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Abstract—This paper explores multi-armed bandit (MAB)
strategies in very short horizon scenarios, i.e., when the bandit
strategy is only allowed very few interactions with the environ-
ment. This is an understudied setting in the MAB literature
with many applications in the context of games, such as player
modeling. Specifically, we pursue three different ideas. First, we
explore the use of regression oracles, which replace the simple
average used in strategies such as ε-greedy with linear regression
models. Second, we examine different exploration patterns such
as forced exploration phases. Finally, we introduce a new variant
of the UCB1 strategy called UCBT that has interesting properties
and no tunable parameters. We present experimental results in a
domain motivated by exergames, where the goal is to maximize
a player’s daily steps. Our results show that the combination of
ε-greedy or ε-decreasing with regression oracles outperforms all
other tested strategies in the short horizon setting.

Index Terms—multi-armed bandit, player modeling, machine
learning, linear regression, reinforcement learning

I. INTRODUCTION

Multi-armed bandits (MABs) refer to a class of sequential
decision problems [1], [2] where an agent attempts to maxi-
mize rewards received by repeatedly choosing one out of a
set of actions, each with unknown and stochastic rewards.
MAB strategies aim to balance the need for exploration against
the benefits of exploiting the actions believed to be the most
rewarding. Specifically, this paper focuses on the problem of
defining MAB strategies that target scenarios with a very short
horizon, i.e., those in which the agent gets to choose an action
a very small number of times.

Short horizon bandits arise in many real-world situations.
For example, consider the problem of player modeling [3]–[5],
where software systems aim to model or classify players to
provide them with individualized experiences. In our previous
work [6], we demonstrated that MAB strategies can be useful
in automatically determining the best options to present a user,
based on that user’s traits, as the MAB strategy observes the
user’s reactions to the different options. However, if MAB
strategies are to be useful for player modeling, they need to
adapt to users quickly within a small number of iterations.
This is in contrast to standard analyses of MAB strategies,
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which are typically studied in the limit, where the number of
iterations is very large.

To address this gap, in this paper we study MAB strategies
that attempt to converge very quickly. To do so, we study three
different ideas: (1) integrating linear regression models into the
oracle of the MAB to more accurately predict future rewards
given past information; (2) forced exploration patterns that fo-
cus on pure exploration initially before engaging in the bandit
strategy; and finally (3) we compare different MAB strategy
families, including a new variant of the UCB strategy [7]
we call UCBT that can automatically adjust its exploration
constant based on observations rather than requiring it to be
externally tuned. Our empirical results show that all three
ideas can help significantly in the short horizon scenario and
that although our best performing strategies are variants of ε-
greedy and ε-decreasing incorporating ideas (1) and (2), UCBT
compares favorably to UCB when the exploration constant is
not properly tuned.

The remainder of this paper is structured as follows. First,
we present some related research on MAB strategies that face
similar challenges and constraints. After that, we introduce
the motivating scenario and simulator we use to compare our
approaches. Then, we present our approach toward addressing
the short-horizon MAB problem. Finally, we examine the
results of MAB performance in a simulator designed to
mimic human walking behavior patterns to further observe
the potential for regression-based MABs.

II. BACKGROUND AND RELATED WORK

A multiarmed bandit (MAB) problem [8] is a sequential
decision problem in which an agent needs to select one of k
actions (called arms) sequentially over the course of h time
steps (or horizon). At each time step, the agent receives a
reward based on the arm chosen. Neither the reward distribu-
tions nor the expected values of the arm rewards ρ are known
beforehand. The goal of the agent is to maximize the obtained
(cumulative) reward. Thus, at each iteration, the agent must
choose between exploiting (selecting the arms that have so
far performed the best) or exploring (selecting other arms to
gather additional data about them).

In the most common instantiation of the MAB problem,
known as the stochastic bandit problem, each of the arms
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available to the agent holds a static, unknown, underlying re-
ward distribution from which a reward is randomly drawn [9].
MAB strategies usually assess the expected reward of each arm
based on past iterations via some estimation process (which
we will call an oracle). In the case of stochastic bandits,
typical strategies estimate descriptive statistics of observed
rewards such as mean µ and standard deviation σ. These values
provide the basis for predictions in popular MAB approaches
such as the ε-based (e.g., ε-greedy, ε-decreasing) and Upper
Confidence Bound (UCB) families of strategies [10]. Two lines
of work on MAB strategies are relevant to the work we present
in this paper: (1) MAB strategies for domains with contextual
or non-stationary rewards, and (2) MAB strategies for domains
with very short horizons, briefly described below.

In this standard stochastic bandit formulation, rewards are
assumed to depend exclusively on the selected arm. In other
words, the problem is stateless and arm choices in previous it-
erations do not affect rewards obtained in the current iteration.
However, as elaborated in Section III, the domain we use in
this paper does not strictly satisfy this property; we focus on
social exergames, where the goal is to maximize the number
of steps of the players. This metric appears to correlate with
several other factors, such as the day of the week, activity lev-
els of previous days, and others. In particular, three variations
of the MAB problem that are particularly relevant to model
this are contextual bandits [11], non-stationary bandits [12],
and restless bandits [13]. In contextual bandits, the stochastic
reward function is assumed to depend on an external context
vector, which is observed by the agent before having to choose
an arm. Non-stationary and restless bandits model the scenario
where the stochastic reward functions of all the arms change
over time. For example, Discounted UCB [12] adds a discount
factor for observations far in the past, and Besbes et al. [14]
propose the use of a “dynamic oracle” that observes the way
rewards change over the horizon and considers that variation
when selecting arms.

Concerning domains with very short horizons, although
some isolated pieces of work exist, the problem has not
received much attention in the literature. A recent approach by
Tomkins et al. [15] considers very short horizons when using
bandits to select personalized policies for users. To address the
problem, they exploit knowledge of rewards from trials with
other users. This “intelligent pooling” strategy assesses how
similar or dissimilar two users are to determine how much
one user’s observed rewards should be applied to the others.
Although this is a promising approach, we do not employ such
technique in this paper because we do not assume access to
data from other users.

III. SIMULATION ENVIRONMENTS

The main challenge addressed in this paper (short-horizon
MABs) is motivated by deploying MABs in domains where
an MAB strategy needs to select with low frequency (e.g.,
once a day) a scenario or intervention for a human player,
hoping to have a specific desired effect on the player. For
example, consider exergames [16], [17], where the goal is to

motivate players to do more exercise. In these domains, we
cannot expect a human to play the game for thousands or
even hundreds of days. Therefore, if the MAB strategy is to
be effective, it must learn to personalize the experience for the
player within a very short time.

Motivated by this problem and focusing on a domain where
we want to maximize the number of steps walked by a
player, we designed two simulation environments to evaluate
the effectiveness of our approaches. Because we are using
simulators to evaluate the different MAB strategies of our
study, it is essential that the simulators reflect some of the
important features that would be encountered when dealing
with the real-world domain. The remainder of this section
describes the design and rationale for these simulators.

A. Human Step Behavior Modeling

In both simulation environments, the task of the agent is to
maximize the daily steps of the virtual players in an exergame
or health study. The only thing that can be manipulated by the
agent is the selection among three variants of the intervention
that the player will see each day. The task is formulated as an
MAB problem in which the agent will sequentially select from
k = 3 arms A1,...,3 one choice for each player to maximize
the reward ρt (i.e., daily steps) observed each day t over the
course of the study’s horizon h.

To generate a realistic reward from the virtual players
in our simulators, we used data from a Mechanical Turk
experiment conducted in 2016 by Furberg et al. [18] that
collected participants’ daily steps measured by a Fitbit. After
removing outliers (values less than 100, n = 20), we graph
the data (n = 1665) as a histogram in Figure 1. After
confirming the data to be not normally distributed, we fit
a Gamma distribution based on literature regarding human
walking patterns and other intermittent behaviors [19], [20].
The probability density function for Γ(k = 2.8, θ = 3100) is
included in Figure 1.

B. Stationary Step Simulator

In our first simulator, which we call the stationary step
simulator, we generate daily steps for each virtual player by
drawing randomly from this Gamma distribution. However, we
note that the nature of human walking behavior is not fully
replicated by this approach, even if we are able to generate
data that matches this distribution in aggregate. Therefore, we
pursue a higher degree of fidelity in our second simulator,
discussed below.

C. Pattern Step Simulator

Many human activities are habitual, bound to routine, and
exhibit cyclical patterns [21]. For example, if presuming a
societal convention of planning routine activities within a 7-
day week, it’s reasonable to expect that an individual’s walking
patterns on the first day of that week would correlate with their
walking patterns on the first day of other weeks. Thus, in our
second simulator, which we call the pattern step simulator, we
aim to exhibit this correlative and cyclical nature of daily step



Fig. 1. Histogram of daily step recordings collected from participants in a
Mechanical Turk experiment [18] (n = 1665) overlayed with the probability
density function for Γ(k = 2.8, θ = 3100).

behavior while maintaining adherence to the overall expected
distribution.

Specifically, to estimate the degree to which prior days’
steps might predict the current day’s steps, we constructed
a regression model from the sequential step data using the
seven days prior to a given step count as the features of the
regression:

St = C +

7∑
i=1

βiSt−i (1)

An Ordinary Least Squares (OLS) regression revealed the
coefficients β for these features, with which we employed
backward elimination to construct a minimal model, sequen-
tially removing the features that showed the least statistical
significance until only those with p < 0.05 remained. All
features survived this process with p < 0.001 except St−5,
the number of steps five days prior to the current day. The
resulting coefficients are presented in Table I.

To prime the steps for the first seven days, we simply pull
from a Gamma distribution with k = 2.8 and θ = 3100 as with
the stationary step simulator. After that (i.e., when t > 7), the
step count is generated as follows:

St = C +

7∑
i=1

βiSt−i + g, g ∼ Γ(k, θ) (2)

where β is the set of coefficients listed in the Mechanical
Turk column of Table I, β5 = 0, C = −3000, k = 1.1, and
θ = 3500. If St is negative, it is discarded and a new value is
sampled.

To verify the accuracy of the simulator, results of an
experiment of 500k daily steps is presented in Figure 2, where
a histogram of the resulting probability density overlays a
histogram of the original Mechanical Turk data. Additionally,
we performed the same regression procedure with backward
elimination on this data to verify that it resulted in a model
with precisely the same significant features and similar coeffi-
cients. The results can be seen in the third column of Table I,

Fig. 2. Histogram (red) of daily step recordings collected from participants in
a Mechanical Turk experiment [18] (n = 1665) overlayed with a histogram
(blue) of the steps generated by the pattern step simulator (n = 500k).

TABLE I
SIGNIFICANT LINEAR REGRESSION COEFFICIENTS (p < 0.001) FOR STEP
DATA RESULTING FROM MECHANICAL TURK [18] (n = 1665) AND STEP
SIMULATOR (n = 500k) EXPERIMENTS. St−5 INTENTIONALLY OMITTED.

OLS Regression Coefficients β
Feature Mechanical Turk Step Simulator
St−1 0.2599 0.2540
St−2 0.0984 0.0952
St−3 0.0851 0.0827
St−4 0.1337 0.1274
St−6 0.1300 0.1281
St−7 0.1833 0.1826

verifying that the trends in our generated data match those
observed in the real-world data.

We thus have a step simulator that both 1) reflects the
observed real human step distribution and 2) maintains relative
correlations observed in the real human daily step data. Let
us now formulate the MAB problem used for evaluating our
approach.

D. MAB Arms

The step value St generated for a simulated user on a given
day t is influenced by the arm selected by the MAB strategy.
Specifically, each arm is defined by an adjustment range [l, h].
When the MAB strategy selects an arm, an adjustment value r
is uniformly sampled from the interval [l, h], and the observed
reward ρt is calculated as follows:

ρt = St ∗ (1 + r) (3)

The intuition is that these adjustment values would represent
the degree to which a selected intervention could influence the
number of steps the player would walk. Specifically, positive
adjustment values indicate that the player would walk more
steps as a consequence of the intervention, and negative values
indicate the opposite. In this scenario, we devised a bandit
that would select from three potential interventions, and the
adjustment ranges for each of these three arms (A, B, and C)
are shown on the third column of Table II.



TABLE II
MAB ARMS

Arm Name Oracle Value Oa Adjustment Range
A -.2 [-0.2, 0.0]
B -.1 [-0.1, 0.1]
C 0 [0.0, 0.2]

IV. APPROACH

To address the short horizon problem that arises in our
motivating domain, we explored three ideas: (1) improving
the oracle used by the MAB strategies, (2) employing fixed
exploration patterns, and (3) exploring the efficacy of a col-
lection of MAB strategy families, including a new adaptive
variant of UCB which we call UCBT. We describe these three
ideas below.

A. Regression Oracle

A typical MAB strategy, such as ε-greedy, will remember
the rewards received for each pull of each arm and estimate
the expected reward of a given arm by calculating the mean
of those previously observed rewards. We call this calculation
procedure the oracle used by the strategy to predict the
expected reward of a given arm at the current time step. The
policy for such a strategy only needs to compare the expected
values for the rewards of all arms to determine which it
should pull to receive the greatest reward. Other strategies like
UCB1 additionally incorporate an estimation of the confidence
interval to choose which arm to pull at each time step.

However, we note that these types of oracles make two
assumptions inherent to the standard MAB problem formu-
lation: (1) they assume reward distributions are stationary,
and (2) they assume reward distributions of different arms
are unrelated. Both of these assumptions are violated in our
motivating domain (and in any domain involving repeatedly
interacting with the same human subject). Standard approaches
for non-stationary rewards (see Section II) such as weighted
averages with decaying weight for past observations would
not be useful in our short horizon setting; they would not be
sample-efficient enough, nor would they leverage the type of
patterns observed in human walking behavior.

To address this, we propose replacing the standard oracle
used in MAB strategies with a regression oracle that makes a
prediction based on not only the past observed rewards for a
given arm, but on all past observed rewards. We implement this
regression oracle by collating the previously observed rewards
into a linear regression model, one that is capable of potentially
capturing some of the temporal patterns we anticipate to be
present in the generated step data. We expect this model to
provide more accurate predictions of the expected values of
arm rewards than simple means of past observations.

Specifically, at a given time step t our regression model
takes an input vector x̂t,a = (ρt−1, ..., ρt−m, Oa), containing
the observed rewards for the past m iterations (m = 7 in our
experiments), and Oa, which indicates the arm a for which we
desire to generate a prediction (values of Oa for each of the 3

arms in our experiments are shown in Table III). The model is
trained to predict ρt,a, the expected reward we would obtain
when pulling arm a at time t.

Each time an arm is pulled and a reward observed, an
OLS regression is performed on all the past observations to
determine an updated set of regression coefficients β. The next
time (t) an arm must be selected, a predicted reward value ρ̂t,a
is calculated for each arm a as follows:

ρ̂t,a =

m∑
i=1

βix̂t,a,i (4)

Notice that this is a strict generalization over calculating
the mean; if there are no temporal correlations that can be
exploited, the β parameters corresponding to the reward for
the past m time steps will converge to either: (a) 0, and the
coefficient for the Oa parameter will converge to the mean
reward for arm a divided by Oa, or (b) a uniform distribution,
and the coefficient of the Oa term will be used to distinguish
the reward of each arm. However, if temporal patterns or
correlation among arms do exist, this oracle will be able
to exploit them. More elaborate regression models could be
devised, but given that we are focusing on the short horizon
scenario and we cannot expect the model to be trained with
more than a few dozen data points, simple linear regression is
justified.

Also, we note that this formalization is very reminiscent
of a contextual bandit, where we could consider the rewards
observed over the past m steps as the context vector. Moreover,
we are also aware that because the observed rewards in the
previous time steps depend on the arm being pulled, we are
violating one of the basic assumptions of the MAB problem
formulation–namely, that the bandit should be stateless, and
previous arm selections should not affect future rewards. Our
problem therefore resembles more a reinforcement learning
setting than a bandit setting. However, we choose to approach
it with MAB strategies due to the focus on short horizon;
introducing the notion of state would imply more parameters
to estimate in the model and would thereby decrease sample
efficiency.

B. Exploration Patterns

Most bandit strategies, such as ε-greedy, rely on stochastic
exploration of the arms. However, in short horizon settings,
stochastic exploration might not be appropriate, and alternative
strategies that perform heavier exploration at the beginning
have been proposed. In order to determine the behavior of
different exploration patterns, we compared a range of MAB
strategies in both step simulators:

1) UCB [7]: selects the arm with the highest potential
reward based on confidence intervals around the average
of past rewards.

2) ε-greedy: selects the “best” performing arm except when
(with probability ε) it explores by choosing a random
arm.

3) ε-decreasing: similar to ε-greedy, except with explo-
ration probability 1/tε.



TABLE III
PARAMETERS FOR STRATEGIES IN BOTH SIMULATION ENVIRONMENTS.

Strategy Stationary Step Simulator Pattern Step Simulator
UCB1 C = 2500 C = 1600
ε-greedy ε = 0.11 ε = 0.03

ε-decreasing ε = 0.7 ε = 1.0

Additionally, for each of the strategies we explored the idea
of forced exploration periods in which the MAB strategy is not
permitted to engage its policy until each arm has been explored
a specified number of times. During the forced exploration
period, all arms are pulled an equal number of times, but
the order in which they are pulled remains random. It is
worth noting that we did not include the ε-first strategy, as
we view ε-first to be simply ε-greedy with forced exploration,
a modification that could be similarly applied to any MAB
strategy. Moreover, although this is only strictly necessary for
UCB strategies, in our experiments all strategies (UCB, ε-
greedy, and ε-decreasing) still undergo a forced exploration
period of one pull per arm (in random order) to establish
an estimate for the mean reward for each arm. Thus, in our
experiments, when we label a strategy with forced exploration,
we refer to a forced exploration period of four pulls per
arm before engaging the strategy’s policy, whereas no forced
exploration refers to forced exploration of just one initial pull
per arm.

C. UCBT Strategy

The UCB1 algorithm leverages the Chernoff-Hoeffding
bounds [7] to provide an estimate of the upper confidence
bound for a reward distribution derived from the observed
rewards and a variance factor based on the number of observa-
tions. For reward distributions not confined to [0, 1], often an
additional exploration factor C is also included to empower
the variance factor to influence the oracle’s valuation to a
degree appropriate for the scale of rewards:

UCB1a = x̄a + C

√
2 ln t

na
(5)

where x̄a is the mean of the rewards observed so far for arm
a, na is the number of times arm a has so far been selected,
and t is the current time step.

UCB1 is a popular strategy but may hold disadvantages
in some applications. For instance, not every scenario can
normalize rewards to [0, 1], such as when rewards have no
upper limit. In these cases, the C factor must be specially tuned
to the scenario in order for the strategy to work effectively.
However, some applications do not provide a means for pre-
sampling and tuning this factor, in which case UCB1 may
underperform.

In our scenario, rewards are unbounded, and thus to address
this problem, we designed an alternative strategy UCBT that
considers traditional statistical confidence bounds using sam-
ple variance. Because the variance factor calculation includes
this consideration for the scale of rewards, the additional ex-
ploration factor C is no longer required. UCBT does presume

normality in the underlying reward distribution and therefore
constructs a confidence interval using Student’s T distribution.
The critical value t∗ used in our experiments was drawn from a
T -distribution lookup table with a 1-sided critical region and
99% confidence. We used a factor from a standard normal
distribution (t∗ = 2.326) when degrees of freedom exceeded
200.

Specifically, on pull t, UCBT selects the arm a for which
the following yields the greatest value:

UCBTa = x̄a + t∗
sa√
na

(6)

where sa is the sample standard deviation of the rewards so
far observed for arm a. We must note that UCBT will not
function properly when all observations are identical (i.e.,
sample variance is zero). Also, prior to engaging its policy,
UCBT requires each arm to be selected two times in order
to establish an estimate for confidence interval for each arm;
this results in what is effectively a forced exploration period
of two pulls per arm.

The next section presents experimental results to evaluate
each of the three ideas considered in this paper to address the
short horizon bandit problem in our target domain.

V. EXPERIMENTAL EVALUATION

To evaluate our ideas, we compared six different bandit
strategies: UCB1, UCBT, ε-greedy, ε-decreasing, ε-greedy
with regression oracle (ε-greedy regression) and ε-decreasing
with regression oracle (ε-decreasing regression). For each of
the strategies above that required tuning a parameter, we ran
a series of experiments (each running 10 million times with
a horizon h = 70) over potential values for their respective
parameters (i.e., C or ε) to find the value at which the strategy
performed the best against our simulations. Table III contains
the values we used in our experiments.

We conducted several experiments in which all six MAB
strategies were evaluated, and we discuss the performance
of the MAB strategies in the following contexts: (1) in the
stationary step simulator, (2) in the pattern step simulator, (3)
with a four-period forced exploration phase in both simulators,
and (4) in an evaluation of UCB1 vs. UCBT.

All experiments were conducted with a horizon of h = 70
(i.e., 10 weeks if assuming daily interaction with a player),
which is a significantly shorter horizon than what is usually
considered in the bandit literature. For each strategy and
experiment, we recorded the rewards observed at each of the
70 time steps of the experiment, and we report the average of
1 million runs.

A. Results in the Stationary Step Simulator

The reward distribution in the stationary step simulator
is fixed, and the steps generated one day do not hold any
correlations to steps from previous days. Average rewards
across all steps from t = 1 to t = 70 for each MAB strategy
(without forced exploration) can be found in the left columns
of Table IV, and average reward over time is shown in the
upper graph in Figure 3.



Fig. 3. Average reward over time for different MAB strategies without forced
exploration (above) and with forced exploration (below) in the stationary step
simulator.

TABLE IV
AVERAGE REWARDS IN STATIONARY STEP SIMULATOR (h = 70)

No Forced Exploration Forced Exploration
Overall Last 7 Days Overall Last 7 Days

UCB1 8989.7 9114.5 8982.8 9129.6
UCBT 8949.8 9096.0 8946.6 9097.8
ε-greedy 8919.6 9001.9 8947.0 9064.1
ε-decr. 8930.1 9022.0 8956.7 9083.2

ε-greedy reg. 9087.4 9216.4 9034.7 9207.8
ε-decr. reg. 9003.7 9141.3 9036.7 9213.8

TABLE V
AVERAGE REWARDS IN PATTERN STEP SIMULATION (h = 70)

No Forced Exploration Forced Exploration
Overall Last 7 Days Overall Last 7 Days

UCB1 8538.3 8586.0 8542.2 8616.6
UCBT 8506.4 8597.2 8500.0 8594.6
ε-greedy 8525.6 8560.4 8532.8 8602.7
ε-decr. 8531.4 8577.4 8531.6 8612.0

ε-greedy reg. 8648.7 8713.6 8606.8 8712.0
ε-decr. reg. 8607.6 8695.9 8609.4 8724.1

The first thing we observe is that even in the stationary
step simulator where there are no temporal correlations among
steps, the strategies with the regression oracle still outper-
formed the other four strategies. In strategies that do not use
the regression oracle, the expected rewards of each arm are
calculated independently from each other. However, in the
case of the regression oracle variants, rewards observed for all
previous iterations (including those for other arms) are used for
estimating expected reward. Since in our scenario the rewards
of different arms are correlated (i.e., they all correspond to the

Fig. 4. Average reward over time for different MAB strategies without forced
exploration (above) and with forced exploration (below) in the pattern step
simulator.

number of daily steps for the same player), this enables the
regression oracle to estimate the expected reward of each arm
earlier and more accurately.

B. Results in the Pattern Step Simulator

As discussed above, the pattern step simulator attempts to
structure a temporal correlation among daily steps that reflects
the relationships observed in real human walking behavior.
Average rewards across all steps without forced exploration
in this simulator are shown in the left columns of Table V,
and average reward over time is shown in the upper graph of
Figure 4.

In the experiment without forced exploration, the regression
oracle strategies struggle in the early steps as the regression
models begin to populate with observations. However, these
two strategies very quickly overtake the other four strategies
once enough data has been collected. Interestingly, notice that
this happens as early as step 10, indicating that the regression
oracle requires very little data to start making a difference.
We also observe that the more clustered rewards of the pattern
step simulator allow the strategies to converge in performance
to a greater degree than the higher variance rewards of the
stationary step simulator.

Most important, these experiments strongly support our
expectations regarding the regression oracle’s advantage when
working with data containing temporal patterns.

C. Forced Exploration Results

These same experiments were repeated with a forced explo-
ration period of four pulls per arm, the results of which are
presented in the right-hand side of Tables IV and V for the



stationary and pattern step simulators respectively. The lower
graphs in Figures 3 and 4 show the average rewards observed
by the MAB strategies over time.

Results show that the relative order in performance among
the six MAB strategies does not change (with the exception
of ε-decreasing regression slightly outperforming ε-greedy
regression). The use of forced exploration endures a cost of
lower rewards during the forced steps with the expectation of
higher rewards afterward to reclaim that cost. Looking at the
Last 7 Days columns in Tables IV and V, comparisons can be
made for any of the MAB strategies regarding performance
with and without forced exploration. As it can be seen, forced
exploration strategies generally obtain a higher reward in the
last time steps than strategies without forced exploration.
However, because of the lower reward early on, the average
reward across the whole experiment is generally lower or even.
Therefore, we conclude that if the target horizon in a given
application domain is very short (even shorter than our horizon
of 70), forced exploration may not provide advantage in our
domain, but it may still be advantageous in scenarios with
(short) horizons longer than 70.

D. Results of UCBT Exploration

In the results presented in the previous sections, it may
appear that our new strategy UCBT is outperformed by UCB1.
However, those results correspond to UCB1 using C = 1600,
which was the parameter value that performed the best in
our pre-experiments. However, if C is not correctly tuned,
UCB1 can significantly underperform. Figure 5 displays the
results of UCBT versus UCB1 with different values for C.
We show results both for a well tuned value (C = 1600) as
well as a poorly tuned value (C = 10000). UCBT is scenario-
agnostic and does not require any parameters or preparatory
tuning. As the results demonstrate, UCB1 with an appropriate
C parameter excels in the early pulls and throughout the
experiment, while the UCB1 strategy with the inappropriate
C parameter struggles. The UCBT strategy has a slower start
due to the two-period forced exploration required to construct
variance metrics for each arm; however, UCBT quickly catches
up to match the performance of the optimal UCB1 in a
relatively short horizon test. Thus, we believe UCBT is an
promising strategy for real scenarios where it is not possible to
tune the C parameter beforehand. An example might be when
we deploy our MAB strategies with real human players and
find that some exhibit step distributions significantly different
from those used to generate the simulators in this paper, where
each would require different values for C.

VI. DISCUSSION

One of the main contributions of this paper is the idea of
using a regression oracle in multi-armed bandit strategies. The
key idea is that rather than calculating the expectation over all
the previous pulls of an arm to estimate the expected reward
for that arm, we build a linear regression model that takes into
account all the data obtained from the problem (including pulls
from other arms). We argue that in real-world bandits, where

Fig. 5. Comparison among three UCB variants in the stationary step simulator.
The UCBT strategy (which requires no parameter tuning) approaches the
performance of the UCB1 strategy with a well-tuned C parameter and
outperforms the UCB1 strategy with a poorly tuned C parameter.

each arm might represent a possible action in a given game or a
potential intervention for a human subject, often the different
arms are correlated: the subject for which we are choosing
an action may present general characteristics that consistently
influence rewards independent of the selected arm. Therefore,
by using all the available information, we are able to learn
these general trends and converge to an accurate estimation of
the expected reward of an arm faster than when considering
only the rewards of each arm independently. Of course, linear
regression is just one among the many possible regression
techniques that could be used.

As part of our future work, we would like to analyze regres-
sion oracles in different stochastic bandit problem scenarios
to better understand the potential benefits. For example, in
the case where there are no temporal trends in the reward
function but arm reward functions are still correlated, we
hypothesize that a regression oracle will still provide the
benefit of estimating the expected reward of an arm faster
than traditional methods. If this is true, we should be able
to replicate its effect with a simpler oracle that considers the
deviation of new rewards from the mean of all rewards so far
observed. This is a hypothesis we would like to test in the
future, as it could result in new bandit strategies that perform
better than existing ones in short horizon situations.

Notice that in the long horizon setting, we should see no
benefits from a regression oracle unless there are temporal
trends in the reward function. In the limit, the bandit strat-
egy’s reward estimates should converge to the real rewards,
regardless of whether it uses data from arms together or
independently. Therefore, our strategies should have the same
theoretical properties as existing strategies in the limit (e.g.,
linear cumulative regret for ε-greedy or logarithmic for ε-
decreasing). We would therefore like to emphasize again that
the main contribution of our work is in improving the behavior
of bandit strategies in very short horizon scenarios, which have
been understudied in the literature, but are more realistic when
applying bandits to problems involving humans.

Concerning our new strategy UCBT, this paper only showed



empirical results without any theoretical bound on regret
growth. Our intuition is that UCBT should still have loga-
rithmic cumulative regret growth like UCB1, but building a
proof is still part of our ongoing work. As our experiments
demonstrate, however, UCBT showed superior performance
than a poorly tuned UCB1. When compared to a well tuned
UCB1 strategy, UCBT struggles initially, though it appears
to quickly catch up in our short horizon scenario. This is
interesting for two reasons. First, it means that UCBT might be
more appropriate when we need to deploy an MAB strategy to
a real-world problem for which we do not have sample data
beforehand and cannot tune C in advance. Second, UCBT
might be useful beyond just standard bandit problems. For
example, when algorithms such as MCTS [22] are applied to
games where rewards are not clearly bounded, the challenge
of finding a C that works well for all nodes in the MCTS
tree might invite UCBT as an interesting alternative. We plan
to study these possibilities and thoroughly analyze UCBT’s
theoretical properties in our future work.

Finally, we would like to reiterate that although the scenario
where a bandit interacts repeatedly with the same human
is often modeled as an MAB problem (as we do in this
paper), it violates some of the basic assumptions of the MAB
problem formulation. In particular, when an arm represents
an intervention, it will by design influence the subject and
thereby alter the reward function for future iterations. Strictly
speaking, this is closer to reinforcement learning (as there is
state) than bandits (which are stateless). However, as we have
shown, it is still possible in practice to use MAB strategies in
these problems with good performance.

VII. CONCLUSION

This paper focused on the problem of short-horizon multi-
armed bandits, where we can only expect to have a small
number of iterations to interact with the environment. These
short-horizon problems are common in real-world situations,
such as when using bandits to interact with human players in
games (for example, for player modeling [6]), but they have
been understudied in the literature. We presented three key
ideas: regression oracles, a comparison of different exploration
strategies with forced exploration in the short horizon setting,
and a new variant of the UCB1 strategy called UCBT.

Our results show that regression oracles do not only help
in the case where there are temporal patterns in the reward
function, but also in the absence of such patterns when reward
functions of different arms are still related. Our UCBT strategy
was found to approach the performance of UCB1, but without
any parameter that required tuning ahead of time. Regression
oracles applied to standard ε-greedy or ε-decreasing strategies
were found to be the best strategies among those we experi-
mented with in the short horizon setting.

As part of our future work, we would like to extend the idea
of regression bandits to apply them to UCB-style strategies,
where the confidence term would be replaced by an estimation
of the confidence bound of the linear regression estimator.
We would also like to analyze the theoretical properties of

both UCBT and the inclusion of a regression oracle in ε-
greedy strategies. Finally, in our current work, we have been
deploying these ideas for player modeling in the context of
exergames [6].
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modeling via multi-armed bandits,” in in Proceedings of the 15th
International Conference on the Foundations of Digital Games, 2020.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, May 2002.

[8] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[9] V. Kuleshov and D. Precup, “Algorithms for the multi-armed bandit
problem,” Tech. Rep., 2000.
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