
Estimating Player Completion Rate in Mobile
Puzzle Games Using Reinforcement Learning

Jeppe Theiss Kristensen
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
jetk@itu.dk

Arturo Valdivia
Tactile Games

Copenhagen, Denmark
arturo@tactile.dk

Paolo Burelli
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
pabu@itu.dk

Abstract—In this work we investigate whether it is plausible
to use the performance of a reinforcement learning (RL) agent
to estimate the difficulty measured as the player completion rate
of different levels in the mobile puzzle game Lily’s Garden.

For this purpose we train an RL agent and measure the
number of moves required to complete a level. This is then
compared to the level completion rate of a large sample of real
players.

We find that the strongest predictor of player completion rate
for a level is the number of moves taken to complete a level of the
∼5% best runs of the agent on a given level. A very interesting
observation is that, while in absolute terms, the agent is unable to
reach human-level performance across all levels, the differences
in terms of behaviour between levels are highly correlated to the
differences in human behaviour. Thus, despite performing sub-
par, it is still possible to use the performance of the agent to
estimate, and perhaps further model, player metrics.

Index Terms—reinforcement learning, ppo, player agent,
player modelling, playtesting, autonomous agent

I. INTRODUCTION

Automatic testing of games has long been one of the
objectives of research in game artificial intelligence. The
ability to use an agent to test new content and mechanics has
the potential to dramatically reduce the cost of production of
games and improve the game designers’ workflow.

Over the years, autonomous game-playing agents have been
developed using different techniques ranging from rule based
systems to machine learning methods such as supervised
learning or reinforcement learning. While the objective in large
parts of these agents is to play the game optimally – i.e.
to solve the game – many efforts have been put also into
creating agents that behave in a way that resembles as closely
as possible the way a human player would play [4].

The purpose of human-like agents is to play a game
competently and behave in a way that is indistinguishable
from a human player to an outside observer; essentially, being
able pass a game version of the Turing test [10]. Agents of
this kind are ideal candidates to evaluate game content as the
observation of their behaviour in the game can give a more
realistic feedback to a game designer.

Creating human-like agents for game-play testing has been
explored in a number of other works. Holmgård et al. [5]
explore creating such agents using MCTS and evolving node
selection criteria in order to generate procedural player per-
sonas. Mugrai et al. [7] developed this method further and

tested it on a puzzle game comparing its scores to the ones
of a small number of human-players that participated in their
experiment.

Shin et al. [9], in order to try to mirror human players’
behaviour, train an RL agent to learn which of 5 predefined
human-like strategies to pick before picking a valid action
matching the preferred strategy.

Lastly, actual player play-traces can also be used to learn
how actual players play, which was demonstrated by Gud-
mundsson et al. [2], where a convolutional neural network
action selection policy is learned from the play-traces. How-
ever, one issue with using playtraces is that these data are
not always available, for example for a newly released game
with little or no player data, or technical limitations such as
cost of storage or tracking issues. Thus, an agent trained using
reinforcement learning may be a more viable solution.

The initial results on using RL agents for playing Lily’s
Garden in Kristensen et al. [6] show that it is indeed possible
to use an RL agent in this setting. In this research work
we expand upon this line of investigation by including more
levels and consider the next step for estimating player level
completion rate using agent performance. We investigate how
to train and use autonomous agents for estimating the player
completion rate of a number of levels in the game Lily’s Gar-
den by Tactile Games1. For this purpose, we developed a set
of Proximal Policy Optimisation (PPO) based reinforcement
learning agents [8] and evaluate how the number of steps taken
by the agent for completing the levels relate to the behaviour
of a sample of ∼900,000 players.

II. METHOD

Before outlining the experimental approach, in this section
we first present the RL setup that we use for the experiments
followed by a description of the evaluation method.

A. Reinforcement Learning Setup

To serve as a test bed for our agent, we use a custom
environment of Lily’s Garden, detailed in previous work [6].
The game board representation is a (13×9×m) array, where the
different board piece attributes are encoded in the m channels
(see Fig. 1).

1https://tactilegames.com/lilys-garden/

ar
X

iv
:2

30
6.

14
62

6v
1

 [
cs

.A
I]

 2
6

Ju
n

20
23

red orange blue yellow pink purple

clickableTrue clickableFalse isCollectgoal basicPiece bomb magic

rocketHorizontal rocketVertical hasGravity spreadable actionmask isCell

Fig. 1. Example of how the game-board of level 103 looks like left) in-game and right) how it is represented in our custom environment. The channels are
not one-hot encoded but use the hit points of the board piece, hence the different colours in the CLICKABLEFALSE and ISCOLLECTGOAL channels.

Fig. 2. Agent CNN policy setup. Each convolution uses a 2x2 kernel.

Our RL agent implementation is also based on our previous
work in [6] and follows the on-policy implementation of PPO
available in OpenAI Baselines [1] and stable-baselines [3]
where multiple agents can collect state-action-reward observa-
tions simultaneously. The architecture of the policy and value
networks is shown in Fig. 2: three convolutional layers for
feature learning are in common between the two networks,
with separate value and policy heads.

In all the experiments, we use an entropy coefficient of 0.01,
a learning rate of 1e−4 and run 8 agents simultaneously. The
other hyper-parameters are set to nminibatches = 64 (default 4),
nsteps = 256 (default 128) and otherwise default values.

Additionally, based on our previous research [6], we use
three strategies to improve the stability of the training:

• Colour shuffling, where the colour channels are randomly
permuted during the training. This is done to help the
agent to generalise patterns regardless of the colours.

• Resetting after 100 total steps, to prevent the agent from
getting stuck on an invalid move and filling the training
data buffer with useless observations.

• Adding an action mask to the observations, which serves
as a partial forward model leading to faster initial training.

B. Estimating player success rate

When level designers wish to evaluate a level, the player
completion rate is often then used as a proxy for difficulty.
Since players can only complete the level once before pro-
gressing, the completion rate can be directly calculated as
the number of level completions over total attempts across all

users. It is important to note, though, that this is not necessarily
the inherent difficulty of a level and may change in time
depending on which cohorts of players that have reached a
given point.

In our game environment of Lily’s Garden, the agent is
able to take an unlimited number of moves per level. The
move distribution is therefore different compared to player
data, where there is a sharp cut-off after the move limit,
see Fig. 3 left. In order compare these two distributions
and estimate the player completion rate, we record the max
number of moves number of the best x% agent runs and then
calculate the Spearman correlation of this number with the
player completion rate. Because the number of moves spent
by the agent to complete a level is invariant level move limit
is, while the player completion rate is very much determined
by this limit, we normalise the agent moves with the level
move limit.

III. EXPERIMENTS

The objective of this research project is to help determine
how an agent can be used in a production setting in a mobile
gaming company where not only accuracy but also speed is
important. For that purpose, we explore here three scenarios:

• One-step training on curriculum
• One-step training on the target level
• Two-step training, first on a curriculum and then on the

target level
In each scenario the aforementioned training and in-game
behaviour performance are collected and compared to the
human behaviour. In addition to that, we benchmark these
agents against two baselines:

• Random agent which picks a random valid action every
time it has to make a move.

• Greedy agent which mimics a play style that prioritises
clicking on valid pieces belonging to the biggest clusters.

Out the three aforementioned training scenarios, we start
with the One-step training on curriculum because it offers
one desirable feature for production usage: a previously trained
agent is used in order to estimate the difficulty of new unseen
levels, without requiring any further training.

0 50 100 150 200 250
Moves used

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
ac

tio
n

Random model
Big clusters first
One-step curriculum
Two-step
One-step level
Player data

101 102 103

Moves used (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

ed
 fr

ac
tio

n

Level 120

Fig. 3. Left) Distribution of number of moves required for each model to complete level 120 compared to actual player data. The sharp drop-off in the
player distribution of because of the level move limit. Additional steps after the move limit can be purchased using in-game currency. Right) Cumulative move
distribution, or level completion curves, plotted on a log scale.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of best evaluation runs used

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Sp
ea

rm
an

 c
or

re
la

tio
n

Move distribution correlation with player completion rate
Random model
Big clusters first
One-step curriculum
Two-step
One-step level

Fig. 4. Spearman correlation between player completion rate and normalised
moves required to finish each level as a function of fraction of best evaluation
runs used.

The training curriculum here should be chosen in such a
way that the agent is subsequently able to generalise across
new levels and mechanics. Thus, in particular, the curriculum
has to include a variety of different types of levels and be
representative of different game mechanics (e.g., rock blockers,
grass spreading blocks). Furthermore, for evaluation the agent
has to be exposed to a set of equally different unseen levels.

To choose the levels for the curriculum, we note that at the
beginning of Lily’s Garden, the new mechanics are typically
introduced once every ten levels (i.e., on levels 21, 31, 41,
...). The following nine levels at each interval generally mix
the new mechanic with previously introduced mechanics. And
so for the training, we include the first hundred levels which
introduces eight new board pieces in addition to the base
mechanics of the game. These levels are uniformly randomly
sampled and trained on for at least one epoch over 35M steps –
i.e., the equivalent of a human player tapping on the screen. We
remark here that from our empirical observations, this number
of steps ensures that the learning has plateaued and each level
will have been trained on for multiple epochs.

To evaluate the agent performance, we test on the 20
levels following the ones used in training (i.e., levels 101
to 120), which include the previous mechanics plus two new
mechanics: teleporters, which move board pieces to other parts

of the game board, and containers, which are 2x2 blockers
with 10 hit points. For the results we also include the levels
13, 23, ..., 93 to test the performance on previous levels which
are not tutorial levels.

In the second scenario considered, One-step training on
evaluation level, the agent is trained every time from scratch
directly on the new target level. This is done through 1M
steps. Two potential drawbacks of this approach are apparent:
one is that solution may require longer training time before
reaching a level of competency when compared to the other
scenarios based on curricula. Secondly, it may also lead to
poor generalisation. However, if good accuracy is obtained
and the training can still performed in reasonable time, then
this approach may still offer a viable solution to used on a
production environment.

The final scenario we consider, Two-step training, is in-
spired by how players typically learn: At first the player has
some previous general knowledge of how to play the game
but no specific knowledge on how to beat certain level or
game mechanic. Then, after having played through the level
a number of times, the player may finally learn a winning
strategy and complete the level. In this setting, the training for
the first step is analogous to what was is done in the setting
of the One-step training on curriculum scenario, while for
the second step we proceed as analogously to the One-step
training on evaluation level scenario.

IV. RESULTS AND DISCUSSION

Before answering the question of whether we can correlate
the agent behaviour to the players’, we first examine which
agents that acquire the highest proficiency, as measured by
the least amount of average moves spent to complete a
level. A representative example of the level of proficiency
the different agents acquire can be seen by considering the
move distributions in Fig. 3. The most proficient agent comes
from the two-step training approach, followed by the one-step
training on target level and then finally one-step training on a
curriculum.

All the training scenarios lead to agents performing better
than the random and greedy agents. Despite the fact that

some agents only perform slightly better than random move-
wise, time-wise the trained agents are much faster during
evaluation because the random agent attempts to take many
invalid actions before finally choosing a valid one, which
increases the runtime of the evaluation.

One thing that is worth noting is that one-step curriculum
leads to the least proficient agent. The agents trained on a
single level demonstrate that it is possible for the agent to
almost play optimally, so this suggests that something in our
way of training on a curriculum – randomly sampling levels
after an epoch – may prevent the agent from becoming more
proficient. Improving this could be done by developing a
more intelligent curriculum well as adding changes to the RL
algorithm to ensure that no catastrophic forgetting will occur,
where the agent forgets how to play previously learned levels.

That being said, a high proficiency does not necessarily
mean that the performance of the agent is correlated with
the player completion rate. Indeed, looking at Fig. 4 it can
be seen that the one-step curriculum approach shows the
highest correlation, despite being the least proficient agent.
It can also be seen that the highest correlation occurs when
only considering ∼5% of the best runs. With the one-step
curriculum scenario both being the most practical approach,
due to not spending any time on additional training, and also
showing the highest correlation, this is a very promising result
towards using this approach in a production setting.

The least correlated approach is the two-step training, which
shows an even worse correlation than random. This might be
due to the fact that it is able to completely memorise some
levels, while on other levels the agent is still learning. This
mix of memorisation and proficiency may then lead to very
uncorrelated behaviours. This could also explain why in the
one-step training on target levels still shows a correlation; the
agent in this scenario has simply not trained long enough on
a single level to memorise it, so only the agent proficiency
matters.

Why the correlation with player completion rate is highest
when only considering the 5% best runs is not immediately
clear but may be linked with the long tail of the move
distribution: the longer the game goes on for, the more spread
out the point of completion is due to an inherent randomness in
the levels, leading to a lower correlation. Conversely, there is
a certain minimum number of moves required to finish many
levels, so having a good run and finishing early leads to a
much tighter distribution.

The results so far suggest that there is a correlation between
the agent behaviour with player completion rate. Unlike other
works that try to model and predict the precise player metric
(c.f., [2]) using the rank correlation can instead be used to give
an estimate on how a level is compared to other levels. For
example, it may show that a certain level is one of the top
10% most difficult levels.

These initial results are promising but also have some
limitations. Only 120 levels were included in this analysis,
which contain around 60% of the game mechanics. Whether
these correlations extend to the remaining mechanics and

whether the agent is able to deal with them need to be
further investigated before using it in a production setting.
Additionally, we only consider the move distribution for the
correlation. However, it may be possible to utilise additional
agent or level data for our estimates. Not only could this
possibly lead to a more robust estimate, but it could also help
the level designer understand the effects of changing various
aspects of a level.

V. CONCLUSION

We have examined a number of scenarios in which an RL
agent can be trained and used to predict the level difficulty
in a mobile puzzle game. The results – based on ∼60% of
the game mechanics – demonstrate that the two-step training
scenario leads to the most proficient agent, while with the one-
step curriculum the agent attains the largest correlation to real
players’ completion rates. The latter scenario is also arguably
the most practical one in a production scenario.

By considering the best ∼5% of the runs of the agent
and record the max number of moves required to finish the
level, the difficulty of the level, as measured by the player
completion rate, can be estimated in terms of how it ranks
compared to other levels.

Because the results shown in this research work are only
for a limited subset of levels, future work should look into
whether this correlation holds for the remaining levels and
possibly attempt a more modelling-based approach.

REFERENCES

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[2] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet,
Sami Purmonen, Bartlomiej Kozakowski, Richard Meurling, and Lele
Cao. Human-Like Playtesting with Deep Learning. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pages 1–8.
IEEE, 8 2018.

[3] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi
Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg
Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-
a/stable-baselines, 2018.

[4] Philip Hingston. A Turing Test for Computer Game Bots. IEEE
Transactions on Computational Intelligence and AI in Games, 1(3):169–
186, 9 2009.

[5] Christoffer Holmgard, Michael Cerny Green, Antonios Liapis, and Julian
Togelius. Automated Playtesting with Procedural Personas with Evolved
Heuristics. IEEE Transactions on Games, 1502(c):1–1, 2018.

[6] Jeppe Kristensen and Paolo Burelli. Strategies for using proximal policy
optimization in mobile puzzle games. 2020.

[7] Luvneesh Mugrai, Fernando Silva, Christoffer Holmgard, and Julian To-
gelius. Automated playtesting of matching tile games. IEEE Conference
on Computatonal Intelligence and Games, CIG, 2019-Augus, 2019.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. arXiv e-prints, pages
1–12, 7 2017.

[9] Yuchu Shin, Jaewon Kim, Kyohoon Jin, and Youngbin Kim. Playtesting
in Match 3 Game Using Strategic Plays via Reinforcement Learning.
IEEE Access, 8:1–1, 2020.

[10] Julian Togelius, Georgios N. Yannakakis, Sergey Karakovskiy, and
Noor Shaker. Assessing Believability, pages 215–230. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

	Introduction
	Method
	Reinforcement Learning Setup
	Estimating player success rate

	Experiments
	Results and discussion
	Conclusion
	References

