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Abstract—Before chess came to Northern Europe there was
Tafl, a family of asymmetric strategy board games associated
strongly with the Vikings. The purpose of this paper is to study
the combinatorial state-space complexity of an Irish variation of
Tafl called Brandubh. Brandubh was chosen because of its asym-
metric goals for the two players, but also its overall complexity
well below that of chess, which should make it tractable for strong
solving. Brandubh’s rules and characteristics are used to gain an
understanding of the overall state-space complexity of the game.
State-spaces will consider valid piece positions, a generalized rule
set, and accepted final state conditions. From these states the
upper bound for the complexity of strongly solving Brandubh is
derived. Great effort has been placed on thoroughly accounting
for all potential states and excluding invalid ones for the game.
Overall, the upper bound complexity for solving the game is
around 10

14 states, between that of connect four and draughts
(checkers).

Index Terms—Asymmetric, State-Space, Strong Solve, Upper
bound, State-Space Transformation

I. INTRODUCTION

Tafl refers to a family of asymmetric games played on an

n×n square checkered board, similar to chess [1]. These Tafl

games were most popular until about the 12th century when

they were largely supplanted by chess [2], though they were

observed being played in Lapland as late as the 1700’s [3]. The

rules to Tafl games were only recorded in a few places, and

are continually undergoing revision for both their historical

state and to build a balanced rule set for today’s players [4],

[5], [6].

What makes Tafl games asymmetric and different from

chess is the ratio of pieces on each side. The attackers

outnumber the defenders by 2 : 1. The defenders begin in the

middle of the board surrounded by attackers, the organization

of which differs in the Tafl variants. The goal of the defenders

is to break out of the attacker’s encirclement as to have

the king reach one of the four corners, or to eliminate all

attackers, while conversely the attackers are trying to complete

the encirclement to capture the king. These games are similar

to Fox Games [7]. For the purpose of this paper, the 7 × 7
Brandubh variation shown in Figure 1 [8] of Tafl will be

considered [5].

The Tafl family of games is not well studied from a theoretic

or complexity perspective, and therefore state complexities

are relatively unknown. These games are asymmetric, though

Figure 1. Brandubh board initial piece layout. Black are attackers, white are
defenders, with the King in the center.

they should be analyzable using symmetric decomposition [9]

to determine advantageous game play for each player. Given

the symmetric nature of the piece movement rules, role-based

symmetrization and training agents should be able to perform

both roles of attacker and defender [10], [11]. The symmetric

nature of the moves should reduce training time in computer

agents using these methods. This becomes especially important

as work on Tafl games moves to evaluating proposed rule

changes to make the games more balanced by allowing agents

to be trained quickly and efficiently as rules change.

Brandubh was chosen from among the other Tafl variants

for state-space analysis as it has the simplest rule set, and is

played on the smallest board. The simplicity will allow for a

more accurate calculation of the upper bound as well as the

ability to expand the understanding of other variations. The

total complexity will also be most likely to allow for future

work to weakly or strongly solving Brandubh.

II. MOTIVATION

Our motivation for strongly solving Brandubh is to build and

test AI agents of varying difficulties. We hope to eventually
978-1-7281-4533-4/20/$31.00 ©2020 IEEE

http://arxiv.org/abs/2106.05353v1


extend the agents to include other variations of Tafl board

games as well.

The importance of exploring asymmetrical analysis is ap-

parent when considering its widespread applications. Not

only is it relevant in developing game theory, but it is also

proving useful for medical diagnosis based on neuro-imaging

techniques such as MRI and CT scan results [12].

The work on Tafl games could be valuable when addressing

asymmetric game theory analysis. The most notable concern

is in relation to cyber security. The U.S. Military has been

creating AIs for weapon systems using asymmetry, which has

further tempted the development of adversarial AIs related

to it. These are intended to influence false predictions in

their machine learning models that will result in unexpected,

and possibly lethal behavior [13]. Exploring not only the

total complexity of Tafl games, but continued mechanisms of

how to build functional AI agents to compete in adversarial

asymmetric situations can contribute to security applications.

III. RELATED WORKS

This work focuses on estimating the total number of game

states possible in a game of Brandubh. The most famous

similar work was by Shannon [14] in estimating the number

of games available in chess. In Shannon’s work, he looked

at the number of possible moves, the length of average

games, and any rules that would limit the state-space and

came to an initial number of 10120 games. That number

has been reduced through eliminating invalid moves, position

transposition, handling ties, and focusing on sensible moves.

This has brought the state-space to around 1040. Other games

have similar analyses performed, such as Connect 4 with about

213 positions [15], domineering with 215 [16] positions, and

draughts (checkers) at 1020 positions [17]. This paper presents

a similar analysis for Brandubh, and by extension, the other

Tafl games.

There are few papers addressing the state-space analysis of

Tafl, or Brandubh specifically. One such analysis was done by

Slater, who roughly estimates Hnefatafl (played on an 11×11
board) at 1043 [18]. Slater’s work did not account for move

transpositions and corner states included in this Brandubh

analysis.

A more complete complexity analysis of a similar game

was done by Galassi, which addressed Tabult [19]. Tabult is

a Tafl game played on a board larger than Brandubh, with a

9×9 tile board. Galassi divided the move space into subspaces

and handled more of the possible state space reductions than

Slater’s work. Galassi’s conclusion is that Tabult’s complexity

is roughly the same as Draughts (checkers). The authors of

this work on Brandubh used some of Galassi’s approaches for

handling state space reductions in Brandubh.

IV. BRANDUBH RULES USED

A. Setup

For all Tafl variations, the game board is a perfect square.

The Brandubh game board, shown in Figure 3, can be thought

of as a two dimensional array consisting of 7 rows and 7

Figure 2. Game piece representations, in order from left to right: King,
defender, attacker.

Figure 3. Brandubh Initial Game Board Layout

columns. It has a standardized setup that includes a king, four

defenders, and eight attackers. The king always starts in the

very center of the board at position 4× 4. This square of the

game board will henceforth be referred to as the throne. The

four defenders start the game adjacent to the king, and the

8 attackers fill the remaining spaces in row 4 and column

4. The king will be represented by a heart, the defenders

by a diamond, and the attackers by a four point star. Each

representation is pictured in Figure 2.

B. Board Layout

All the sub-cases for Brandubh can be described with the

colored tiles used in Figure 4. Each colored tile represents

events in which the king is standing on that tile type. OT

(Red Tile) is abbreviated for On Throne; situations in which

the king is on the throne. ATT (Teal Tiles) is abbreviated

for Adjacent To Throne; situations in which the king is

adjacent to the throne. OA is abbreviated for Open Area;

situations in which the king is not adjacent to an edge, or

horizontally/vertically adjacent to the center. This section is

divided up into 3 separate sub-cases: DOA (Purple Tiles) is

abbreviated for Diagonal Open Area, COA (Orange Tiles) is

OT ATT DOA COA ADA OEC ENA ATC COR

Figure 4. Color Key for Game Board States



abbreviated for Center Open Area, and ADA (Yellow Tiles)

is abbreviated for Adjacent to Diagonal Open Area. OEC

(Pink Tiles) is abbreviate for On Edge Center; situations in

which the king is in the center of the edge of the board.

ENA (Green Tiles) is abbreviated for Edge Non Adjacent;

situations in which the king is on the edge of the board, not

a center edge piece, and not adjacent to the corner tile. ATC

(Brown Tiles) is abbreviated for Adjacent To Corner; situation

in which the king is adjacent to a corner tile. COR (Black

Tiles) is abbreviated for Corner; situations in which the king

is in the corner tile.

C. Movement

In Brandubh, movement is standardized. Every piece may

move any number of squares vertically or horizontally across

the board. Piece jumping is not allowed, and two pieces may

not occupy the same space. The king may not return to the

throne after leaving it, and both attackers and defenders are

never allowed to rest on the throne. The rules of Brandubh

state any piece may move through the throne at any time.

However, to aid in the simplicity of calculations this was

considered an illegal move.

D. Capture

A capture is defined as any move which results in the

removal of a piece from the board. Across all Tafl games,

captures primarily involve trapping a piece between two hos-

tiles, though there are game specific variations. Pieces may

only be captured by hostiles which are adjacent to them, and

diagonal captures are never allowed. In Brandubh, the edges of

the board may not be considered hostile in captures. It should

also be noted the side which is making the capture must be the

side to initiate the move. The Brandubh variation allows for

the king to participate in captures, slightly skewing the 2 : 1
ratio. Brandubh also allows for the king to be captured like

any other piece, provided it is not resting on the throne or an

adjacent square. If the king is on or adjacent to the throne, the

king is only captured if surrounded by hostile squares. Each

valid capture scenario has been considered and is explained in

the following sections.

1) On Throne: When the king is on the throne, four attacker

pieces are required for capture.

Figure 5. On Throne Capture

2) Adjacent to Throne: When the king is in a cell adjacent

to the throne, three opposing pieces are required for capture.

3) Hostile Throne: When the throne is not occupied by the

King, the throne is considered hostile, and therefore can be

used to help capture pieces by either attackers or defenders.

Figure 6. Adjacent to Throne King Capture

Figure 7. Hostile Throne

4) Off Throne, Off Edge: When any piece is not adjacent

to or on the throne and it is not on an edge or corner, it is in

an open area. In order for a capture to happen, the side trying

to capture must move into a position such that the piece being

captured is between two capturing pieces occupying the same

row or the same column.

Figure 8. Open Area Capture

5) Hostile Corners: A corner piece may be considered

hostile by both attackers and defenders.

Figure 9. Hostile Corner Capture

E. Win Scenarios

In Brandubh, and all Tafl games, there are three win

conditions:

1) Attackers win if the king is captured

2) Defenders win if the king reaches a corner square

3) Defenders win if all attackers are captured

Additionally, if the same board state is repeated three times

in a row, the game is a draw.

V. CALCULATIONS

A. Naı̈ve State-space Complexity

A naı̈ve approach to calculating the state-space complex-

ity of Brandubh would be to consider every possible state

stemming from the initial state. We call the rough estimation

UBnaive, which is described as:

UBnaive = 25 × 444 (1)

≈ 9.91× 1027

The purpose of the calculations within this paper are to cal-

culate the most accurate upper bound possible by considering

as few illegal moves as possible. The simplifications made to

UBnaive are explained in the proceeding sections.



B. Rotations and Mirroring

The game board used by Brandubh is a perfect square, and

as such can be divided into four equally sized quadrants. This

equality can be used to simplify UBnaive into what we will

refer to as UBtight, by treating mirrors or rotations of each

quadrant as one state. That is, if a piece occupies the square

3 × 2; through mirroring it is the same as occupying square

3× 6 or 5× 2, or through rotation it is the same as occupying

square 5× 6.

C. Definitions

In order to simplify the calculation of states, the board has

been broken down into sections. The sections to be considered

are the throne, the corners, the cell the king occupies, and the

cells adjacent to the king. The various types of game pieces

will be referenced by the following variables:

• Attackers: a

• Defenders: d

The variable k will represent all the tiles on the board minus

the four corners, the throne, the tile the king is on, and the

king’s adjacent tiles. The following equation will be used to

calculate the set of possible state variations, given the variables

a, d, and k.

P
(a,d)
k =

k!

a!d!(k − a− d)!
(2)

We will use a single variable Kronecker delta, δn, to denote

if there is at least one attacker adjacent to the King. The

necessity of δn becomes clear when accounting for capture

states. The function is as follows:

δn = δ0,n =

{

1 if n = 0

0 if n 6= 0
(3)

Next, let ar be the number of hostiles adjacent to the

king and dr the number of defenders. Note that ar and dr
can individually range from 0 to n, where n is the total

number of open spaces adjacent to the king. Similarly ar+dr
can range from 0 to n. Now, consider the case where the

king is surrounded, ar = n. Let A be a single row vector

where An represents the number of unique arrangements

that make this possible. A single row vector is needed for

simplifying equation (4). With ar surrounding attackers and

dr total defenders. Let D be a 2 dimensional vector where

Dar,dr
represents the number of unique arrangements of the

surrounding attackers and defenders. Now, given n spaces

around the king and k spaces non-adjacent to the king that are

occupiable by either attackers or defenders, let f(n, k,A,D)
calculate the number of unique states that can arise:

f(n, k,A,D) =

n−1
∑

ar=0

Aar

n−ar
∑

dr=0

Dar,dr

8−ar
∑

a=δar

4−dr
∑

d=0

P
(a,d)
k

(4)

D. Upper Bound of Non-End Sates

D is populated by the values of ar and dr. Each column of

the matrix represents the number of defenders being consid-

ered from 0 to 4, and each column the number of attackers in

the same range. To make the process used for all non-end state

calculations clear, the process for the first case is explicitly

shown. However, the function specified in (4) will be used to

represent the remainder of the cases.

• On Throne (OT)

OT is the case where the king has not left its initial

position. The throne is shown as the red tile in Figure 3.

The calculations for all states given this assertion are as

follows:

D =













1 1 2 1 1
1 2 2 1
1 2 1
1 1
0













A = [1, 1, 2, 1, 0] (5)

Let i be the count of attackers adjacent to the king.

Due to the rule of capturing a king in the center tile

requiring 4 attackers surrounding him, i has a maximum

value of 3. Ci will denote the possible cases where the

king is surrounded. In all sub-cases where the king is on

the throne and not captured, n = 4 and k = 40. The

components of on throne are:

C0 = D0,0

8
∑

a=1

4
∑

d=0

P
(a,d)
40 +D0,1

8
∑

a=1

3
∑

d=0

P
(a,d)
40 (6)

+D0,2

8
∑

a=1

2
∑

d=0

P
(a,d)
40 +D0,3

8
∑

a=1

1
∑

d=0

P
(a,d)
40

+D0,4

8
∑

a=1

P
(a,d)
40

≈ 4.99× 1012

C1 = D1,0

7
∑

a=0

4
∑

d=0

P
(a,d)
40 +D1,1

7
∑

a=0

3
∑

d=0

P
(a,d)
40 (7)

+D1,2

7
∑

a=0

2
∑

d=0

P
(a,d)
40 +D1,3

7
∑

a=0

1
∑

d=0

P
(a,d)
40

≈ 1.44× 1012 (8)

C2 = D2,0

6
∑

a=0

4
∑

d=0

P
(a,d)
40 +D2,1

6
∑

a=0

3
∑

d=0

P
(a,d)
40 (9)

+D2,2

6
∑

a=0

2
∑

d=0

P
(a,d)
40

≈ 3.14× 1011 (10)



C3 = D3,0

5
∑

a=0

4
∑

d=0

P
(a,d)
40 +D3,1

5
∑

a=0

3
∑

d=0

P
(a,d)
40

(11)

≈ 5.16× 1010 (12)

OT = A0C0 +A1C1 +A2C2 +A3C3 (13)

≈ 7.11× 1012

• Adjacent To Throne (ATT)

ATT refers to all states where the king is adjacent to the

throne, and is not being captured. These positions are

represented as blue tiles in Figure 3. The calculations for

all possible states for ATT are as follows:

D =









1 3 3 1
1 2 1
1 1
1









A = [1, 2, 2, 1] (14)

ATT = f(4, 40, A,D) (15)

≈ 9.63× 1012

• Open Area (OA)

OA refers to all states where the king is not along the

edge, adjacent to the corner, adjacent to the throne, and

is not being captured. The calculations for OA have been

broken up into 3 unique parts; Diagonal Open Area

(DOA), Adjacent to Diagonal Open Area (ADA) and

Center Open Area (COA). The breakdown into three

sections reduces redundancy by taking advantage of the

symmetry of the game board, and hence makes the overall

upper bound calculation more accurate. The three state

space calculations will be summed together and referred

to as OA for the remainder of the paper. As seen below

each of these sub-cases share the same D matrix with

different A vectors.

D =













1 4 6 4 1
1 3 3 1
1 2 1
1 1
0













ADOA = [1, 2, 4, 2, 0]

AADA = [1, 4, 6, 4, 0]

ACOA = [1, 3, 4, 3, 0]

DOA is represented by the purple tiles in Figure 3 and

can be calculated with the following summations:

DOA = 2× f(4, 39, ADOA, D) (16)

≈ 1.68× 1013

ADA is represented by the yellow tiles in Figure 3 and

can be calculated with the following summations:

ADA = f(4, 39, AADA, D) (17)

≈ 1.14× 1013

COA is represented by the orange tiles in Figure 3 and

can be calculated with the following summations:

COA = f(4, 39, ACOA, D) (18)

≈ 9.63× 1012

Using the above calculations gives:

OA = DOA +ADA+ COA (19)

≈ 3.78× 1013

• On Edge Not Adjacent to Corner (OE)

OE defines the state where the king is along the edge of

the board, but not adjacent to the corners or in a captured

state. This section is broken up into 2 subsections to take

advantage of mirroring along the center-line. These will

be called On Edge Not Adjacent to Corner Center

(OEC) and On Edge Not Adjacent to Corner Not

Center (ENA). Each of these sub-cases share the same

matrix D with differing A vectors:

D =









1 3 3 1
1 2 1
1 1
1









AOEC = [1, 2, 2, 1]

AENA = [1, 3, 3, 1]

OEC is represented by the pink tiles in Figure 3. The

calculations are:

OEC = f(3, 40, AOEC , D) (20)

≈ 9.63× 1013

ENA is represented by the army green tiles in Figure 3

and can be calculated by:

ENA = f(3, 40, AENA, D) (21)

≈ 1.14× 1013

Using the calculations above gives:

OE = OEC + ENA (22)

≈ 2.10× 1013

• Adjacent To Corner (ATC)

ATC refers to when the king is adjacent to a corner, but

not in a captive state. ATC is shown as a brown tile in

Figure 3, and its calculation is as follows:

D =





1 2 1
1 1
1



A = [1, 2, 1]

ATC = f(3, 41, A,D) (23)

≈ 1.14× 1013



E. Upper Bound of End States

In addition to all possible positions of the king where the

game does not end, those which lead to a win condition

must be considered. Unlike in the non-end state calculations,

matrices do not simplify calculations for end state conditions,

and therefore will not be used or shown. End state condi-

tions are more complex than non-end state conditions and as

such require more than one function to represent them. The

following combination will be used to reduce the redundancy

which would otherwise be included in to the Upper Bound End

States. The variable dr is still used to represent the number

of defenders adjacent to the king, and u represents how many

defenders could be adjacent to the king, with a maximum value

of 4.

(

u

dr

)

=
u!

dr!(u− dr)!
(24)

The variables y and t will be used to represent the maxi-

mum number of attacker and defender pieces which are not

adjacent to the king.

g(y, t, k) =

y
∑

a=0

t
∑

d=0

P
(a,d)
k (25)

Variable j represents possible transformations:

x(j, t, k) = j

[

t
∑

d=0

P
(0,d)
k +

t−1
∑

d=0

P
(0,d)
k + k

t−1
∑

d=0

P
(0,d)
k−1

]

(26)

h(q, k) =

[ 1
∑

dr=0

(

1

dr

) 8−q
∑

a=δq

4−dr
∑

d=0

P
(a,d)
k

+

8−q−1
∑

a=0

4
∑

d=0

P
(a,d)
k

]

(27)

• King Surrounded On Throne (KOT)

This case covers all possible combinations of valid cap-

ture states while the King is on the throne.

KOT = g(4, 4, 40)

≈ 6.91× 109 (28)

• King Surrounded Adjacent To Throne (KAT)

This case covers all cases where the king is captured

while adjacent to the throne.

KAT = 4× g(5, 4, 40)

≈ 4.61× 1010 (29)

• No Attackers Left (NAL)

NAL is the win scenario where all attackers have

been captured. For simplification, this condition has

been split into the possible scenarios leading to this state.

Final attacker being captured with one defender or

the king, and a hostile square (CE):

CE = x(2, 4, 42) (30)

= 1241244

Final attacker being captured with two defenders or a

defender and the king (CNE):

CNE = x(11, 4, 41) (31)

= 506495

Using the calculations above gives:

NAL = CE + CNE (32)

= 1747739

• King Surrounded by Two Pieces (KS)

KS refers to the scenario where the king is captured

by two attackers on either of its sides as depicted in

Figure 8. This case is completely different from the others

within this section, as it takes place in the open area, and

therefore has a unique calculation as shown below:

KS = 4

[ 2
∑

dr=0

(

2

dr

) 6
∑

a=0

4−dr
∑

d=0

P
(a,d)
39

+
1

∑

dr=0

(

1

dr

) 5
∑

a=0

4−dr
∑

d=0

P
(a,d)
39

+

4
∑

a=0

4
∑

d=0

P
(a,d)
39

]

(33)

≈ 2.59× 1012

• King Captured On Edge (KCE)

KCE finds all situations in which the king is captured on

the edge of the board, but not in the corner or adjacent

to corner.

KCE = 2× h(2, 40)

≈ 6.53× 1011 (34)

• King Adjacent to Corner (KAC)

KAC captures every instance of the king being captured

while adjacent to the corner tile, as depicted in Figure 9.

KAC = h(1, 41)

≈ 2.03× 1012 (35)

• King Corner (KC)

KC is the win condition in which the king enters any 4

of the board corners. This is represented as a black tile

and the following math:

KC = h(0, 42)

≈ 1.14× 1013 (36)



F. Report Findings

UBNE is the summation of all potential game states which

do not result in the end of the game. The summation is as

follows:

UBNE = OT +ATT +OA +OE +ATC

≈ 8.68× 1013 (37)

UBE is the summation all possible end states, and is as

follows:

UBE = KOT +KAT + CE

+ CNE +KS +KCE

+KAC +KC (38)

≈ 1.67× 1013

UBtight will be calculated by the addition of all possible

states the board can exist in.

UBtight = UBNE + UBE (39)

≈ 1.04× 1014

UBnaive was found to be approximately 9.91 × 1027 as

shown in equation (1). Our calculations for UBtight came to

be approximately 1.04 × 1014. The vast difference between

UBnaive and UBtight highlights the effects of redundancy on

the number of states.

VI. CONCLUSION

The summations presented within this paper represent a

careful estimation of upper bound state-space calculations for

the Brandubh variant among the family of Tafl games. A com-

binatorial upper bound using a naı̈ve approach of 9.91× 1027

was initially found. After applying state-space reductions when

accounting for mirrored states, board edges, special king states,

and edge cases by applying the game’s rules, a tighter bound

of approximately 1.04× 1014 was achieved.

From the results shown, it can be determined the com-

plexity is roughly between that of connect four [20] and

8x8 domineering [16]. As both connect four and domineering

are considered solved games, the conclusion can be drawn

that Brandubh is tractable for both weak and strong solving.

Checkers was solved for 1020 positions using hundreds of

computers over two decades. Newer computers, faster storage,

and being six orders of magnitude smaller than checkers

should allow Brandubh to be solvable on a much quicker

timeline.

VII. FUTURE WORK

This initial state-space evaluation should allow for updates

and variants of the game to be evaluated more quickly. All Tafl

games are being changed and updated to find game balance,

so this state-space is expected to change in the future.

These techniques and approaches to address various game

state cases should be applicable to other Tafl games. Similar

games such as Hnefatafl, Tablut, Ard Ri, Tawlbwrdd, and Alea

Evangelii are all open to continued analysis, which should

follow a similar process to the Brandubh analysis presented

here.

Based on this work showing Brandubh’s tractability, the

authors are working towards a weak and strong solving of

the game to establish the rules’ gameplay balance. This work

should also provide resources to improve AI agent develop-

ment for the Tafl family of games.

VIII. VERSION AMENDMENT

In a previous version of this work published in the 2020

IEEE Conference on Games (CoG) [21], the related works

citation of Andrea Galassi’s work done on Tablut was acci-

dentally left out during the final stages of the drafting process.

The authors apologize to Galassi for this oversight.
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