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Abstract

Supply chain interactions have huge economic impor-
tance, yet these interactions are managed inefficiently. One
of the major sources of inefficiency in supply-chain man-
agement is information asymmetry; i.e., information that is
available to one or more organizations in the chain (e.g.,
manufacturer, retailer) is not available to others. There are
several causes of information asymmetry, among them fear
that a powerful buyer or supplier will take advantage of
private information, that information will leak to a com-
petitor, etc. We propose Secure Supply-Chain Collabora-
tion (SSCC) protocols that enable supply-chain partners
to cooperatively achieve desired system-wide goals with-
out revealing the private information of any of the parties,
even though the jointly-computed decisions require the in-
formation of all the parties. Secure supply-chain collabora-
tion has the potential to improve supply-chain management
practice, and, by removing one major inefficiency therein,
improve productivity. We present specific SSCC protocols
for two types of supply-chain interactions: Capacity allo-
cation, and e-auctions. In the course of doing so, we design
techniques that are of independent interest, and are likely to
be useful in the design of future SSCC protocols.

Keywords: Supply-chain online interactions, privacy, se-
curity, secure multi-party computation, capacity allocation
in e-commerce, e-auctions.
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1. Introduction

Information asymmetry is known to create inefficiencies
in managing supply chains, among them under-investment
in capacity leading to shortages; misallocation of inven-
tory, transportation, and management resources; increased
prices; and reduced customer service. It can also lead to
increased use of premium shipping, increased penalties re-
sulting from line shut-downs, and lost future business con-
tracts. Unfortunately, the barriers to information-sharing
are significant, among them fear that information volun-
tarily shared with a partner will be used against the volun-
teer, fear that sensitive information will leak to a competi-
tor, government regulations about information-sharing, etc.
Further, if one of the parties is government, then there are
national security reasons to protect secret information.

These barriers can be overcome if traditional methods
for information-sharing are replaced by Secure Supply-
Chain Collaboration (SSCC) protocols, which would en-
able supply-chain partners to cooperatively achieve desired
system-wide goals without revealing any private informa-
tion, even though the jointly-computed decisions require
this information. The contributions of this paper are (i) to
present such protocols for two classes of supply-chain in-
teractions (capacity allocation under various policies, and
bidding and auctions under both discriminatory and nondis-
criminatory pricing), and (ii) to give techniques and build-
ing blocks that are likely to be useful in the design of future
SSCC protocols.

2. Related work

Because this paper relates to both protocols and supply
chains, we need to review related work from both.



2.1. Related Cryptographic techniques

The closest area of cryptography relevant to our work
is secure multiparty computation [28]. Secure multi-party
protocols are a form of cooperative distributed computing
that preserves the privacy of the participants’ data. This
general class of computations typically takes the following
form between two parties: ”Alice” and ”Bob” each have
a private input (say, ��� for Alice and ��� for Bob), and
they want to compute

�	� ����
��
��� where the efficiently com-
putable function

�
is known to both Alice and Bob How-

ever, neither side is willing to disclose his/her private data
to the other party, or even to any third party. A protocol
that involves only Alice and Bob, is said to be secure if,
at its end, Alice and Bob know only

�	� ����
������ (and their
respective inputs, of course). Of course, Alice might in-
fer something about � � from her knowledge of � � ,

�
, and�	� � � 
�� � � , but that is unavoidable.

Goldreich states in [10] that although the general se-
cure multi-party computation problem is solvable in the-
ory, using the solutions derived by these general results
for special cases can be impractical. In other words, ef-
ficiency dictates the development of special solutions for
special cases for efficiency reasons. In addition, as noted
above, the characteristics of supply-chain settings neces-
sitate the development of such solutions. For example,
whereas in most secure multiparty settings all the parties
know the function

�
they are cooperatively computing, in

our case each party (e.g., Alice) is computing her own in-
dividual function

� � that is just as important to keep hid-
den from the other participants as her private data ��� . An-
other complication is that the decision computed by a par-
ticipant (e.g., Alice) can depend not only on the other par-
ticipants’ private data ( � � 
��
��
��
��
������ ), but also on their
private functions

� � 
 � ��
 � ��
������ as well. To see how this
can happen, simply consider the case of a multi-party sup-
ply chain negotiation where each party (say, Bob) can
“drop out” of the negotiation depending on the value of� � � ����
�����
�� � 
�������� . The theoretical general secure mul-
tiparty computation techniques can be modified to handle
this, but the resulting methods are even more impractical
than the above-mentioned ones for the case when all sides
are cooperatively computing the same function.

In Selective Private Function Evaluation (SPFE) [22],
a client interacts with one or more servers holding
copies of a database �����! "
������#
���$ in order to com-
pute

�	� ��%'&"
�������
��
%)(�� , for some function
�

and indices* � *  
������#
 *,+ chosen by the client. Ideally, the
client must learn nothing more about the database than�	� �
%-&.
�������
���%/(�� , and the servers should learn nothing. The
requirement that the server not know

�
in SPFE is similar

to our requirement that
� � not be known to any of the other

participants, although we have not used SPFE techniques in

our protocols.

2.2. Supply-chain background

Historically, supply-chain management research has fo-
cused on “centralized” policies; i.e., decision-rules for op-
timizing a single objective function (e.g., system profit) un-
der the assumption that all the information about the system
(e.g., costs, capacity, inventory status) is available to a cen-
tral planner. In mathematical terms, supply-chain research
has historically focused on problems of the form optimize�	� ��� , where the input vector � is centrally available and
a single decision-maker optimizes this function. See [21]
and [8], for examples of this research. Although this lit-
erature has contributed decision-rules for managing supply
chains that employ centralized information and control, in
fact, most real-world supply chains are managed, not by a
single decision-maker, but by several decision-makers, each
with their own, often incompatible, objective functions, and
each using her/his own proprietary information.

Today, research in supply-chain management is largely
focused on multiple decision-makers with multiple objec-
tive functions, each formulating their own decision-rules
on the basis of “asymmetric information” (i.e., informa-
tion available to any given decision-maker is not necessarily
available to any other decision-makers). In mathematical
terms, this stream of research splits the traditional objective
function

�	� ��� into separate objective functions
� � � ����
����0�

and
� � � ����
��
��� for Alice and Bob respectively, based on

private inputs ��� and �
� . The intellectual roots of this new
focus on decentralized supply-chains is auctions and other
information-asymmetry models in economic game theory.
In these information-asymmetry models, without loss of
generality, Alice typically acts as a leader and provides in-
centives to Bob to ”reveal” his private input � � , in addition
to participation constraints on

� � . Alice then takes action
based on Bob’s data.

There is also a national program underway, spon-
sored by the Voluntary Intraindustry Commerce Stan-
dards (VICS) association to develop standards and pro-
cedures under which independent buyers and sellers can
share plans, forecasts, and decision-making involving in-
ventory replenishment. This program, called Collabora-
tive Planning, Forecasting, and Replenishment (CPFR) has
attracted the interest of literally hundreds of companies
(http://www.cpfr.org/Members.html). Unfortunately, CPFR
must overcome at least one major obstacle in order to
achieve success for buyer and sellers: the reluctance of ei-
ther/both to share private, proprietary information.

Several researchers have examined the value of
information-sharing in a supply-chain. Iyer and Ye [12],
for example, assess the value of information sharing in a
retail environment, where retailers share promotion infor-



mation with their suppliers. Song and Zipkin [25] develop
an inventory-replenishment policy to take advantage of in-
formation about supply conditions. Cachon and Fisher [4]
study the value of sharing demand and inventory level in-
formation in a supply chain. More recently, Aviv [2, 3] has
examined the effect of collaborative forecasting on supply-
chain performance. This work, the literature on centralized
decison-making, and the agency loss associated with decen-
tralized decision-making, provide the supply-chain motiva-
tion and foundation for our work.

3. Capacity Allocation in E-Commerce

Consider a single supplier and 1 retailers. The supplier
has a constant marginal production cost, but limited capac-
ity, 2 . The retailers operate in non-competing retail mar-
kets, each with a linear demand curve: 34�65�798 , where 3
is market demand, 8 is the retail price, and 5 is the market
potential (i.e., what demand will be if price equaled zero).
Everyone, including the supplier, knows the form of the re-
tailer’s demand curve, but each retailer’s 5 is its private in-
formation.

In order to maximize its profits, each retailer wants to
maximize its revenue, 8
3 . Hence, retailer

*
(defined to have59�:5"% ) would like to order (and sell) 3;�<5=%?>=@ units, and

at price 5"%,>=@ per unit, and receive revenue 5BA% >"C . Note that5.%,>=@ is the maximum transfer price/unit retailer
*

is willing
to pay the supplier; i.e., a higher transfer price will yield
a loss; a lower price provides a profit; and, the lower the
transfer price, the higher retailer

*
’s profit.

If the supplier has unlimited capacity and knows each re-
tailer’s 5 , then, in order to maximize its profits, the supplier
will charge retailer

*
a transfer price 5 % >=@ per unit, thereby

sucking up all of the profits in the system. The supplier is
able to do so because she knows that the retailer is making
a profit at a lower price, since she knows 5 % >=@ . If the sup-
plier has limited capacity, 2 , and knows every retailer’s 5 ,
then she will allocate the capacity, 2 , such that the marginal
revenues are equal across all retailers. For example, if there
exist two retailers with parameters 5D and 5 A and capacity
is tight, then the retailer will allocate the capacity such that5  7E@F3  �G5 A 7H@=3 A . And, again, because the supplier
knows every retailer’s 5 , the supplier will be able to price
these units so that she captures all the retailers’ profits.

Now suppose that all the supplier has is a probability
distribution on each retailer’s 5 . The supplier’s goal is the
same; i.e., to maximize its profit, but now has to do so in
light of uncertainty about each retailer’s 5 . There are two
consequences of the corresponding misallocation: (1) total
profit in the supply chain decreases below its maximum pos-
sible value; and (2) some retailers get some positive profit.

In [7], Deshpande and Schwarz designed an incentive
compatible pricing and allocation scheme to get every re-

tailer to reveal its 5 , thereby allowing the retailer to maxi-
mize its profit without forcing any retailer to experience a
loss. Moreover, they show that the optimal allocation pol-
icy, I � 5  
�5 A 
������#
�5"JK� , for the supplier is to equalize the
information rent-adjusted marginal revenues across all re-
tailers. They were able to establish the following optimal
allocation rule:

Theorem 1 If retailers face deterministic downward slop-
ing linear demand, with the intercept of the demand-curve5 private to the retailers, then the linear allocation mecha-
nism (defined below) is optimal for the supplier.

Definition 3.1 (Linear Allocation) Index the retailers in
decreasing order of their quantities; i.e., 3" MLN3 A L<�����OL3 J . Retailer

*
is allocated I � 3 % 
=PQ � where I � 3 % 
"PQ �N�3 % 7  R$KSMT"UWVYX 
[Z R$  3 % 7\2^] if

*W_ PQ and zero otherwise.
Here PQ is the number of the retailers who will actually buy,2 is the total capacity that the supplier can provide, andI � 3�%`
FPQ �aL X for all

*b_ PQ . Note that the linear alloca-
tion scheme should be jointly implemented with the optimal
pricing scheme, as designed in [7], for the scheme to be
incentive compatible.

Intuitively, linear allocation is simply an “equal sharing
of the pain” among the buyers, with the understanding that
if that pain exceeds the 3 % of a buyer then that buyer drops
out. This is why PQ , the number of buyers who do not drop
out, can be less than the number Q of initial buyers. If there
are PQ actual buyers, then they each get the same amount
less than their order, i.e., the “pain” inflicted on each buyer
is equal to (total shortage)/ PQ where the total shortage equals
what the PQ buyers would have wanted minus 2 . (Note that
the total shortage is not 3  dcfe�e�e.c 3�Jg7\2 .)

Deshpande and Schwarz also prove the structure of the
optimal policy for the supplier if the retailers are “newsven-
dors”, i.e., retailers, like real newsvendors, face demand
generated from a probability distribution.

Theorem 2 If retailers are newsvendors with a normal de-
mand distribution with mean 5 , and an exponential prior on5 , then the linear allocation mechanism is optimal for the
supplier.

Theorem 3 If retailers are newsvendors with a uniform de-
mand distribution on h X 
�5"i , and a Pareto supplier’s prior on5 , then the proportional allocation mechanism (defined be-
low) is optimal for the supplier.

Definition 3.2 (Proportional Allocation) Retailer
*

is al-
located I � 3�%�
j1k� where I � 3�%`
j1k�l� m�n,oZfp& n,o . Here 1 is the

number of the retailers, and 2 is the total capacity that the
supplier can provide.



Note that in proportional allocation every retailer is allo-
cated a positive quantity, and therefore PQ �g1 .

The optimal allocation mechanisms derived above are
based on the revelation principle, which states that the sup-
plier can induce the retailers to truthfully reveal their order
quantities 3 % , thus indirectly revealing their private informa-
tion parameter 5 % to the supplier.

3.1. Information Required for SSCC

The allocation mechanism described above and its cor-
responding pricing policy described in [7] might be appro-
priate if allocation decisions are made once and only once.
However, if allocation decisions are repeated, say, weekly
over a selling season of several months, then there would
be no incentive for the retailers to participate after the first
allocation, since, after that, they would make no profits, be-
cause their 5 ’s would have been revealed as part of the first
allocation process. (Note that the linear allocation mecha-
nism requires each retailer to reveal its true order quantity3 % based on its information parameter 5 % .)

In the next subsection, we sketch secure protocols for
the above allocation mechanisms. These protocols for al-
location use the retailer order quantities 3q%�
 * �srF
������#
�1
as inputs and compute the allocation, I � 3  
�3 A 
�������
j3�JK� de-
fined above, without revealing any retailer’s private infor-
mation parameter 5 % to either to the supplier or to the other
retailers. Since these protocols do not reveal the individual
retailers’ private information parameter, these protocols can
be used repeatedly, unlike the auction mechanism described
in [7].

Before the protocol every retailer knows his quantity 3 % ,
the supplier knows her capacity 2 . After the protocol is
completed, every retailer knows the actual quantity I � 3 % 
=PQ �
she would be allocated under the allocation policy (whether
linear or proportional), PQ , and nothing else (other than what
she can infer from I � 3 % 
"PQ � , which is unavoidable). The
protocol itself does not reveal the individual 3 % or Z % 3 % .
3.2. Secure Information Protocols

We present the protocols corresponding to both capacity
allocation models. The details of some of the used building
blocks come in later sections. In the versions of the proto-
cols presented in this document, we assume by default that
the participating parties are honest-but-curious, i.e. they
will follow the protocol, but while doing so they could
nevertheless try to illegally compute information about the
other party’s secret data. However, we often give protocols
that can handle dishonest behavior that is worse than the
honest-but-curious (participants who do not follow the pro-
tocol, or who collude with some of the participants against
other participants). Finally, we treat prices and quantities

as essentially continuous, so the protocols (in their current
form) are not appropriate for interactions about small num-
bers of “widgets” (like large ships or aircraft, where round-
ing to within 1 unit is significant). We believe our protocols
can be modified to handle such cases as well, but we have
not yet looked at the details of these modifications.

Linear Allocation Protocol

1. Every retailer initially marks himself as “active” (some
will mark themselves as “passive” as the protocol pro-
ceeds). We use t to denote the set of active retailers .
We use PQ to denote u tvu .

2. Repeat the following substeps (a)–(d) until PQ ceases to
change from one iteration to the next:

(a) Every retailer
*

generates a random w % . Let w6�Z J%)x  w�% ; note that no single party knowns w .

(b) Using a secure simultaneous summation protocol
(discussed later), the participants cooperatively
compute both PQ and yz� � Z %|{=} 3 % ��792 c w in
such a way that PQ is known to all participants buty is known only to the supplier.

(c) If the computed PQ is the same as it was in the
previous iteration of these substeps (a)–(d) then
the protocol moves to Step 3 below, otherwise it
continues with the next substep (d).

(d) The participants run a secure simultaneous sum-
mation protocol in which the supplier’s item
(used in the summation) is y;>
PQ , and every re-
tailer

*
’s item is w % >
PQ , such that the answer to

the summation is known to the retailers but not
to the supplier. All the retailers therefore simul-
taneously learn the quantity

� y;>
PQ ��7 � w�>
PQ �~�� Z %�{=} 3 % 7a2a��>
PQ , which happens to be the cur-
rent (tentative) pain per active retailer. If that pain
exceeds any active retailer’s 3�% then that retailer*

marks itself as “passive” (and is implicitly no
longer in t even though it continues to be a party
to the protocol).

3. The “pain per active retailer” that was computed in the
last iteration of the above Step 2(d) is taken to be the
true one, and every active retailer

*
computes his allo-

cation I � 3 % 
"PQ � as being equal to 3 % minus that “pain
per active retailer”.

Note that, in the above, retailers who are no longer active
continue to participate in the protocol (of course they now
contribute 0 rather than 1 to the distributed computation ofPQ ): Excluding them from subsequently participating in the
protocol would have the drawback of revealing to the other
participants who is no longer in t .



The number of iterations in the above protocol could, in
the worst case, be 1 . We have made an observation that
brings the number of iterations down to �)�F��1 . In a nut-
shell, after defining two functions

�
and � on the indices� rF
�������
�1\� , we give a characterization of the “stable value”

of PQ in terms of the relationship between
�	� PQ � and � � PQ � that

is reached at the last iteration of Step 2. The characteriza-
tion in turn makes possible a binary search for the stable PQ
in Step 2. We omit the details.

Proportional Allocation Protocol

1. The 1 retailers cooperatively choose a random w�� that
is known to all except the supplier.

2. Each retailer
*

sends w�� � 3 % to the supplier.

3. The supplier computes y , the sum of what he received,y���w � � � Z J%)x  3 % � , and sends y � �<yv>"2 to every
retailer.

4. Every retailer
*

computes its allocation 3F�% as 3"�% �fwK� �3 % >"y��
�H3 % � 2;> � Z J%)x  3 % � .
5. Every retailer

*
sends its 3=�% to the supplier. The sup-

plier verifies that the sum of the 3 �% ’s equals 2 . If so
the protocol terminates. Otherwise cheating has taken
place by one or more retailers, where “cheating” by re-
tailer

*
means sending a 3 �% that is not consistent with

the initial 3�% that retailer
*

had used earlier in Step 2;
i.e., it consists of retailer

*
changing its mind about its

quantity after it has learned (in Step 4) what its true 3F�%
would have been. If cheating has been detected then
Step 6 below pinpoints which retailer(s) cheated.

6. For every retailer
*
, the supplier determines whether

*
has cheated as follows: The supplier compares, for all
other retailers � , the ratio 3 �% >"3 �� (available from Step 5)
with the ratio 3 % >"3 � (available from Step 2). If the two
ratios do not equal each other for a majority of other
values � then the supplier decides that retailer

*
is a

cheater.
Note 1. It is easy to see that the above cheater-detection
scheme works as long as a majority of the retailers are
honest.
Note 2. Keith Frikken has pointed out that, instead of
verifying for every

* 
,� pair in Step 6, the supplier could
simply compute for every retailer

*
the ratio of 3F�% to thewK� � 3"�% he received from

*
in Step 2 (that ratio must be

the same for all
*
’s).

4. E-Auctions

In economics, information asymmetry has been widely
studied in using principal-agent models with adverse selec-
tion (see [9]). These models assume that a principal makes

decisions and sets contracting parameters for single or mul-
tiple agents, without complete information about agent’s
“actions” [1, 20, 26]. Auction theory has also been used
to model information-asymmetry problems, as described in
the seminal papers by Vickrey [27], Myerson [16], Riley
and Samuelson [19], and Milgrom and Weber [15]. See
Klemperer [14] for a more recent review on the theory of
auctions. The use of auctions for allocating resources such
as securities is described by Harris and Raviv [11]. Optimal
auctions typically invoke the revelation principle, which
states that it is sufficient for a principal to restrict his/her
attention to contracts/auctions that induce the agents to tell
the truth. Although useful in theory, the revelation principle
does not necessarily yield practical procedures and proto-
cols.

We consider two broad models: One where all buyers
( � bidders) get the same unit price from the supplier (non-
discriminatory pricing), and another where different buyers
can get different prices from the supplier depending on their
demand (discriminatory pricing). We begin with the former.

4.1. E-Auctions with non-discriminatory Pricing

In this model of supply-chain interaction, a seller wants
to fix the selling price for all the buyers. Each buyer

*
has a

price-quantity pair
� 8 % 
�3 % � expressing his preference to buy3 % units at a unit price of 8 % , based on an underlying demand

curve 3 % ��5 % 7M8 % . The seller has a supply curve 3��\8 c 5
and wants to figure out what price �8 she should ask from
all of them according to the total demand: �8 is the price
from the supply curve that corresponds to the total demandZ $%)x  3�% .

Under the rules of the auction, each buyer’s demand pa-
rameter 5 % is not to be revealed to any other buyer. Further,
the seller is to remain ignorant of any buyer’s individual de-
mand parameter before setting her price, thereby facilitating
a policy of non-discriminatory pricing. The price charged
by the seller is a function of the bids received. After the
common price �8 is announced, only those buyers

*
whose

price 8 % is lower than �8 are allowed not to buy, and those
buyers

*
whose 8 % Lz�8 are not allowed to jack up their 3 % .

4.1.1 Information and Decision Criteria for non-
discriminatory price auctions

The relevant information from the buyers is their price-
quantity pair bids

� 8 % 
�3 % � . The fixed price charged by the
seller is a function of the bids received. However, the seller
is not supposed to know the total demand of the bidders be-
fore setting her price. After the common price �8 is known to
everybody, only those buyers

*
whose price 8�% is lower than�8 are allowed not to buy, and those buyers

*
whose 8�%�LG�8

are not allowed to jack up their 3 % . This is achieved by hav-
ing each buyer

*
, as a first step in the protocol, send the



seller a “commitment” to its 8 % and (separately) one for its3 % , without revealing either of them to the seller; this ties the
hands of buyer

*
and prevents her from modifying 8�% or 3�%

after the negotiation is over (for details of how commitment
is done using cryptography we refer the reader to textbooks
such as [24]).

At the end of the protocol, a buyer
*

whose 8�%��G�8 will
“open” her commitment to 8�% (i.e., reveal 8�% to the seller)
as a justification for not buying at price �8 , whereas a buyer
whose 8 % L��8 will open her commitment to 3 % (i.e., re-
veal 3 % to the seller) as a proof that she did not change her
original 3 % after learning of the advantageous �8 . It is a cru-
cial property of cryptographic commitment protocols that
the seller can verify whether the revealed 8 % or 3 % match the
commitment originally sent by buyer

*
. Note that no buyer

*
reveals to the seller both 8 % and 3 % , and that no buyer knowsZ J%)x  3�% . The protocol is given below.

Non-Discriminatory Pricing Protocol

1. Every bidder
*

gives the seller a cryptographic commit-
ment to its 3�% (which, as discussed earlier, does not re-
veal 3�% to the seller yet prevents the bidder from chang-
ing its 3�% value later on).

2. Every buyer initially marks itself as “active” (some
will later mark themselves as “passive” as the proto-
col proceeds). We use t to denote the set of active
buyers to denote u tvu ; at this stage PQ �g1 ..

3. Repeat the following substeps (a)–(c) until PQ ceases to
change from one iteration to the next:

(a) The buyers and the seller all engage in the se-
cure summation protocol (twice) to simultane-
ously get (i) PQ and (ii) �8:� Z %�{=} 3�%�7f5 ; re-
call that 8���3~7�5 is the seller’s supply curve.
For the �8 computation, the “data” used by an ac-
tive buyer

*
in this summation protocol is 3 % , by a

passive buyer is 0, whereas the supplier uses 7�5 .
For the PQ computation, the data is 1 if that buyer
is active (i.e., in t ), and 0 otherwise.

(b) If the computed PQ is the same as it was in the
previous iteration of these substeps (a)–(c) then
the protocol moves to Step 4 below, otherwise it
continues with the next substep (c).

(c) Buyers whose 8 % ���8 mark themselves as “pas-
sive” (i.e., no longer in t ).

4. Buyers whose 8�%0L��8 reveal their 3�% to the seller, who
verifiers that it matches the commitment received in
Step 1.

The table below summarizes who knows what after the
above protocol completes:

Who knows �����,�?���Y� ���=�.�`�`��� � Z ��� ��
what �0 ¡£¢

Supplier ¤ ¤ ¤
Buyer � ¤ ¤

4.2. E-auctions with discriminatory pricing

The main difference from the non-discriminatory case is
that, whereas in the former all the buyers get the same price,
in this framework the price paid by each buyer is not fixed
but rather is a function of its bid.

The relevant information from the buyers is their price-
quantity pair bids

� 8 % 
j3 % � . In this framework, the price paid
by each buyer is not fixed, but a function of its bid. The
goal for the seller is to set the price paid by the buyers as a
function of the bids received so as to maximize its revenue,
i.e. SMT"U Z % 8 % 3 % , subject to the supply constraint Z % 3 % _2 .

The “pick-and-choose” protocol (below) reveals to each
buyer only which (if any) of that buyer’s alternative

� 8�%�
�3�%Y�
is accepted by the seller, without revealing to the seller ei-
ther 8�% or 3�% ; the seller may have to eventually know more
for external reasons such as shipping, but that is not inherent
to the protocol.

4.2.1 Pick-and-Choose framework

The problem of finding the minimum number of units to
be sold to the bidders, with the maximum possible rev-
enue, was investigated by Sandholm and Suri in [23]. They
proved that it is ¥�t -Complete, and devised a pseudo-
polynomial algorithm to solve it. Our protocol extends
that algorithm to make it secure, in the sense that no
(price,quantity) pair is to be revealed to other bidders. The
details are given in [6]

4.2.2 An Architecture for Discriminatory Pricing in
the Single-Seller Case

An immediate problem with discriminatory pricing is that
buyer

*
would apparently have to reveal to the seller both 8 %

and 3 % , which compromises that buyer’s demand curve (this
was not a problem in non-discriminatory pricing because
the seller did not get 8 % ). This would not be a problem in
the case of multiple sellers. For the single-seller case, there
is a need for designing architectures to solve this problem.
One possibility is to introduce another party to the proto-
col, i.e., a proxy with the following assumptions and goals:
(i) The seller learns the total quantity actually sold (not the
individual 3�% ’s), (ii) the proxy who learns the individual 3q%
(and can therefore direct shipping), (iii) the seller learns the
dollar amount due from each buyer (the product 8 % 3 % , not the
individual 8 % ), (iv) no buyer learns the total quantity sold or



any price paid by another buyer, (v) the proxy does not col-
lude with the seller or with any of the buyers, but is other-
wise untrusted in the sense that he is not supposed to know
any (price,quantity) pair of any other participant in the pro-
tocol. We next describe some scenarios for the interactions
between the seller and the buyers.
Notes about the results below, using proxy architecture: The
results below can be extended to the case of multiple sellers
if the allocation of the total quantify to seller

*
is a fixed

fraction ¦#%§�¨r of the total quantity. Both the seller proxy
and the buyer proxy can be eliminated, and a direct many-
buyer and many-seller protocol is possible, if we assume the
honest-but-curious model and have no worry about keeping
the parties honest (whereas in what follows we do worry
about buyers changing their mind about their bid ex-post
facto, about the proxy not fulfilling its obligations, etc).

In some of the scenarios described next, the seller is try-
ing to set the price of each buyer. Mainly the following
steps are honored by the different parties in order to com-
ply with the proposed architecture. We also consider issues
such as how to keep the proxy honest, and how to make
the protocols resilient against collusion by a subset of the
participants.

1. Each buyer
*

has his request 3 % that he does not want
to reveal to the proxy unless his request would be sat-
isfied.

2. The proxy knows the maximum capacity of the seller,
which is I .

3. A protocol is run between the proxy and the buyers
in order to settle a ©3q% for each buyer

*
according to

some seller’s capacity allocation model. This protocol
should neither reveal I to the buyers nor reveal 3 % to
the proxy or to the other buyers. The result of this pro-
tocol is that each buyer knows the available quantity
he can receive ©3 % . The proxy knows each ©3 % too, as he
will be the distributor of the quantities later.

4. A protocol is run between each buyer separately and
the seller himself so that each of the buyers can know
what is the total amount that he has to pay, ©8 % ©3 % . The
seller also knows that amount as it will be his revenue.
One possible protocol is the oblivious polynomial eval-
uation protocol [17, 5].

5. The seller collects ©8�%[©3�% from each buyer
*
.

6. The proxy sends the total required quantities, Z % ©3�% , to
the seller who will send the items to the distributor (the
proxy).

7. the proxy distributes the items on the retailers.

The table below summarizes who knows what after the
protocol completes:

Who knows �����,�?���Y� ©��� ©��� ©�ª�`©�[� ©�=� ©�`� Z ©���
what ¢  ¡ � ¢  ¡ �

Supplier ¤ ¤
Proxy ¤ ¤ ¤

Retailer � ¤ ¤ ¤ ¤
Keeping the Proxy Honest

In the protocol as given above, the proxy can steal from
the seller by sending him a different total quantity, other
than the real Z % ©3 % . We need to modify the protocol so that
it allows the seller to detect this kind of cheating. The fol-
lowing modification achieves this:

1. The first retailer sends ©3�« c­¬ to the next buyer where¬ is a large random number known only to this buyer.

2. Each other buyer will add his ©3 % to the number he re-
ceived from the previous buyer, then sends the sum to
the next buyer.

3. The last buyer sends the sum to the seller, and the first
buyer sends ¬ to the seller.

4. The seller adds ¬ to the total quantities received from
the proxy. If it is equal to the sum he has received from
the last buyer ¬~c Z % ©3�% then the proxy had sent the
correct total quantity, otherwise the proxy was trying
to cheat.

Preventing collusion

The previous protocol prevents the proxy from cheating,
but what about the seller cheating? She can collude with
the second buyer so as to know the 3q% of the first one. She
can also collude with any buyer so as to get the sum of the3�% ’s of the buyer before her in that ordering. Now, we mod-
ify the previous protocol to get one that keeps the proxy
honest (unless a buyer colludes with him), and also pre-
vents the successful collusion of the seller with any buyer
(our scheme actually works for collusion by many, but for
reasons of space limitations we do not include the general
description).

1. The first buyer sends � ©n,®�¯!° S ��±§8 to the next buyer
where ¬ is a large random number known only to this
buyer, � and 8 are public (known to all participants), 8
is a large prime, �b�²8 and it is best if � is a primitive
root.

2. Each other buyer will multiply his � ©n o S �ª±�8 to the
number he received from the previous buyer, then
sends the product to the next buyer.



3. The last buyer sends the product to the seller, and the
first buyer sends � ° S �ª±K8 to the seller.

4. The seller multiplies � ° S ��±�8 wby ( � raised to the a
power equal to the total quantities received from the
proxy, modulo 8 ). If the result is equal to the product

he has received from the last buyer ��³ Z o ©n,o�´|¯µ° S ��±K8
then the proxy is honest in sending the total quantities.
Otherwise the proxy was stealing from the seller.

Although the seller has � ° S ��±§8 and can collude with
the second buyer to receive � ©n,®�¯!° S �ª±�8 , knowing 3�« is still
as hard as solving the discrete logarithm problem (a prob-
lem widely believed intractable). However, this is true only
for large values of 3�% ’s – for small 3�« , the seller can find
it by trying all its possible values. We have a scheme that
overcomes this drawback (we cannot include it here due to
space limitations — for the same reason we do not include
the extension to collusion-resistance against collusion by ¦
entities for any a priori known constant ¦ ).

We next describe a possible scenario for the interactions
between the seller and the buyers for the purpose of clearing
the market.

4.2.3 All-or-None Framework:

In this framework, the bidders make their offers as price-
quantity pair bids, and the seller has either to accept or to
reject the whole bunch according to her supply curve. The
bidders do not want to reveal their offers before the seller’s
decision is made.

Let
� 8 % 
�3 % � be the pair bid of bidder

*
. Let the supply

curve of the seller be 3��²8 c 5 . Without knowing the offer,
the seller needs to know whether the revenue will be as good
as what her supply curve requires. Hence the problem is to
compute this predicate without revealing any additional in-
formation about the supply curve or about the price-quantity
pair bids. The revenue that she will get from this offer isZ % 8�%�3�% . The unit price that she expects due the current de-
mand is �8�� Z % 3�%�7f5 . Thus she expects a revenue of
V Z % 3�%�7a5 ] V Z % 3�% ] . Thus, our problem is defined now as
computing the predicate Z % 8 % 3 % L V Z % 3 % 7�5 ] V Z % 3 % ]
without revealing any

� 8 % 
j3 % � or 5 . The following protocol
allows the seller to make her decision without revealing her
supply curve, and without revealing to her any of the price-
quantity pair bids of the buyers.

The table below summarizes who knows what after the
protocol completes:

Who knows �����,�?�[�¶� ���"�"�?�?�q� � Z ��� Z ���-���
what �0 ¡£¢

Supplier ¤
buyer � ¤

4.2.4 All-or-None Protocol:

Initially, each bidder sends to the seller’s proxy a “com-
mitment” to its 3 % and to the seller a “commitment” to its8 % 3 % , without revealing either of them to the seller or to the
proxy. Secure summation protocol for additively split data
(discussed below) is used to generate ��· and ��¸ such that��·¹7���¸�� Z % 3�%d7�5 . It is also used to generate ��º and��» where ��º�7���»b� Z % 3�% . These four values should be
with four different persons; ��% is with person

*
. We com-

pute
� ��·�7k��¸j� � ��º	7k��»q�0� � ��·.��º c ��¸���»�7k��·q��»�7k��ºj��¸j�

as follows:

¼­½ sends ��· to ¦ who computes ¾Bºl�f��·.��º .
¼À¿ sends ��¸ to Á who computes ¾B»K� ¬ » c ��¸`��» , where¬ » is a random number chosen by Á .
¼ ¦ sends � º to ¿ who computes ¾ ¸ � ¬ ¸ 7\� º � ¸ , where¬ ¸ is a random number chosen by ¿ .
¼ Á sends � » to ½ who computes ¾ · �67�� » � · .

¿ sends ¾ ¸ to ½ who adds it to his ¾ · . Meanwhile Á sends¾ » to ¦ who adds it to his ¾ º . Then Á sends his new ¾ » to ½
who adds it to his current ¾ · . Thus ½ now has the value of� · � V Z % 3 % 7a5 ] V Z % 3 % ]0cÂ¬ ¸ c²¬ » .
Similarly, the summation protocol for additively split data
is run to find Z % 8 % 3 % and ½ receives Ã · and Á receives Ã » ,
such that Ã=·Ä7vÃ"»�� Z % 8
%Y3�% . Á sends ¬ »Ä7vÃ"» to ½ who adds
it to his Ã"· . Now ½ has the value of Ã=·K� Z % 8
%¶3�% cÂ¬ » .½ computes Ã"·¹7���· and sends it to the seller. The seller
runs Yao’s millionaire protocol [28] with ¿ to see whether
the value in her hand is larger than ¬ ¸ . If so, then she accepts
all the offers. Otherwise, she reject them all.
In case she accepts the offers, the bidders reveal their 3 % ’s
to the proxy who will sum them up and sends Z�3 % to the
seller. The bidders also reveal their 8 % 3 % to the seller. Now
the seller can verify that the revealed data are the ones they
have committed to and can also check for the verified pred-
icate. In case the seller rejects the whole deal, the bidders
do not have to reveal their price-quantity pairs.

5. Some Building Blocks

We now present details of some building blocks that
were used in our protocols. by increasing order of com-
plexity.

5.1. Secure Simultaneous Multi-Party Summation
Protocol

The purpose of this protocol is to make Q parties, each
with a number Å % , cooperate to simultaneously find outÆ � Z $ªÇ� %/x!« Å % without revealing to each other anything



other than that answer
Æ

. In the protocol that follows, when
we say that a person

*
having an item � and a person � hav-

ing an item ¾ simultaneously exchange their respective �
and ¾ , we assume that this exchange happens in a single
step – the details of how to achieve such a simultaneous
exchange of secrets between two parties are in many text-
books and are omitted (see, e.g., [24] ). This will be typ-
ically necessary only in a protocol’s last step (the one that
reveals the answer) rather than in the protocol’s intermedi-
ate steps (in which it is fine if

*
gives his � to � and then

right after that � gives his own ¾ to
*
). As a practical matter,

and because of the considerable overhead and complexity
of the known protocols for the simultaneous exchange of
secrets, one could avoid them by settling for the less-than-
ideal (but perfectly fine for our purpose) exchange of � and¾ bit by bit:

*
sends a bit of � , then � sends a bit of ¾ ,

and they alternate until done – anyone who lies will have
to do so before he completely learns the other’s secret, but
he could have done that anyway by lying about his own Å�%
in the first place. We will henceforth just use the notion of
simultaneous exchange of secrets without specifying which
actual technique is used for achieving it.
Essentially the same protocol can be used when the data
is additively split and the answer is to come up similarly
split (here an � is split is in the sense that two parties have
random-looking ��� and, respectively, ��� � that add up tp � ).
In preparation, the following is done:

¼ Every party
*

gets a random number w % .
¼ Every party @ * gives to @ * c r his Å A % c w A % , then every@ * c r gives to @ * his w A % ¯  .

Now the odd-numbered parties have the Å � c w � of every-
body spread amongst them, and the even-numbered parties
will have the w � of everybody spread amongst them.

Now the odd (resp., even) -numbered parties computeÅ c w (resp., R), where ÅN� Z $ªÇ� %/x�« Å§% and wN� Z $ªÇ! %)x�« w�% .
Finally, the odd (resp., even) simultaneously exchange their
quantities to obtain Å . The computation of Å c w (resp.,
R) is done using a straight forward “tree based” approach
whose details are omitted.

5.2. Minimum Finding Protocol for Already-Split
Data

The second building block is how to find the minimum of
a set of data where each datum is additively split between
two parties. Here by “ � is additively split” we mean that���z�
� c �
� � and one party has ��� while the other has ��� �
(and ���¶
���� � could be quite large and negative, so that � is
effectively unknown to either one of the two parties).

In [13], Atallah et al proposed a secure protocol to com-
pute the minimum element of a vector È¦ that is shared ad-
ditively between two parties: Alice has È½ � � ½  "
�������
 ½BÉ � ,

Bob has È¿ � � ¿  .
�������
 ¿[É � , and È¦§�ÊÈ½ c È¿ . After running the
protocol, Alice ends up with a ËÌ� and Bob with a Ë�� such
that Ë �^c Ë � �:Í * Q É %)x  ¦#% . The protocol is nontrivial and
we omit its details from here (they can be found in [13]).

5.3. Secure Filtered Maximization Protocol

Alice and Bob are sharing a vector È¦��:È½ c È¿ additively,
such that Alice has È½ whereas Bob has È¿ . They want to find� * � SWT=U � *�Î ¦�% _ IM
�r _E*§_ Q � . As usual, neither Alice
nor Bob wants to give his vector to the other – in fact the
protocol results in the answer itself being additively split
between them: Alice gets a random-looking �*  and Bob a
random-looking �* A such that where �*  Äc �* A � �* .

The aim of the protocol is to get � * � SMT"U � *^Î ¦ % _IW
�r _Ï*�_ Q � which can be represented also as �* �
SMT"U � * �	Ð * � Q � IÀ7;¦ % ��
�r _À*l_ Q � where Ð * � Q � Íb� is equal
to r if Í�L X and is equal 7�r otherwise. The protocol is ex-
ecuted by repeating the following steps for each r _g*0_ Q
to create two vectors È2 and ÈÑ such that 2 % c Ñ % � *

if¦#% _ I and 2�% c Ñ %��Ò7 * otherwise. Alice will hold È2
while Bob will hold ÈÑ .

1. Bob generates a random vector ÈÓ � � �µ
��
�|� , and com-
putes the vector ÈÔ � � ¾�
�¾��)�0� � * 7a�µ
�7 * 7^���)� .

2. Bob generates a random permutation Õ such that ÕgÖÕH�H× .
3. Bob sends ©Ó �gÕ Ó to Alice.

4. Bob generates two random numbers Ø and Ù . He also
generates a random split 3 � and 3 � for I such thatIÚ�g3�� c 3�� .

5. Bob creates a vector ÈÆ � � ¿ % 7ÀØ\7ÂÍ � Õ§�#
�3���7­ÙO� ,
where Í � Õ�� equals r if Õ:Û�H× and is X otherwise.

6. Alice creates a vector
� ½ %�
 X � and uses it to run a one-

sided Blind and Permute protocol [13] with Bob who
uses the same Õ in it. The outcome of this protocol
is that Alice gets a vector ÈÜ �GÕ � ½ % c Ø0
�3�� c ÙO� .
During this protocol neither Alice nor Bob can deduce
a private value of the other party.

7. An asymmetric Yao’s millionaire protocol is run be-
tween Alice and Bob. In this protocol, Alice usesÜ  7 Ü A as her input, whereas Bob uses

Æ A 7 Æ  ifÕÝ��× or
Æ  7 Æ A if Õ�Û��× . Only Alice knows the

result of this protocol. If she figures out that her input
to the protocol is larger than Bob’s input, then she sets2�%µ� ©Ó A 7�Ë (case 1), otherwise she sets 2v%µ� ©Ó  7�Ë
(case 2), where Ë is a random number selected by Al-
ice.



8. A one-sided Blind and Permute protocol is run be-
tween Alice and Bob, in which Bob’s input is ÈÔ . The
output of that protocol is that Bob will receive a value
of ©Ô A c Ë in case 1 or ©Ô  ªc Ë in case 2; where ©Ô �fÕ Ô .
He should sets

Ñ % to his output.

The maximum finding protocol for already-split date is
run on È2 and ÈÑ so that to give �*  to Alice and �* A to Bob,
where �*  c �* A � �* .
6. Conclusion and Future Work

We gave protocols for some supply-chain interactions. In
future work, we will examine the impact of SSCC protocols
on the well-known “bullwhip” effect [18].
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