p
min)− tb = 0 (14)

Proof. The proof is similar to the proof of Lemma 3.1, the only difference
is the introduction of tb, present in Eq. (10), (11), and (14). 2

The presence of tb can be viewed as an adjustment of the material balance
line, compared to what we have in Section 3.2. The material balance line of
a single commodity market is zero, i.e. the excess demand at the equilibrium
price is zero. In our market construct, the material balance of each hour has
to be zero on the market all together, but the material balance line of a
single track might well be a non-zero value to balance an excess demand of
other tracks.

Note that Eq. (14) is equivalent to the condition of the problem formu-
lation (1).

If there exists a pair (
∑

i p
∗
i , tb) with the properties assumed in Theo-

rem 3.1, we have what we need to conclude that the equilibrium exists.

Theorem 3.2 There exists a price vector p∗, such that all conditions of
Theorem 3.1 hold.

Proof. We note that there is no difference in what is discussed in
Lemma 3.1 — 3.3 if the material balance line of the hourly tracks is non-
zero, i.e. if they should have a net volume of the commodity to balance a
net volume on the block.

Hence, we need only prove further that there exists a
∑

i pi∗ such that
the block demand over all hours is −tb. This follows from demand being
decreasing and continuous. Decreasing demand gives that the equilibrium
price on the block is increasing in tb, and the equilibrium prices of the sepa-
rate hours are decreasing in tb. Hence, continuity gives the lemma. 2

From this we conclude that there exists an equilibrium in a market with
all four bid types and we move on to our algorithm for determination of the
equilibrium prices.
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4 Algorithm

The following algorithm gives a strategy for the search for an optimum.
Details on the computations follows the algorithm description.

Algorithm 4.1 (Determination of prices) :

{
pick a value on tb; (I)
while (|p∀h(tb, ta)− pb(tb)| > ε1)
{

for all i set the material balance to tb; (II)
compute adaptive demand; (III)
/*in a binary search*/
determine p∀h(tb, ta) & pb(tb); (IV)
if(p∀h(tb, ta)− pb(tb) > ε1) (V)

raise tb;
if(p∀h(tb, ta)− pb(tb) < −ε1)

lower tb;
/*else equilibrium price reached */

}
announce prices;

}

The process can be viewed as a binary search over tb. At each search step a
number of parallel searches are performed to establish the equilibrium prices
of all tracks but the block given tb.

4.1 Algorithm Details

We give the details on the algorithm step by step:

(I) Excess block demand level. The excess demand on the block mar-
ket, tb, is the main search variable in the binary search of Algorithm 4.1.
Pick a start value on tb.

(II) Adjustment of the material balance. Before the reallocation be-
tween the hourly actors and the adaptive ones takes place, the material
balance line of the hourly demand is adjusted. This adjustment is to
compensate for the volume preliminary reallocated from the block to
the hours, see Figure 3. By the adjustment of the material balance
line, the equilibrium price changes for the hour under observation (the
new price may be determined in a binary search). In Figure 3, pi(0, 0)
equals the equilibrium price with no trade between sub-markets, and
pi(tb, 0) is the equilibrium price when tb is traded with the block but
no trade has taken place with any adaptive actor.

8



tb

p

d

0

pi(tb,0) pi(0,0)

Figure 3: In the search for a total market equilibrium the hourly demand has
to balance an excess demand on the block. Graphically this could be viewed as
moving the material balance line in the plot of the demand curve from zero
to tb.

(III) Determination of the adaptive demand. The reallocation be-
tween time dependent bidding tracks and time independent tracks re-
quires some special attention. Any reallocation between time depen-
dent actors bound to different time periods has to be avoided. To pre-
vent such a reallocation, the search for an optimal allocation is based
on parts of their demand functions only. For each hour we define two
new demand functions as follows:

Definition. 4.1 For all prices p we define the function d+

i and d−i as
follows: d+

i (p) = max(di(p)− tb, 0), and d−i (p) = min(di(p)− tb, 0).

We define two new aggregate demand functions expressing all positive
and negative hourly demand, respectively:

Definition. 4.2 For all prices p and hours i we define d+

∀h =
∑

i d
+

i (p)
and d−∀h =

∑

i d
−
i (p).

In the reallocation between hours and adaptive consumers d−
∀h is used

together with the adaptive consumer demand, dac. In a similar way,
the reallocation between hours and the adaptive producers is based on
d+

∀h and dap.

Basically, the equilibrium prices related to the two adaptive tracks are
established by aggregation of (i) d+

∀h and dac, and of (ii) d−∀h and dap,
respectively. An example is given in Section 5. This aggregation is
done in a binary search fashion.

In this way a minimum price and a maximum price, pmin and pmax,
over all hours are established. The searches for pmin and pmax are done
independent from each other, hence it is possible that pmin > pmax.
To solve this a reallocation between the time independent tracks has
to be introduced. The volume reallocated between adaptive tracks, tc,
is determined in an additional binary search.

Note that a reallocation can reduce the price of more than one high
demand hour, and raise the price of more than one low demand hour.
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(IV) Determination of prices, including p∀h(tb, ta). After this it is
possible to determine a set of equilibrium prices covering the hourly
tracks, given the value of tb. That is, the price for hour i, pi(tb, ta,i),
is the equilibrium price taking the trade with the block and at most
one of the adaptive tracks into account. (Note that no hour can trade
with both adaptive tracks).

From the set of hourly equilibrium prices p∀h(tb, ta) is computed as it
is expressed in Definition 3.33.

(V) Breaking condition. When the difference between p∀h(tb, ta) and
pb(tb) is sufficiently small to be considered zero the search is ended
and the set of prices is fixed.

We conclude that the final equilibrium price within a specific hour is de-
pending on both its own demand and a reallocation between this hour and
(i) the block and (ii) at most one of the adaptive tracks. As shown in the
following section, these reallocations are optimal within a finite resolution in
prices.

4.2 The Algorithm Determines an Equilibrium

In Section 3, we have shown the existence of an equilibrium on the total
market. Above, we have given an algorithm for the problem. What is left
is to show that the algorithm determines an optimum (within some finite
resolution in prices).

As in the discussion on the existence of an equilibrium, we divide this
discussion into two parts, (i) given tb the algorithm determines an equilib-
rium involving hours and adaptive tracks, and (ii) with this and a search
over tb it determines an equilibrium on the full market.

Lemma 4.1 Given tb, Algorithm 4.1 determines an equilibrium, within a
predefined finite resolution in prices, covering hourly bids and the adaptive
bid types.

Proof. There are two cases (i) in the base case the price relation pmin ≤
pmax holds for tc = 0 and (ii) the more demanding case with tc > 0 and
pmin = pmax (within a predefined finite resolution).

In the first case, the equilibrium is determined using a standard aggre-
gation technique and nothing else is required. The output is optimal given
the input functions.

3The prices p∀(tb, ta) and pb(tb) could be expressed in two ways, either the price for a
resource level during the whole block or on hourly scale. On an hourly scale p∀h(tb, ta)
should equal the average hourly price, and the block price, pb(tb) , should be expressed on
an hourly scale.
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In the second case, the algorithm performs a binary search over tc. The
existence of an optimum is given by Lemma 3.3. If the breaking condition
of the search for this optimum is that pmax − pmin ≤ epsilon2 for some
epsilon2 > 0, all hourly prices are within epsilon2 from optimal.

By definition of the involved hourly demand functions d−
∀h and d+

∀h, we
have that the resulting allocation is feasible in both cases, since any hour i
that has a non-zero negative demand at pmin has a zero positive demand at
pmax, and the other way around. 2

With this, all that is left is to show that the search over tb gives an
equilibrium that includes the block, and to derive the computational com-
plexity. (Note that, once the aggregation of bids is done, the algorithm is
independent of the number of actors.)

Theorem 4.1 Within a predefined finite resolution in prices, Algorithm 4.1
determines an equilibrium covering hourly bids, block bids, and the adaptive
bid types.

With s1 and s2 the size of the search space in volume and prices, re-
spectively (in a proper resolution), and bids on h hours simultaneously, the

computational complexity of the algorithm is O
(

h log s1 log2 s2

)

.

Proof. Theorem 3.2 gives that an optimum exists. By binary search over
the material balance line tb and over minimum and maximum prices, pmin

and pmax, Algorithm 4.1 determines a price vector with the property that
|pb −

∑

i pi| ≤ ε1 for some ε1 > 0. For an outcome that is ε-close to optimal,
pick ε1, ε2 such that ε1 + ε2 ≤ ε.

The computational complexity is given by the triple-nested binary search
strategy; we have a main loop of log s1 search steps in tb. Each iteration of
this search involves a search for a minimum price, that in turn involves a
search for a maximum price.Both the latter involves log s2 search steps in
prices.

Finally, for each iteration in the search of a maximum price, there is a
constant time work performed at each hourly node. For constant time work
we assume a pre-computation of the inverse demand function of each hour.

All together this gives a complexity O
(

h log s1 log2 s2

)

as stated in the

theorem. 2

5 Example

To show the behaviour of the algorithm we set up a small example with a two
hour block size and walk through one step of the iteration. The enumeration
of the example is the same as in the algorithm description.
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(I) At some stage of the iteration, the algorithm decides to set the excess
demand of the block, tb, to four (as a guess on the volume to reallocate
from the block to the hourly tracks). As a consequence, the equilibrium
price of the block market changes from pb(0) to pb(4), but there is no
evaluation of the price at this stage, see Figure 4.

0

tb=4

pb(tb=0) pb(tb=4)

3 11

d

p

Figure 4: The demand function of the block. When the excess demand is
changed from zero to (minus) tb = 4, the equilibrium price is changed from
three to eleven.

(II) The demand functions of the hourly tracks are affected by tb in a similar
way, and the material balance line and equilibrium price of the hourly
demand functions is updated before they are used in the trade with
the adaptive actors, Figure 5 and 6.

0

tb=4

p1(0,0)p1(4,0)

3 7

d

p

Figure 5: The demand
function of the first
hour, h1. When the
material balance line
is changed from zero
to tb = 4, the equi-
librium price changes
from seven to three.
Step (II).

0

tb=4

p2(0,0)p2(4,0)

6 10

d

p

Figure 6: The demand
function of the second
hour, h2. As in the
first hour, the equilib-
rium price changes, in
this case from ten to
six. Step (II).

(III) From the hourly demand functions an aggregated positive demand
function, d+

∀h, and an aggregated negative demand function, d−
∀h, are

constructed, c.f. Definition 4.1 and 4.2 and Figure 7 and 8. The de-
mand function of the adaptive producers, Figure 9, is aggregated with
d+

∀h, and the demand of the adaptive consumers, Figure 10, is aggre-
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gated with d−∀h, Figure 11 and 12. This aggregation too is performed
as a binary search.

0
63

3

d

p

Figure 7: The positive
demand of the hourly
sub-markets is aggre-
gated into d+

∀h. The
trade with the adap-
tive producers is based
on this function. Step
(III).

0 63

3

10d

p

Figure 8: The nega-
tive hourly demand is
aggregated into a func-
tion, d−∀h, used for the
trade with the adaptive
consumers. Step (III).

0 7

-8

d
p

Figure 9: The demand
function of the adap-
tive producers.

0
5

4
d

p

Figure 10: The de-
mand function of the
adaptive consumers.

In Figure 11 we see that there is a gap between the highest consumption
price of the hourly markets and the lowest production price of the
adaptive producers, hence no reallocation is performed.

On the other hand, in Figure 12 we see that a reallocation takes place
between the aggregated hours and the adaptive consumers (in this case
involving h1 and the adaptive consumers).

(IV) As an effect of the trade with the block and with the adaptive con-
sumers, the equilibrium price of h1, p1(tb, ta,1), is changed first from
seven to three and then to four.

The price of h2 is affected by the trade with the block, and changes
from ten to six, but it is not affected by any trade with the adaptive
actors.
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pap
minpmax

Figure 11: The de-
mand of the adap-
tive producers, dap, is
aggregated with d+

∀h.
There is a gap be-
tween the highest buy-
ing price, pmax, and
the lowest selling price,
pmin

ap , and no trade
takes place. Step (III).

0
4

d

p

Figure 12: The de-
mand of the adaptive
consumers, dac, and
d−∀h. An equilibrium
price of 4 is established
in this trade. This af-
fects any hour i with
pi(tb, 0) < 4. Step
(III).

The aggregated equilibrium price of the separate hours with tb = 4,
p∀h(tb, ta), of this iteration is 4 +6 = 10. The equilibrium price on the
block market, pb(tb), is 11, Figure 4.

(V) Since p∀h(tb, ta) < pb(tb), tb is to high, and in next iteration step
tmax
b ← tb and tb ← tmin

b + (tb − tmin
b )/2.

The search continues until the breaking condition |p∀h(tb, ta) − pb(tb)| < ε1

is fulfilled.

6 Concluding Remarks

In this article we present a computationally tractable mechanism for time
dependent markets. By a number of predefined bid types, it offers useful
flexibility to the bidders. The article presents useful abstractions, holding the
combinatorial capabilities on a low level. A reason to keep the combinatorial
capabilities of a market mechanism down is to keep it easy to understand and
to make it easy to convince oneself that the pricing mechanism is correct.
Furthermore, there are complexity reasons — both from a computational
and a communicational perspective — to do this.

The main computational (and communicational) task of the mechanism
is the aggregation of demand. With the combinatorial capabilities of the
mechanism expressed as independent tracks (bids on single hours, block bids
and adaptive bids) the computational complexity of this part does not grow
more than linear in the number of bidding tracks.
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A real world market setup of a large automated market for time depen-
dent goods is most likely a highly distributed market, i.e. most of the in-
formation needed for market computation is spread over the network. Since
the input to Algorithm 4.1 is aggregated demand, it is natural to distribute
a heavy part of the computation — the aggregation — over the network. By
this, the communicational load is diminished radically.

In earlier work we have looked into distributed resource allocation and
resource allocation with non concave objective functions, [2, 3, 1], e.g. ap-
plicable on markets with non-continuous demand [5]. In this article we have
assumed continuous demand. Non-continuous demand on time dependent
markets is left for future work.

An assumption of ours that may be hard for some adaptive actors is that
the allocations are divisible (their allocations might be split between hours).
In practice we assume that the number of adaptive actors is large relative
the volumes traded, hence the goods can be handled as divisible. The case
with non-divisible goods introduces conceptual pricing problems as well as
computational problems, and is beyond the scope of this article.

The market mechanism has properties that are highly relevant in e.g.
day-ahead power markets [4, 7] and bandwidth markets [8, 9]. In a power
setting, the big advantage of the mechanism (compared to the power markets
of today) comes with the possibility to set up electronic markets with a huge
number of participants. When a direct market participation of a large num-
ber of presumably small size actors (formerly represented by distributors) is
introduced the market outcome can become considerably more efficient.

The combinatorial possibilities given by the market mechanism enriches
the possibilities of the actors. While being easy to understand and computa-
tionally feasible, it scales well to markets with a huge number of participants.
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