
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Using Wordle for Learning to Design and Compare Strategies
Chao-Lin Liu

National Chengchi University, Taiwan
chaolin@g.nccu.edu.tw

Abstract—Wordle has become a very popular online game

since November 2021. We designed and evaluated several

strategies for solving Wordle in this manuscript. Our strategies

achieved impressive performances in realistic evaluations that

aimed to guess all of the known answers of the current Wordle.

On average, we may solve a Wordle game with about 3.67

guesses, and solve a Wordle game with six or fewer guesses

higher than 98% of the time. In fact, our strategies are

applicable to word guessing games that are more general than

the current Wordle. More importantly, we present our work in

ways that our experiences may be used as classroom examples

for learning to design strategies for computer games.

Keywords—Wordle, Dordle, Quordle, heuristic search,

probabilistic reasoning, entropy, Kullback-Leibler divergence,

artificial intelligence

I. INTRODUCTION

The popularity of the word game Wordle exploded [16],
and the New York Times purchased the game in 2022 [15].
Wordle is similar to Mastermind [11] and Bulls and Cows [3],
but is special in that the answers are actual English words.

The main social impacts of Wordle may be in the direction
of entertainment, so we found that we may utilize the
popularity of this game to stimulate students’ interests in
designing solvers for the game from probabilistic, statistical,
and information theoretical perspectives in courses like
Introduction to Artificial Intelligence and Computational
Strategies for Games.

The goal of playing Wordle is to find the correct answer
with the least number of guesses possible. Hence, either for
entertainment or for education purposes, attempts to find a
theoretical solution for the minimum is not surprising, e.g.,
[12]. This appear to be a challenging mission mainly because
Wordle has 2315 possible answers and their selection was not
based on scientific reasons. The number of needed guesses
will also rely on the set of correct English words that have five
letters, and this set of words may not have a universal
consensus on its inclusion. The distribution of the numbers of
guesses needed for Wordle depends on these practical factors,
so reaching a theoretical conclusion is not easy.

We may find some unofficial reports about the number of
guesses that are needed for ordinary people and for programs
to find the answers for Wordle. Haripriya reported the
statistics that were collected on Tweeter for 241,489 games on
22 January 2022 [8]. The median and the average number of
guesses were 4 and at least 4.46, respectively, where we
consider the human players who failed to solve their games
within six attempts would need seven guesses.

We reported a systematic method for solving the Bulls and
Cows game in 2001 [2], and the method happens to be what
we call “the hard mode” for Wordle today [10].1 Playing in
the hard mode sets some constraints on the guesses that a
player may use, and those constraints are not necessarily easy
for human to comply. Despite this obvious drawback, we re-
implemented our 2001 algorithm in Python and for today’s

1 The year is 2001, not a typo. Information about that publication is

not disclosed for anonymous submission.

Wordle game. We randomly choose a next guess when there
are multiple choices that comply the hard-mode rules. The
average number of guesses used to solve the 2315 problem
instances is about 4.11.

We may find that some claim to have achieved an average
of 3.64 or 3.60 in personal GitHub repos or YouTube videos.
The source codes were not completely open to the public for
verification, so we are not sure of the reproducibility of these
results.

We should like to emphasize that the main purpose of
having Wordle is for entertainment. People talk about tricks
and possible strategies that human beings can actually apply.
Some computational methods may be more effective, but they
are not proposed for human.

Building on the concept of “hard mode” which we had
discussed in 2001, we invented 16 other strategies that
consider probabilistic, statistical, and information-theoretical
factors in the search for Wordle answers. We have found
simple methods that can achieve an average of 3.85 guesses
for Wordle and a relatively more computationally intensive
method that can achieve an average of 3.67. We would
publicize our programs for public verification along with this
manuscript.

The most important contribution that we would like to
make is not really about whether we offer very competitive, if
not state-of-the-art, computational solutions for Wordle.
Given the limited scale of Wordle from the perspective of
computing powers of modern computers, one may even do
exhaustive search to find a best plan for the current Wordle,
e.g., [14]. That kind of success would not generalize and scale
if we change the parameters for a Wordle-like game (see
Section II.A for more details).

Through the discussion of our experience in designing our
methods, we hope to offer some hints about the process of
designing and comparing the strategies for solving computer
games, and hope that the discussion can also serve as a model
assignment for courses like Introduction to Artificial
Intelligence and Computational Strategies for Games.

We define a class of word games that can cover the case
of Wordle in Section II, where we also use a popular method
as the baseline method to solve Wordle. In Sections III
through V, we take a probabilistic perspective for designing
strategies for Wordle, and show that a good strategy for
selecting the first guesses may improve the performance of our
programs. In Section VI, we adopt the ideas of learning
decision trees in machine learning to design strategies, and
achieved good results in the evaluation [1]. We discuss several
technical issues that we experienced in this study in Section
VII.

II. WORDLE AND THE HARD MODE

In this section, we offer a formal definition of Wordle. Our
definition is more general the current Wordle games, and can

Chao-Lin Liu. Using Wordle for learning to design and compare strategies, Proceedings of the 2022

IEEE Conference on Games (IEEE CoG 2022). Beijing, China, 21-24 August 2022. (virtual)

be used to define a family of Wordle games. We then explain
how we used a “hard mode” principle to solve Wordle

A. A Formal Defintion of the Word Game Wordle

Let 𝑊 = (𝚺, 𝑪, 𝑷, 𝑇, 𝜆)denote a word game, where 𝚺 =
{𝑠1, 𝑠2, ⋯ , 𝑠𝑖 , ⋯ , 𝑠𝑛}, for a positive integer 𝑛, is a set of basic

symbols. 𝑪 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑗 , ⋯ , 𝑐𝑚}, for a positive integer 𝑚,

is a set of words, whereas each word 𝑐𝑗 ∈ 𝑪 is a string of 𝜆

symbols 𝑐𝑗1𝑐𝑗2 ⋯ 𝑐𝑗𝑘 ⋯ 𝑐𝑗𝜆 and each 𝑐𝑗𝑘 is equal to a certain

𝑠𝑖 ∈ 𝚺. A symbol may appear more than once in a word. The
goal of the game is to identify the answer of the game, 𝑇 =
𝑐𝑎 ∈ 𝑪, via the shortest sequence of guesses possible. 𝑷 =
{𝑝1, 𝑝2, ⋯ , 𝑝𝑢, ⋯ , 𝑝𝑣}, for a positive integer 𝑣, is the set of
permitted words from which a player may use as a guess. To
that end, a word in 𝑷 is string of 𝜆 symbols in 𝚺, just like a
word in 𝑪. For a reasonable game, 𝑪 must be a subset of 𝑷 or
is equal to 𝑷.

When playing the word game, a player iteratively offers a
sequence of guesses. For each guess, the player will receive a
response that indicates how well the guess matches the answer.
The player can choose her/his next guess according to the
information that s/he infers from the previous responses in
order to find 𝑇 with the fewest number of guesses possible.

 For the Wordle game, the 𝚺 of Wordle is the English
alphabet, all of the words in 𝑪 have five symbols, and 𝑪 is a
list of 2315 different English words, i.e., 𝑛 = 26, 𝑚 = 2315
and 𝜆 = 5 . 𝑷 is the set of actual English words that have
exactly five letters, including some rarely used words like
“CWCTH” [7], where whether a word is “actual” or not may
depend on the implementation of the game providers. These
settings are certainly changeable to define new games.

Let 𝑇 = 𝑡1𝑡2𝑡3𝑡4𝑡5 and 𝐺 = 𝑔1𝑔2𝑔3𝑔4𝑔5 represent the
answer and a certain guess, respectively, for a Wordle game.
A response 𝑅 = 𝑟1𝑟2𝑟3𝑟4𝑟5 to a guess consists of five squares,
that can be green, yellow, or gray. A green square 𝑟𝑥 indicates
that 𝑔𝑥 = 𝑡𝑥 , for 𝑥 ∈ {1,2,3,4,5}. A yellow square 𝑟𝑥
indicates that 𝑔𝑥 = 𝑡𝑦 for a 𝑦 ≠ 𝑥 and 𝑥, 𝑦 ∈ {1,2,3,4,5}, on

the condition that a 𝑡𝑦 can flag a 𝑔𝑥 as yellow only once. A

gray square 𝑟𝑥 indicates that 𝑔𝑥 does not equal to any symbol
in 𝑇.

B. The Baseline Strategy: The Hard Mode

One simple way for computers to solve Wordle is using
the hard mode strategy. Assume that we have randomly
chosen a first guess, 𝐺1, and have received the response 𝑅1.
With this piece of information, we may reduce the size of 𝑪
with the following observation.

Principle HM: 𝑐𝑗 ∈ 𝑪 cannot be the answer, if we

temporarily assume 𝑐𝑗 to be the answer, use 𝑐𝑗 to compare

with a guess 𝐺1, and get a response that is different from 𝑅1.

In the following discussion we will use 1, 2, and 0 to
indicate the green, yellow, and gray square, respectively in our
statements. Hence, a perfect response will be “11111”. We
will also use 𝑪 as 𝑷, although that is not necessary. We will
discuss this issue in this manuscript.

The validness of the Principle HM can be explained with
a simple example. If “amble” is the answer, and our guess is

2 http://www.learningaboutelectronics.com/Articles/Number-

guessing-game-with-PHP.php

“apple”, then the response is “10011”. When we filter the
words in 𝑪 with the Principle HM, we will know that “amuse”
must not be the answer because, if “amuse” were the answer,
we would have “10001” as the response. Hence we may
exclude “amuse” from 𝑪 for the current game. In contrast,
both “amble” and “angle” remain to be candidates for the
answer.

We provide the algorithm for Strategy Hard-Mode that
employs the Principle HM for solving Wordle in Fig. 1. The
implementation is really easy, and the computation is very
efficient. Tables I and II show the statistics of two runs of
Strategy Hard-Mode on the 2315 Wordle answers. Since the
guesses were randomly selected, we could observe different
outcomes in repeated runs. Since we conduct the experiments
twice, the total number of games is 4630 in Table II, and we
solved 1830 games with four guesses. On average, we used
4.11 guesses to solve the games, and failed to find the answers
with six or fewer attempts in (60+20+1)=81 games, which is
equivalent to 1.75% “failure” rate. We considered games in
which we found the answers with one or two guesses as
“excellent”. The baseline methods performed excellently in
4.00% of the games.

III. COLLOCATION-BASED HEURISTIC

After using the Principal HM to filter 𝑪, we have used up
the information that the responses to the previous guesses have
offered. All of the words in the reduced 𝑪 are reasonable
candidates for the answer. In the Strategy Hard-Mode, a word
in 𝑪 was chosen as the next guess randomly. We need to
invent a heuristic to choose the next guess from the reduced 𝑪.

A. Motivation

Recall the game of aiming to guess a number between 1
and 10.2 The optimal strategy is using the current guess to split
the remaining candidates of the answer into two subgroups of

Strategy Hard-Mode

Step 1. Randomly choose a 𝑐𝑗 from 𝑪 as the first guess 𝐺1, and

assume that the response is 𝑅1.
Step 2. 𝑖 = 1

Step 3. While 𝑅𝑖 is not perfect, do the following:

Step 31. Filter and reduce 𝑪 with 𝑅𝑖 based on the Principle

HM.

Step 32. Randomly choose the next guess 𝐺𝑖+1 from the

reduced 𝑪, and let the response be 𝑅𝑖+1.

Step 33 𝑖 = 𝑖 + 1

Step 4. Record 𝑖. If 𝑖 > 6, report failure.

Fig. 1. The Baseline: Strategy Hard-Mode

TABLE I. Statistics for two runs of Strategy Hard-Mode

Strategy min median mean max

Hard-

Mode

1 4 4.11 9

excellent failure

4.00% 1.75%

TABLE II. Raw records for two runs of Strategy Hard-Mode

Number of guesses 1 2 3 4 5

Number of games 3 182 1099 1830 1154

Number of guesses 6 7 8 9

Number of games 281 60 20 1

almost equal sizes each time. By doing so, we minimize the
depth of the search tree, and minimize the expected number of
steps needed to find the answer.

This observation also provides a motivation for
understanding the design of binary search tree [5]. We may
inherit the ideas of binary search trees, and estimate the quality
of the groupings of the remaining answers in 𝑪 of the Wordle
based on the unconditional and conditional distributions of the
symbols.

B. Unconditional and Conditional Probaility of Symbols

For any given 𝑪 and 𝑷 in a game, it is easy for us to
compute the unconditional and conditional probabilities of
inclusion of the symbols in words.

We define the unconditional probability of a symbol 𝑠𝑖 in
𝚺 for the 𝑪 as the probability of the inclusion of 𝑠𝑖 in the
words in 𝑪. The unconditional probability of a symbol 𝑠𝑖 in 𝚺
for the 𝑷 is defined analogously. Identity (1) provides an
operational definition for 𝑃𝑟𝑐 (𝑠𝑖).

𝑃𝑟𝑐(𝑠𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑠𝑖 𝑖𝑛 𝑪

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑪
 (1)

We define the conditional probability 𝑃𝑟𝑐(𝑥|𝑠𝑖) of seeing
a symbol 𝑥 given that the symbol 𝑠𝑖 is present in a word in 𝑪.
The conditional probability for 𝑷 is defined analogously.
Identity (2) provides an operational definition for 𝑃𝑟𝑐(𝑥|𝑠𝑖)

for all symbols 𝑥 in 𝚺, where 𝑃𝑟𝑐(𝑥, 𝑠𝑖) is the probability that
𝑥 and 𝑠𝑖 appear in the same word in 𝑪. 𝑃𝑟𝑐(𝑠𝑖|𝑠𝑖) may not be
zero if there are words in 𝑪 that include more than one 𝑠𝑖.

𝑃𝑟𝑐(𝑥|𝑠𝑖) =
𝑃𝑟𝑐(𝑥,𝑠𝑖)

𝑃𝑟𝑐(𝑠𝑖)
 (2)

Given the conditional probability values for all symbols in
𝚺, we may compute the entropy for each of these conditional
distributions 𝐻𝑐(𝑠𝑖), using the identity shown in (3).

𝐻𝑐(𝑠𝑖) = ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔
1

𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖)

𝑘=𝑛

𝑘=1

 (3)

C. Ranking the Candidates Words

The task of selecting the next word as our guess requires
us to compute a score for a candidate word in 𝑪. Recall that,
in the process of playing Wordle, the size of 𝑪 decreases in
each iteration in the Strategy Hard-Mode, so the computation
of the unconditional probability, condition probability, and the
entropy is a dynamic task.

Each word in a word game 𝐺 has 𝜆 symbols. If we naively
assume that the contributions of each of these 𝜆 symbols to the
score of a candidate word are independent, we have a simple
way to estimate the score of the candidate words in 𝐺. This
step is expressed in identity (4).

score(𝑐𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

 (4)

D. Maximizing the Entropy when Ranking the Candidates

From here, we have multiple ways to define 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘).

Some of which are intuitively favorable, and others appear to
be less attractive. In a university course, students may be
encouraged to try and compare their actual effects.

Based on the nature of the entropy, if we prefer the 𝑠𝑖 ∈ 𝚺
that has a larger 𝐻𝑐(𝑠𝑖), we are favoring the 𝑠𝑖 that collocates
more diversely with the symbols in 𝚺. Getting information

about such an 𝑠𝑖 allows us to collect more information about
more symbols in 𝚺 , therefore increasing the possibility of
leading to more shallow search tree. The score for a candidate
word can be as simple as identity (5) shows, if we continue to
choose the next guess from the current reduced as we
explained in Section II.B.

score(𝑐𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

= ∑ 𝐻𝑐(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

 (5)

In (5), the contribution of a symbol 𝑐𝑗𝑘 in 𝑐𝑗 is the entropy

of its collocational probability, by setting 𝑠𝑖 = 𝑐𝑗𝑘 in (2) and

(3).

It is intriguing to weigh 𝐻𝑐(𝑐𝑗𝑘) by the unconditional

probability of 𝑃𝑟𝑐(𝑐𝑗𝑘) when calculating 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘) .

Identity (6) shows the operation for this intuitive exploration.

score(𝑐𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

= ∑
𝑃𝑟𝑐(𝑐𝑗𝑘)𝐻𝑐(𝑐𝑗𝑘)

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟

𝑘=𝜆

𝑘=1

, (6)

where 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 = ∑ 𝑃𝑟𝑐(𝑐𝑗𝑘)𝑘=𝜆
𝑘=1

Putting the above reasoning together we would choose the
𝑐𝑗 that has the largest score(𝑐𝑗) for all current candidate words.

This step is expressed in the following identity

nextGuess(𝑪) = 𝑐𝑗
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗∈𝑪𝑠𝑐𝑜𝑟𝑒(𝑐𝑗) (7)

Recall that our using argmax in (7) is based on intuitive
arguments. It is thus educational to switch to using argmin in
part of our evaluation process. We may examine whether or
not results of realistic experiments support our intuition. For
this purpose, we used the identity in (8).

nextGuess(𝑪) = 𝑐𝑗
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑗∈𝑪𝑠𝑐𝑜𝑟𝑒(𝑐𝑗) (8)

E. Algorithm and its Evaluation

We replace the steps of randomly selecting the next guess
in Strategy Hard-Mode in Fig. 1 with the steps that aim to
optimize either (7) or (8), depending on the goals of individual
experiments. Fig. 2 shows the algorithm for Strategy Hard-
Mode-Collocation.

Table III shows the summary for the experiments in which
we may use four possible different ways to choose the next
guesses. The label un-max (for unweighted-argmax), indicate
that identities (5) and (7) were used in the experiment, un-min
(for unweighted-argmin) indicates that (5) and (8) were used,
wht-max (for weighted-argmax) indicates that (6) and (7)
were used, and wht-min (for weighted-argmin) indicates that
(6) and (8) were used.

TABLE III. Statistics for Strategy Hard-Mode-Collocation

Strategy un-max un-min wht-max wht-min

min 1 1 1 1

median 4 5 5 5

mean 4.326 5.044 4.62 4.525

max 11 10 10 9

excellent 2.59% 1.47% 2.42% 2.38%

failure 4.71% 10.58% 7.65% 3.24%

It was quite disappointing that none of these strategies
outperformed the baseline strategy, at initially. We found that
Strategy Hard-Mode-Collocation tended to choose words with
repeated characters for the first and may be for the second
guesses. Words like “fuzzy”, “vivid”, and “knock” were
common.

IV. THE POLICTY ON SELECTING THE FIRST GUESSES

Gradually, we consider more heuristics to improve our
algorithms. When selecting the next guesses with (7) or (8),

we do not consider the distributions of the symbols that form
the words. Hence, it is possible that a symbol might appear
more than once in competitive candidate words. Having
repeated symbols in a guess is particularly unattractive, at
least intuitively, for the very first guess in Wordle. One
possible and common policy is to select words that do not have
repeated symbols at least for the first guess. Among the 2315
possible answers for Wordle, 1655 words do not have repeated
symbols.

We added this constraint to the Strategy Hard-Mode-
Collocation, and re-ran our experiments. Table IV shows the
results. The performances improved across the board when we
compare the corresponding items in Tables III and IV, except
that the results of using weighted-argmin improved only
partially.

It is worthwhile mentioning that the results shown in the
un-max column in Table IV are better than their corresponding
items listed in Table I. The average number of guesses needed
to find the answers was reduced, the excellent rate was
increased, and the failure rate was reduced.

The differences in the performance metrics between
unweighted-argmax and unweighted-argmin supported our
reasoning for using identities (5) and (7). The negative
impacts of replacing (7) with (8) were salient. We tried

weighted-argmax and weighted-argmin just because of
curiosity, and their performances were poorer than those of the
baseline method.

V. INFORMATION-THEORETIC APPROACHS

We also tried to apply the concept of the Kullback-Leibler
divergence between the conditional probability distribution
𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) and the discrete uniform distribution that assumes
that all 𝑠𝑘 are equally likely [9]. Therefore, we can carry out
a simple derivation that is provided in the Appendix.
Preferring an 𝑠𝑖 that has larger 𝑠𝑐𝑜𝑟𝑒(𝑠𝑖) in identity (9) is
tentative to favoring a conditional probability that is more
different from a uniform distribution. This might sound like a
reasonable factor for a good guess, but the rationality is not
very strong. Despite this vagueness, we replaced identity (3)
in Section III.B with (9), and named the new strategy Hard-

Mode-Collocation-KLD. The experimental results, listed in
Table V, are close to and better than those listed in the un-max
column in Table IV. Table VI lists the actual distribution of
the numbers of guesses that we used to solve the 2315
problems.

𝑠𝑐𝑜𝑟𝑒(𝑠𝑖) = ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔(𝑛 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖))

𝑘=𝑛

𝑘=1

 (9)

VI. HIGHER-LEVEL SEARCH CONSIDERATIONS

Assume that we are working on Wordle games whose
answers are 5-letter words, and that we have chosen a word 𝑐𝑗

in 𝑪 as a guess. The response must be one of the patterns listed
in Table VII. Therefore, we many consider that a guess would
lead us to cluster the words into 20 groups, and members of
each of these groups would give our guess the same response
that is specific for that group. It should be easy to understand
that if the answers for Wordle have more number of letters, it
would be time consuming to make a table like TABLE VII
manually, but that is doable computationally. From this
perspective, we may say that a guess will divide the current
reduced 𝑪 into sub-sets.

Due to this observation, we can calculate the percentages
of the words in the sub-sets, and use the percentages as a

Strategy Hard-Mode-Collocation

Step 1. Choose the 𝑐𝑗 from 𝑪 that optimize score(𝑐𝑗), 𝑐𝑗 ∈ 𝑪,

based on the identities (7) or (8), as the first guess 𝐺1,

and assume that the response is 𝑅1.
Step 2. 𝑖 = 1

Step 3. While 𝑅𝑖 is not perfect, do the following:

Step 31. Filter and reduce 𝑪 with 𝑅𝑖 based on the Principle

HM.

Step 32. Choose the next guess 𝐺𝑖+1 = 𝑐𝑗
∗ whose score is

maximum among the candidates in the reduced 𝑪,

and let the response be 𝑅𝑖+1. Again, we may use

identities (7) or (8) at this step.

Step 33 𝑖 = 𝑖 + 1

Step 4. Record 𝑖. If 𝑖 > 6, report failure.

Fig. 2. The Baseline: Strategy Hard-Mode

TABLE IV. Statistics for Strategy Hard-Mode-Collocation

with constraints on selecting first guesses

Strategy un-max un-min wht-max wht-min

min 1 1 1 1

median 4 5 4 4

mean 3.906 4.674 4.551 4.245

max 9 9 11 9

excellent 5.36% 2.29% 3.54% 3.63%

failure 2.07% 5.57% 8.16% 1.68%

TABLE V. Statistics for the Strategy Hard-Mode-Collocation-

KLD

Strategy min median mean max

Hard-Mode-

Collocation-KLD

1 4 3.851 10

excellent failure

5.75% 1.73%

TABLE VI. Raw records for the Strategy Hard-Mode-

Collocation-KLD

Number of guesses 1 2 3 4 5

Number of games 1 132 1099 910 355

Number of guesses 6 7 8 9 10

Number of games 103 29 7 3 1

probability distribution to calculate the resulting entropy when
we use a guess to divide current 𝑪. Analogous to our trying
to maximizing the Information Gain when we build decision
trees in machine learning, we would prefer to minimize the
resulting entropy when we use a guess to divide the current 𝑪.
Moreover, we may employ the concept of the Kullback-
Leibler divergence to compute the scores of choosing a certain
candidate word for Wordle. The process is similar to the
development that we discussed in details in Sections III, IV,
and V. Although the process is similar, the computation
procedures are much more time consuming than using the
collocation-based information.

More specifically, let Γ = {𝛾1, 𝛾2, ⋯ , 𝛾𝑎, ⋯ , 𝛾𝑏} denote
the set of all possible responses for a word game 𝑊. Table VII
shows the Γ for a Wordle game whose answers are words of
five symbols. We may conceptually divide the current 𝑪 of 𝑊
into 𝑏 groups, with a guess 𝐺 as following: If 𝑐𝑗 ∈ 𝑪 is the

answer of 𝑊 and if its response to 𝐺 is 𝛾𝑎, then we put 𝑐𝑗 into

the group 𝑔(𝛾𝑎). Therefore, by construction, each word in
must belong to a certain group in Γ.

We can define a probability distribution based on the
memberships of these groups. Let 𝑠(𝛾𝑎) be the number of
words in 𝑔(𝛾𝑎). Hence, if there are 𝑥 words in the current 𝑪,
the following identity must hold.

∑ 𝑠(𝛾𝑎)

𝑏

𝑎=1

= 𝑥 (10)

Therefore, let 𝑝(𝛾𝑎) =
𝑠(𝛾𝑎)

𝑥
, and we have the following.

∑ 𝑝(𝛾𝑎)

𝑏

𝑎=1

= 1 (11)

With these basic setups, we can define the resulting
entropy and Kullback-Leibler divergence in ways that are very
similar to what we reported in Section III, IV, and V, when we
choose a guess, 𝐺, to divide the current 𝑪. We can then use the
entropy and the divergence to compare candidate guesses and
choose our next guess, to enhance the baseline Strategy Hard-
Mode and establish the Hard-Mode-Search-KLD strategy.

Tables VIII and IX lists the best results that this relatively
more complex procedure could achieve. This Hard-Mode-
Search-KLD strategy led to slightly better performance, i.e.,
the average and maximal numbers of guesses to solve the
game and the failure rates were improved. The distributions
recorded in Tables IX and VI are quite different.

Fig. 3 depict the distributions in percentages for the data
in Tables II, VI, and IX. Our introducing different methods to
choose the first guess and the next guesses for a Wordle game
paid off. Using the Hard-Mode-Collocation-KLD and the
Hard-Mode-Search-KLD strategies, we were more likely to
find the answers with three or fewer guesses, while reducing

Fig. 3. Distributions of the percentages of numbers of guesses used to solve the 2315 Wordle games

TABLE VIII. Statistics for the Strategy Hard-Mode-Search-

KLD

Strategy min median mean max

Hard-Mode-

Search-KLD

1 4 3.674 8

excellent failure

5.75% 0.65%

TABLE IX. Raw records for the Strategy Hard-Mode-

Search-KLD

Number of guesses 1 2 3 4 5

Number of games 1 132 866 1015 241

Number of guesses 6 7 8

Number of games 45 12 3

TABLE VII. Possible Responses of Wordle

(5-letter words)

ID
number of

green squares

number of

yellow squares

number of

gray squares

1 5 0 0

2 4 0 1

3 3 2 0

4 3 1 1

5 3 0 2

6 2 3 0

7 2 2 1

8 2 1 2

9 2 0 3

10 1 4 0

11 1 3 1

12 1 2 2

13 1 1 3

14 1 0 4

15 0 5 0

16 0 4 1

17 0 3 2

18 0 2 3

19 0 1 4

20 0 0 5

the possibility of needing five or more guesses to solve the
games. The proportion of excellent games increased, and the
proportion of failed games decreased.

VII. DISCUSSION

We have used the Hard-Mode Strategy as the baseline. The
strategy performs pretty well in practice, c.f. Tables I and II.
We have found and Peattle also discussed that this strategy
may not work well for some special cases [12].

Assume that the answer is “freed”, that we have guessed
“creed”, and that we got the response of [gray, green, green,
green, green]. In this case, if playing in the Hard Mode, we
may have to try “greed” and “breed” before we find the correct
answer. An even more challenging group of words include
“goner”, “cover”, “wooer”, “homer”, “poker”, and “foyer”.
Allowing not to abide by the hard-mode rules sometimes will
help. It may not be easy to find an answer in the group “wight”,
“fight”, “sight”, “tight”, “right”, “night”, “light”, and “eight”
with no more than six attempts under the hard-mode rules.

For simplifying our discussion, we have used 𝑪 as 𝑷. In
practice, there are a lot more words in 𝑷 than in 𝑪. It is easy
to find good resources about English words that have five
letters online, e.g., [4]. Using 𝑪 as 𝑷 is not a required trick for
our programs. On one hand, using words in 𝑪 as our guesses
gave us some chances to directly find the answers luckily. On
the other hand, we also wonder whether using a word in 𝑷 will
provide more information than using any other words in 𝑪.

We have mentioned that we consider that a main
contribution of this manuscript is to provide the experience in
developing strategies for solving a class of word games. The
word game 𝑊 as we defined in Section II.A is flexible, and
one may change the parameters as long as one wish. For
instance, the words for answers may not have to be English
words, and it is possible for one to define games that include
more symbols than the English alphabet in 𝚺.

We hope that the examples of our designing and choosing
the heuristics to guide the selection of next guesses may be
used as classroom examples of designing and comparing
strategies for computer games.

We evaluated our methods with a single Wordle so far.
One may apply our methods to solve Dordle [6] and Quordle
[13] in which a plyer needs to solve more than one Wordle at
a time. If each of these Wordle games are independent, then
our methods should be directly applicable. If individual
Wordle games are dependent, it should be possible to enhance
our current design to handle the extra constraints.

VIII. CONCLUDING REMARKS

We have proposed a few strategies for solving a special
class of word games, and used typical Wordle games as the
example problems. Results of realistic evaluation indicate that
we have achieved competitive performances for the current
Wordle. In addition to providing clues for solving Wordle, we
hope that the process of inventing and evaluating candidate
strategies could serve as classroom examples for courses on
learning to design strategies for computer games.

ACKNOWLEDGMENT

This work was funded in part by the MOST-110-2221-E-
004-008-MY3 project of the Ministry of Science and
Technology of Taiwan and in part by the 111H124D-13
project of the National Chengchi University.

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning, fourth edition, MIT
Press, 2020.

[2] C.-L. Liu. Mathematics, computer science, and number games (數學、
資訊科學與數字遊戲), Science Monthly (科學月刊) 32(3), 250‒255,
2001. (in Chinese)

[3] Bulls and Cows: https://en.wikipedia.org/wiki/Bulls_and_Cows

[4] CMUDict: https://pypi.org/project/cmudict/

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, chapter 12, the third edition, MIT Press, 2009.

[6] Dordle: https://zaratustra.itch.io/dordle

[7] GAMERANT, https://gamerant.com/wordle-words-with-no-vowels/

[8] Haripriya, “What are the average number of guesses in Wordle?”,
https://nerdschalk.com/what-are-the-average-number-of-guesses-in-
wordle/

[9] S. Kullback and R.A. Leibler, “On information and sufficiency,”
Annals of Mathematical Statistics, 22 (1): 79–86, 1951.

[10] L. Loofbourow and M. Martinelli, “Should you be playing Wordle on
“Hard Mode”?”, SLATE, https://slate.com/culture/2022/02/wordle-
game-nyt-original-vs-hard-mode.html

[11] Mastermind: https://en.wikipedia.org/wiki/Mastermind_(board_game)

[12] A. Peattle, “Establishing the minimum number of guesses needed to
(always) win Wordle,” personal blog,
https://alexpeattie.com/blog/establishing-minimum-guesses-wordle/

[13] Quordle: https://www.quordle.com/#/

[14] A. Selby, “The best strategies for Wordle,”

http://sonorouschocolate.com/notes/index.php?title=The_best_strategi

es_for_Wordle

[15] M. Tracy, “The New York Times buys Wordle,” New York Times, 31
Jan 2022, https://www.nytimes.com/2022/01/31/business/media/new-
york-times-wordle.html

[16] Wordle: https://en.wikipedia.org/wiki/Wordle

APPENDIX

In the following derivation, 𝑈 denote a uniform distribution that
we want to compare with the conditional probability distribution

𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖), for a specific 𝑠𝑖. Since 𝑠𝑘 can be any symbol in 𝚺, we
need a uniform random variable that could take the value of
any state among |𝚺| states. Since 𝚺 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑖 , ⋯ , 𝑠𝑛}, we
have |𝚺| = 𝑛.

𝑠𝑐𝑜𝑟𝑒(𝑠𝑖) = 𝐾𝐿𝐷𝑐(𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) ‖𝑈)

= ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔
𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖)

(
1

|𝚺|
)

𝑘=𝑛

𝑘=1

= ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔(𝑛 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖))

𝑘=𝑛

𝑘=1

Table A1 lists the statistics of the outcomes, including the
minimum, median, average, and the maximum of the numbers
of guesses that were used by different strategies to solve the
2315 problems. The excellency column shows the percentages
of a strategy using only one or two guesses to solve the 2315
problems. The failure column shows the percentages of a
strategy using seven or more guesses to solve the 2315
problems.

Figure A1 depicts the distributions of the numbers of
guesses that were used by different strategies. We show the
strategies at the bottom, where the “hard-mode” is the baseline,
the “i” and “p” families of strategies were denoted by “i” and
“p” that were followed by a digit, respectively. We show the
number of needed guesses on the horizontal axis, and the
frequencies of the number of needed guesses on the vertical
axis.

Table A1. Basic statistics

strategy min median mean maximum excellency failure

hard-mode 1 4 4.078 10 4.67% 1.77%

i1 1 6 5.651 11 1.47% 28.51%

i2 1 4 4.117 9 2.59% 1.34%

i3 1 4 4.475 10 2.59% 5.49%

i4 1 4 3.674 8 5.75% 0.65%

i5 1 5 4.926 10 2.29% 11.27%

i6 1 4 3.750 9 5.75% 0.52%

i7 1 4 4.205 9 3.20% 2.98%

i8 1 4 3.674 8 5.75% 0.65%

p1 1 4 4.263 10 2.72% 2.76%

p2 1 4 4.301 10 2.72% 3.11%

p3 1 5 4.525 9 2.38% 3.24%

p4 1 5 4.583 9 2.38% 3.41%

p5 1 4 3.851 10 5.75% 1.73%

p6 1 4 3.848 10 5.75% 1.56%

p7 1 4 4.245 9 3.63% 1.68%

p8 1 4 4.236 9 3.63% 1.47%

Figure A1. Distributions of the numbers of guesses that were used by different strategies to solve the 2315 problems

