
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE 

Using Wordle for Learning to Design and Compare Strategies 
Chao-Lin Liu 

National Chengchi University, Taiwan  
chaolin@g.nccu.edu.tw 

Abstract—Wordle has become a very popular online game 

since November 2021. We designed and evaluated several 

strategies for solving Wordle in this manuscript. Our strategies 

achieved impressive performances in realistic evaluations that 

aimed to guess all of the known answers of the current Wordle. 

On average, we may solve a Wordle game with about 3.67 

guesses, and solve a Wordle game with six or fewer guesses 

higher than 98% of the time. In fact, our strategies are 

applicable to word guessing games that are more general than 

the current Wordle. More importantly, we present our work in 

ways that our experiences may be used as classroom examples 

for learning to design strategies for computer games. 
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I. INTRODUCTION 

The popularity of the word game Wordle exploded [16], 
and the New York Times purchased the game in 2022 [15].  
Wordle is similar to Mastermind [11] and Bulls and Cows [3], 
but is special in that the answers are actual English words.   

The main social impacts of Wordle may be in the direction 
of entertainment, so we found that we may utilize the 
popularity of this game to stimulate students’ interests in 
designing solvers for the game from probabilistic, statistical, 
and information theoretical perspectives in courses like 
Introduction to Artificial Intelligence and Computational 
Strategies for Games.  

The goal of playing Wordle is to find the correct answer 
with the least number of guesses possible. Hence, either for 
entertainment or for education purposes, attempts to find a 
theoretical solution for the minimum is not surprising, e.g., 
[12]. This appear to be a challenging mission mainly because 
Wordle has 2315 possible answers and their selection was not 
based on scientific reasons.  The number of needed guesses 
will also rely on the set of correct English words that have five 
letters, and this set of words may not have a universal 
consensus on its inclusion. The distribution of the numbers of 
guesses needed for Wordle depends on these practical factors, 
so reaching a theoretical conclusion is not easy. 

We may find some unofficial reports about the number of 
guesses that are needed for ordinary people and for programs 
to find the answers for Wordle. Haripriya reported the 
statistics that were collected on Tweeter for 241,489 games on 
22 January 2022 [8]. The median and the average number of 
guesses were 4 and at least 4.46, respectively, where we 
consider the human players who failed to solve their games 
within six attempts would need seven guesses. 

We reported a systematic method for solving the Bulls and 
Cows game in 2001 [2], and the method happens to be what 
we call “the hard mode” for Wordle today [10].1 Playing in 
the hard mode sets some constraints on the guesses that a 
player may use, and those constraints are not necessarily easy 
for human to comply. Despite this obvious drawback, we re-
implemented our 2001 algorithm in Python and for today’s 

                                                           
1 The year is 2001, not a typo. Information about that publication is 

not disclosed for anonymous submission. 

Wordle game. We randomly choose a next guess when there 
are multiple choices that comply the hard-mode rules. The 
average number of guesses used to solve the 2315 problem 
instances is about 4.11.  

We may find that some claim to have achieved an average 
of 3.64 or 3.60 in personal GitHub repos or YouTube videos. 
The source codes were not completely open to the public for 
verification, so we are not sure of the reproducibility of these 
results.  

We should like to emphasize that the main purpose of 
having Wordle is for entertainment. People talk about tricks 
and possible strategies that human beings can actually apply. 
Some computational methods may be more effective, but they 
are not proposed for human. 

Building on the concept of “hard mode” which we had 
discussed in 2001, we invented 16 other strategies that 
consider probabilistic, statistical, and information-theoretical 
factors in the search for Wordle answers. We have found 
simple methods that can achieve an average of 3.85 guesses 
for Wordle and a relatively more computationally intensive 
method that can achieve an average of 3.67. We would 
publicize our programs for public verification along with this 
manuscript. 

The most important contribution that we would like to 
make is not really about whether we offer very competitive, if 
not state-of-the-art, computational solutions for Wordle. 
Given the limited scale of Wordle from the perspective of 
computing powers of modern computers, one may even do 
exhaustive search to find a best plan for the current Wordle, 
e.g., [14]. That kind of success would not generalize and scale 
if we change the parameters for a Wordle-like game (see 
Section II.A for more details).  

Through the discussion of our experience in designing our 
methods, we hope to offer some hints about the process of 
designing and comparing the strategies for solving computer 
games, and hope that the discussion can also serve as a model 
assignment for courses like Introduction to Artificial 
Intelligence and Computational Strategies for Games.  

We define a class of word games that can cover the case 
of Wordle in Section II, where we also use a popular method 
as the baseline method to solve Wordle. In Sections III 
through V, we take a probabilistic perspective for designing 
strategies for Wordle, and show that a good strategy for 
selecting the first guesses may improve the performance of our 
programs. In Section VI, we adopt the ideas of learning 
decision trees in machine learning to design strategies, and 
achieved good results in the evaluation [1]. We discuss several 
technical issues that we experienced in this study in Section 
VII.   

II. WORDLE AND THE HARD MODE 

In this section, we offer a formal definition of Wordle. Our 
definition is more general the current Wordle games, and can 
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be used to define a family of Wordle games. We then explain 
how we used a “hard mode” principle to solve Wordle  

A. A Formal Defintion of the Word Game Wordle 

Let 𝑊 = (𝚺, 𝑪, 𝑷, 𝑇, 𝜆)denote a word game, where 𝚺 =
{𝑠1, 𝑠2, ⋯ , 𝑠𝑖 , ⋯ , 𝑠𝑛}, for a positive integer 𝑛, is a set of basic 

symbols. 𝑪 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑗 , ⋯ , 𝑐𝑚}, for a positive integer 𝑚, 

is a set of words, whereas each word 𝑐𝑗 ∈ 𝑪 is a string of 𝜆 

symbols 𝑐𝑗1𝑐𝑗2 ⋯ 𝑐𝑗𝑘 ⋯ 𝑐𝑗𝜆  and each 𝑐𝑗𝑘  is equal to a certain 

𝑠𝑖 ∈ 𝚺. A symbol may appear more than once in a word. The 
goal of the game is to identify the answer of the game, 𝑇 =
𝑐𝑎 ∈ 𝑪, via the shortest sequence of guesses possible. 𝑷 =
{𝑝1, 𝑝2, ⋯ , 𝑝𝑢, ⋯ , 𝑝𝑣}, for a positive integer 𝑣, is the set of 
permitted words from which a player may use as a guess. To 
that end, a word in 𝑷 is string of 𝜆 symbols in 𝚺, just like a 
word in 𝑪. For a reasonable game, 𝑪 must be a subset of 𝑷 or 
is equal to 𝑷. 

When playing the word game, a player iteratively offers a 
sequence of guesses. For each guess, the player will receive a 
response that indicates how well the guess matches the answer. 
The player can choose her/his next guess according to the 
information that s/he infers from the previous responses in 
order to find 𝑇 with the fewest number of guesses possible. 

 For the Wordle game, the 𝚺  of Wordle is the English 
alphabet, all of the words in 𝑪 have five symbols, and 𝑪 is a 
list of 2315 different English words, i.e., 𝑛 = 26, 𝑚 = 2315 
and 𝜆 = 5 . 𝑷  is the set of actual English words that have 
exactly five letters, including some rarely used words like 
“CWCTH” [7], where whether a word is “actual” or not may 
depend on the implementation of the game providers. These 
settings are certainly changeable to define new games. 

Let  𝑇 = 𝑡1𝑡2𝑡3𝑡4𝑡5  and 𝐺 = 𝑔1𝑔2𝑔3𝑔4𝑔5  represent the 
answer and a certain guess, respectively, for a Wordle game. 
A response 𝑅 = 𝑟1𝑟2𝑟3𝑟4𝑟5 to a guess consists of five squares, 
that can be green, yellow, or gray. A green square 𝑟𝑥 indicates 
that 𝑔𝑥 = 𝑡𝑥 , for 𝑥 ∈ {1,2,3,4,5}.  A yellow square 𝑟𝑥 
indicates that 𝑔𝑥 = 𝑡𝑦 for a 𝑦 ≠ 𝑥 and 𝑥, 𝑦 ∈ {1,2,3,4,5}, on 

the condition that a 𝑡𝑦 can flag a 𝑔𝑥 as yellow only once. A 

gray square 𝑟𝑥 indicates that 𝑔𝑥 does not equal to any symbol 
in 𝑇.  

B. The Baseline Strategy: The Hard Mode 

One simple way for computers to solve Wordle is using 
the hard mode strategy. Assume that we have randomly 
chosen a first guess, 𝐺1, and have received the response 𝑅1. 
With this piece of information, we may reduce the size of 𝑪 
with the following observation. 

Principle HM: 𝑐𝑗 ∈  𝑪  cannot be the answer, if we 

temporarily assume 𝑐𝑗  to be the answer, use 𝑐𝑗  to compare 

with a guess 𝐺1, and get a response that is different from 𝑅1. 

In the following discussion we will use 1, 2, and 0 to 
indicate the green, yellow, and gray square, respectively in our 
statements. Hence, a perfect response will be “11111”. We 
will also use 𝑪 as 𝑷, although that is not necessary.  We will 
discuss this issue in this manuscript.  

The validness of the Principle HM can be explained with 
a simple example. If “amble” is the answer, and our guess is 

                                                           
2 http://www.learningaboutelectronics.com/Articles/Number-

guessing-game-with-PHP.php 

“apple”, then the response is “10011”. When we filter the 
words in 𝑪 with the Principle HM, we will know that “amuse” 
must not be the answer because, if “amuse” were the answer, 
we would have “10001” as the response. Hence we may 
exclude “amuse” from 𝑪 for the current game. In contrast, 
both “amble” and “angle” remain to be candidates for the 
answer. 

We provide the algorithm for Strategy Hard-Mode that 
employs the Principle HM for solving Wordle in Fig. 1. The 
implementation is really easy, and the computation is very 
efficient. Tables I and II show the statistics of two runs of 
Strategy Hard-Mode on the 2315 Wordle answers. Since the 
guesses were randomly selected, we could observe different 
outcomes in repeated runs. Since we conduct the experiments 
twice, the total number of games is 4630 in Table II, and we 
solved 1830 games with four guesses. On average, we used 
4.11 guesses to solve the games, and failed to find the answers 
with six or fewer attempts in (60+20+1)=81 games, which is 
equivalent to 1.75% “failure” rate. We considered games in 
which we found the answers with one or two guesses as 
“excellent”. The baseline methods performed excellently in 
4.00% of the games.  

III. COLLOCATION-BASED HEURISTIC 

After using the Principal HM to filter 𝑪, we have used up 
the information that the responses to the previous guesses have 
offered. All of the words in the reduced 𝑪  are reasonable 
candidates for the answer. In the Strategy Hard-Mode, a word 
in 𝑪  was chosen as the next guess randomly. We need to 
invent a heuristic to choose the next guess from the reduced 𝑪. 

A. Motivation 

Recall the game of aiming to guess a number between 1 
and 10.2 The optimal strategy is using the current guess to split 
the remaining candidates of the answer into two subgroups of 

Strategy Hard-Mode 

Step 1. Randomly choose a 𝑐𝑗 from 𝑪 as the first guess 𝐺1, and 

assume that the response is 𝑅1. 
Step 2. 𝑖 = 1 

Step 3. While 𝑅𝑖 is not perfect, do the following: 

Step 31.    Filter and reduce 𝑪 with 𝑅𝑖 based on the Principle 

HM. 

Step 32.    Randomly choose the next guess 𝐺𝑖+1 from the 

reduced 𝑪, and let the response be 𝑅𝑖+1. 

Step 33     𝑖 = 𝑖 + 1 

Step 4. Record 𝑖. If 𝑖 > 6, report failure. 

Fig. 1. The Baseline: Strategy Hard-Mode 

TABLE I. Statistics for two runs of Strategy Hard-Mode 

Strategy min median mean max  

Hard-

Mode 

1 4 4.11 9 

excellent failure   

4.00% 1.75%   

TABLE II. Raw records for two runs of Strategy Hard-Mode 

Number of guesses 1 2 3 4 5 

Number of games 3 182 1099 1830 1154 

Number of guesses 6 7 8 9  

Number of games 281 60 20 1  

 



almost equal sizes each time. By doing so, we minimize the 
depth of the search tree, and minimize the expected number of 
steps needed to find the answer. 

This observation also provides a motivation for 
understanding the design of binary search tree [5]. We may 
inherit the ideas of binary search trees, and estimate the quality 
of the groupings of the remaining answers in 𝑪 of the Wordle 
based on the unconditional and conditional distributions of the 
symbols. 

B. Unconditional and Conditional Probaility of Symbols 

For any given 𝑪  and 𝑷  in a game, it is easy for us to 
compute the unconditional and conditional probabilities of 
inclusion of the symbols in words.  

We define the unconditional probability of a symbol 𝑠𝑖 in 
𝚺  for the 𝑪  as the probability of the inclusion of 𝑠𝑖  in the 
words in 𝑪. The unconditional probability of a symbol  𝑠𝑖 in 𝚺 
for the 𝑷  is defined analogously. Identity (1) provides an 
operational definition for 𝑃𝑟𝑐 (𝑠𝑖). 

𝑃𝑟𝑐(𝑠𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑠𝑖 𝑖𝑛 𝑪

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑪
       (1) 

We define the conditional probability 𝑃𝑟𝑐(𝑥|𝑠𝑖) of seeing 
a symbol 𝑥 given that the symbol 𝑠𝑖 is present in a word in 𝑪. 
The conditional probability for 𝑷  is defined analogously. 
Identity (2) provides an operational definition for 𝑃𝑟𝑐(𝑥|𝑠𝑖) 

for all symbols 𝑥 in 𝚺, where 𝑃𝑟𝑐(𝑥, 𝑠𝑖) is the probability that 
𝑥 and 𝑠𝑖 appear in the same word in 𝑪. 𝑃𝑟𝑐(𝑠𝑖|𝑠𝑖) may not be 
zero if there are words in 𝑪 that include more than one 𝑠𝑖.  

𝑃𝑟𝑐(𝑥|𝑠𝑖) =
𝑃𝑟𝑐(𝑥,𝑠𝑖)

𝑃𝑟𝑐(𝑠𝑖)
                             (2) 

Given the conditional probability values for all symbols in 
𝚺, we may compute the entropy for each of these conditional 
distributions 𝐻𝑐(𝑠𝑖), using the identity shown in (3). 

𝐻𝑐(𝑠𝑖) = ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔
1

𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖)

𝑘=𝑛

𝑘=1

 (3) 

C. Ranking the Candidates Words 

The task of selecting the next word as our guess requires 
us to compute a score for a candidate word in 𝑪. Recall that, 
in the process of playing Wordle, the size of 𝑪 decreases in 
each iteration in the Strategy Hard-Mode, so the computation 
of the unconditional probability, condition probability, and the 
entropy is a dynamic task.  

Each word in a word game 𝐺 has 𝜆 symbols. If we naively 
assume that the contributions of each of these 𝜆 symbols to the 
score of a candidate word are independent, we have a simple 
way to estimate the score of the candidate words in 𝐺. This 
step is expressed in identity (4). 

score(𝑐𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

 (4) 

D. Maximizing the Entropy when Ranking the Candidates 

From here, we have multiple ways to define 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘). 

Some of which are intuitively favorable, and others appear to 
be less attractive. In a university course, students may be 
encouraged to try and compare their actual effects.  

Based on the nature of the entropy, if we prefer the 𝑠𝑖 ∈ 𝚺 
that has a larger 𝐻𝑐(𝑠𝑖), we are favoring the 𝑠𝑖 that collocates 
more diversely with the symbols in 𝚺. Getting information 

about such an 𝑠𝑖 allows us to collect more information about 
more symbols in 𝚺 , therefore increasing the possibility of 
leading to more shallow search tree. The score for a candidate 
word can be as simple as identity (5) shows, if we continue to 
choose the next guess from the current reduced as we 
explained in Section II.B.   

score(𝑐𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

= ∑ 𝐻𝑐(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

 (5) 

In (5), the contribution of a symbol 𝑐𝑗𝑘 in 𝑐𝑗 is the entropy 

of its collocational probability, by setting 𝑠𝑖 = 𝑐𝑗𝑘 in (2) and 

(3).  

It is intriguing to weigh 𝐻𝑐(𝑐𝑗𝑘)  by the unconditional 

probability of  𝑃𝑟𝑐(𝑐𝑗𝑘)  when calculating 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘) . 

Identity (6) shows the operation for this intuitive exploration. 

score(𝑐𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑐𝑗𝑘)

𝑘=𝜆

𝑘=1

= ∑
𝑃𝑟𝑐(𝑐𝑗𝑘)𝐻𝑐(𝑐𝑗𝑘)

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟

𝑘=𝜆

𝑘=1

, (6) 

where 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 = ∑ 𝑃𝑟𝑐(𝑐𝑗𝑘)𝑘=𝜆
𝑘=1  

Putting the above reasoning together we would choose the 
𝑐𝑗  that has the largest score(𝑐𝑗) for all current candidate words. 

This step is expressed in the following identity 

nextGuess(𝑪) = 𝑐𝑗
∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗∈𝑪𝑠𝑐𝑜𝑟𝑒(𝑐𝑗)      (7) 

Recall that our using argmax in (7) is based on intuitive 
arguments. It is thus educational to switch to using argmin in 
part of our evaluation process. We may examine whether or 
not results of realistic experiments support our intuition. For 
this purpose, we used the identity in (8).  

nextGuess(𝑪) = 𝑐𝑗
∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑗∈𝑪𝑠𝑐𝑜𝑟𝑒(𝑐𝑗)      (8) 

E. Algorithm and its Evaluation 

We replace the steps of randomly selecting the next guess 
in Strategy Hard-Mode in Fig. 1 with the steps that aim to 
optimize either (7) or (8), depending on the goals of individual 
experiments. Fig. 2 shows the algorithm for Strategy Hard-
Mode-Collocation.  

Table III shows the summary for the experiments in which 
we may use four possible different ways to choose the next 
guesses. The label un-max (for unweighted-argmax), indicate 
that identities (5) and (7) were used in the experiment,  un-min 
(for unweighted-argmin) indicates that (5) and (8) were used, 
wht-max (for weighted-argmax) indicates that (6) and (7) 
were used, and wht-min (for weighted-argmin) indicates that 
(6) and (8) were used.   

TABLE III. Statistics for Strategy Hard-Mode-Collocation 

Strategy un-max un-min wht-max wht-min 

min 1 1 1 1 

median 4 5 5 5 

mean 4.326 5.044 4.62 4.525 

max 11 10 10 9 

excellent 2.59% 1.47% 2.42% 2.38% 

failure 4.71% 10.58% 7.65% 3.24% 

 



It was quite disappointing that none of these strategies 
outperformed the baseline strategy, at initially. We found that 
Strategy Hard-Mode-Collocation tended to choose words with 
repeated characters for the first and may be for the second 
guesses. Words like “fuzzy”, “vivid”, and “knock” were 
common.  

IV. THE POLICTY ON SELECTING THE FIRST GUESSES  

Gradually, we consider more heuristics to improve our 
algorithms. When selecting the next guesses with (7) or (8), 

we do not consider the distributions of the symbols that form 
the words. Hence, it is possible that a symbol might appear 
more than once in competitive candidate words. Having 
repeated symbols in a guess is particularly unattractive, at 
least intuitively, for the very first guess in Wordle. One 
possible and common policy is to select words that do not have 
repeated symbols at least for the first guess. Among the 2315 
possible answers for Wordle, 1655 words do not have repeated 
symbols.  

We added this constraint to the Strategy Hard-Mode-
Collocation, and re-ran our experiments. Table IV shows the 
results. The performances improved across the board when we 
compare the corresponding items in Tables III and IV, except 
that the results of using weighted-argmin improved only 
partially.  

It is worthwhile mentioning that the results shown in the 
un-max column in Table IV are better than their corresponding 
items listed in Table I. The average number of guesses needed 
to find the answers was reduced, the excellent rate was 
increased, and the failure rate was reduced. 

The differences in the performance metrics between 
unweighted-argmax and unweighted-argmin supported our 
reasoning for using identities (5) and (7). The negative 
impacts of replacing (7) with (8) were salient. We tried 

weighted-argmax and weighted-argmin just because of 
curiosity, and their performances were poorer than those of the 
baseline method.  

V. INFORMATION-THEORETIC APPROACHS 

We also tried to apply the concept of the Kullback-Leibler 
divergence between the conditional probability distribution 
𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) and the discrete uniform distribution that assumes 
that all 𝑠𝑘 are equally likely [9].  Therefore, we can carry out 
a simple derivation that is provided in the Appendix. 
Preferring an 𝑠𝑖  that has larger 𝑠𝑐𝑜𝑟𝑒(𝑠𝑖)  in identity (9) is 
tentative to favoring a conditional probability that is more 
different from a uniform distribution. This might sound like a 
reasonable factor for a good guess, but the rationality is not 
very strong. Despite this vagueness, we replaced identity (3) 
in Section III.B with (9), and named the new strategy  Hard-

Mode-Collocation-KLD. The experimental results, listed in 
Table V, are close to and better than those listed in the un-max 
column in Table IV. Table VI lists the actual distribution of 
the numbers of guesses that we used to solve the 2315 
problems.  

𝑠𝑐𝑜𝑟𝑒(𝑠𝑖) = ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔(𝑛 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖))

𝑘=𝑛

𝑘=1

 (9) 

VI. HIGHER-LEVEL SEARCH CONSIDERATIONS 

Assume that we are working on Wordle games whose 
answers are 5-letter words, and that we have chosen a word 𝑐𝑗 

in 𝑪 as a guess. The response must be one of the patterns listed 
in Table VII. Therefore, we many consider that a guess would 
lead us to cluster the words into 20 groups,  and members of 
each of these groups would give our guess the same response 
that is specific for that group. It should be easy to understand 
that if the answers for Wordle have more number of letters, it 
would be time consuming to make a table like TABLE VII 
manually, but that is doable computationally. From this 
perspective, we may say that a guess will divide the current 
reduced 𝑪 into sub-sets. 

Due to this observation, we can calculate the percentages 
of the words in the sub-sets, and use the percentages as a 

Strategy Hard-Mode-Collocation 

Step 1. Choose the 𝑐𝑗 from 𝑪 that optimize score(𝑐𝑗), 𝑐𝑗 ∈  𝑪, 

based on the identities (7) or (8), as the first guess 𝐺1, 

and assume that the response is 𝑅1. 
Step 2. 𝑖 = 1 

Step 3. While 𝑅𝑖 is not perfect, do the following: 

Step 31.    Filter and reduce 𝑪 with 𝑅𝑖 based on the Principle 

HM. 

Step 32.    Choose the next guess 𝐺𝑖+1 = 𝑐𝑗
∗ whose score is 

maximum among the candidates in the reduced 𝑪, 

and let the response be 𝑅𝑖+1. Again, we may use 

identities (7) or (8) at this step. 

Step 33     𝑖 = 𝑖 + 1 

Step 4. Record 𝑖. If 𝑖 > 6, report failure. 

Fig. 2. The Baseline: Strategy Hard-Mode 

TABLE IV. Statistics for Strategy Hard-Mode-Collocation 

with constraints on selecting first guesses 

Strategy un-max un-min wht-max wht-min 

min 1 1 1 1 

median 4 5 4 4 

mean 3.906 4.674 4.551 4.245 

max 9 9 11 9 

excellent 5.36% 2.29% 3.54% 3.63% 

failure 2.07% 5.57% 8.16% 1.68% 

 

TABLE V. Statistics for the Strategy Hard-Mode-Collocation-

KLD 

Strategy min median mean max  

Hard-Mode-

Collocation-KLD 

1 4 3.851 10 

excellent failure   

5.75% 1.73%   

TABLE VI. Raw records for the Strategy Hard-Mode-

Collocation-KLD 

Number of guesses 1 2 3 4 5 

Number of games 1 132 1099 910 355 

Number of guesses 6 7 8 9 10 

Number of games 103 29 7 3 1 

 



probability distribution to calculate the resulting entropy when 
we use a guess to divide current 𝑪.  Analogous to our trying 
to maximizing the Information Gain when we build decision 
trees in machine learning, we would prefer to minimize the 
resulting entropy when we use a guess to divide the current 𝑪. 
Moreover, we may employ the concept of the Kullback-
Leibler divergence to compute the scores of choosing a certain 
candidate word for Wordle. The process is similar to the 
development that we discussed in details in Sections III, IV, 
and V. Although the process is similar, the computation 
procedures are much more time consuming than using the 
collocation-based information.  

More specifically, let Γ = {𝛾1, 𝛾2, ⋯ , 𝛾𝑎, ⋯ , 𝛾𝑏}  denote 
the set of all possible responses for a word game 𝑊. Table VII 
shows the Γ for a Wordle game whose answers are words of 
five symbols. We may conceptually divide the current 𝑪 of 𝑊 
into 𝑏  groups, with a guess 𝐺  as following: If 𝑐𝑗 ∈ 𝑪 is the 

answer of 𝑊 and if its response to 𝐺 is 𝛾𝑎, then we put 𝑐𝑗 into 

the group 𝑔(𝛾𝑎). Therefore, by construction, each word in 
must belong to a certain group in Γ. 

We can define a probability distribution based on the 
memberships of these groups. Let 𝑠(𝛾𝑎)  be the number of 
words in 𝑔(𝛾𝑎). Hence, if there are 𝑥 words in the current 𝑪, 
the following identity must hold. 

∑ 𝑠(𝛾𝑎)

𝑏

𝑎=1

= 𝑥 (10) 

Therefore, let 𝑝(𝛾𝑎) =
𝑠(𝛾𝑎)

𝑥
, and we have the following. 

∑ 𝑝(𝛾𝑎)

𝑏

𝑎=1

= 1 (11) 

With these basic setups, we can define the resulting 
entropy and Kullback-Leibler divergence in ways that are very 
similar to what we reported in Section III, IV, and V, when we 
choose a guess, 𝐺, to divide the current 𝑪. We can then use the 
entropy and the divergence to compare candidate guesses and 
choose our next guess, to enhance the baseline Strategy Hard-
Mode and establish the Hard-Mode-Search-KLD strategy. 

Tables VIII and IX lists the best results that this relatively 
more complex procedure could achieve.  This Hard-Mode-
Search-KLD strategy led to slightly better performance, i.e., 
the average and maximal numbers of guesses to solve the 
game and the failure rates were improved. The distributions 
recorded in Tables IX and VI are quite different.  

Fig. 3 depict the distributions in percentages for the data 
in Tables II, VI, and IX. Our introducing different methods to 
choose the first guess and the next guesses for a Wordle game 
paid off. Using the Hard-Mode-Collocation-KLD and the 
Hard-Mode-Search-KLD strategies, we were more likely to 
find the answers with three or fewer guesses, while reducing 

 
Fig. 3. Distributions of the percentages of numbers of guesses used to solve the 2315 Wordle games 

TABLE VIII. Statistics for the Strategy Hard-Mode-Search-

KLD 

Strategy min median mean max 

Hard-Mode-

Search-KLD 

1 4 3.674 8 

excellent failure   

5.75% 0.65%   

TABLE IX. Raw records for the Strategy Hard-Mode-

Search-KLD 

Number of guesses 1 2 3 4 5 

Number of games 1 132 866 1015 241 

Number of guesses 6 7 8   

Number of games 45 12 3   

 

TABLE VII. Possible Responses of Wordle  

(5-letter words) 

ID 
number of 

green squares 

number of 

yellow squares 

number of 

gray squares 

1 5 0 0 

2 4 0 1 

3 3 2 0 

4 3 1 1 

5 3 0 2 

6 2 3 0 

7 2 2 1 

8 2 1 2 

9 2 0 3 

10 1 4 0 

11 1 3 1 

12 1 2 2 

13 1 1 3 

14 1 0 4 

15 0 5 0 

16 0 4 1 

17 0 3 2 

18 0 2 3 

19 0 1 4 

20 0 0 5 

 



the possibility of needing five or more guesses to solve the 
games. The proportion of excellent games increased, and the 
proportion of failed games decreased.  

VII. DISCUSSION 

We have used the Hard-Mode Strategy as the baseline. The 
strategy performs pretty well in practice, c.f. Tables I and II. 
We have found and Peattle also discussed that this strategy 
may not work well for some special cases [12].  

Assume that the answer is “freed”, that we have guessed 
“creed”, and that we got the response of [gray, green, green, 
green, green]. In this case, if playing in the Hard Mode, we 
may have to try “greed” and “breed” before we find the correct 
answer. An even more challenging group of words include 
“goner”, “cover”, “wooer”, “homer”, “poker”, and “foyer”.  
Allowing not to abide by the hard-mode rules sometimes will 
help. It may not be easy to find an answer in the group “wight”, 
“fight”, “sight”, “tight”, “right”, “night”, “light”, and “eight” 
with no more than six attempts under the hard-mode rules. 

For simplifying our discussion, we have used 𝑪 as 𝑷. In 
practice, there are a lot more words in 𝑷 than in 𝑪. It is easy 
to find good resources about English words that have five 
letters online, e.g., [4]. Using 𝑪 as 𝑷 is not a required trick for 
our programs. On one hand, using words in 𝑪 as our guesses 
gave us some chances to directly find the answers luckily. On 
the other hand, we also wonder whether using a word in 𝑷 will 
provide more information than using any other words in 𝑪.  

We have mentioned that we consider that a main 
contribution of this manuscript is to provide the experience in 
developing strategies for solving a class of word games. The 
word game 𝑊 as we defined in Section II.A is flexible, and 
one may change the parameters as long as one wish. For 
instance, the words for answers may not have to be English 
words, and it is possible for one to define games that include 
more symbols than the English alphabet in 𝚺. 

We hope that the examples of our designing and choosing 
the heuristics to guide the selection of next guesses may be 
used as classroom examples of designing and comparing 
strategies for computer games. 

We evaluated our methods with a single Wordle so far. 
One may apply our methods to solve Dordle [6] and Quordle 
[13] in which a plyer needs to solve more than one Wordle at 
a time. If each of these Wordle games are independent, then 
our methods should be directly applicable. If individual 
Wordle games are dependent, it should be possible to enhance 
our current design to handle the extra constraints.  

VIII. CONCLUDING REMARKS 

We have proposed a few strategies for solving a special 
class of word games, and used typical Wordle games as the 
example problems. Results of realistic evaluation indicate that 
we have achieved competitive performances for the current 
Wordle. In addition to providing clues for solving Wordle, we 
hope that the process of inventing and evaluating candidate 
strategies could serve as classroom examples for courses on 
learning to design strategies for computer games. 
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APPENDIX 

In the following derivation, 𝑈 denote a uniform distribution that 
we want to compare with the conditional probability distribution 

𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖), for a specific 𝑠𝑖. Since 𝑠𝑘 can be any symbol in 𝚺, we 
need a uniform random variable that could take the value of 
any state among |𝚺| states. Since  𝚺 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑖 , ⋯ , 𝑠𝑛}, we 
have |𝚺| = 𝑛. 

𝑠𝑐𝑜𝑟𝑒(𝑠𝑖) = 𝐾𝐿𝐷𝑐(𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) ‖𝑈)

= ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔
𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖)

(
1

|𝚺|
)

𝑘=𝑛

𝑘=1

= ∑ 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖) 𝑙𝑜𝑔(𝑛 𝑃𝑟𝑐(𝑠𝑘|𝑠𝑖))

𝑘=𝑛

𝑘=1

 

Table A1 lists the statistics of the outcomes, including the 
minimum, median, average, and the maximum of the numbers 
of guesses that were used by different strategies to solve the 
2315 problems. The excellency column shows the percentages 
of a strategy using only one or two guesses to solve the 2315 
problems. The failure column shows the percentages of a 
strategy using seven or more guesses to solve the 2315 
problems. 

Figure A1 depicts the distributions of the numbers of 
guesses that were used by different strategies. We show the 
strategies at the bottom, where the “hard-mode” is the baseline, 
the “i” and “p” families of strategies were denoted by “i” and 
“p” that were followed by a digit, respectively. We show the 
number of needed guesses on the horizontal axis, and the 
frequencies of the number of needed guesses on the vertical 
axis.



Table A1. Basic statistics 

strategy min median mean maximum excellency failure 

hard-mode 1 4 4.078 10 4.67% 1.77% 

i1 1 6 5.651 11 1.47% 28.51% 

i2 1 4 4.117 9 2.59% 1.34% 

i3 1 4 4.475 10 2.59% 5.49% 

i4 1 4 3.674 8 5.75% 0.65% 

i5 1 5 4.926 10 2.29% 11.27% 

i6 1 4 3.750 9 5.75% 0.52% 

i7 1 4 4.205 9 3.20% 2.98% 

i8 1 4 3.674 8 5.75% 0.65% 

p1 1 4 4.263 10 2.72% 2.76% 

p2 1 4 4.301 10 2.72% 3.11% 

p3 1 5 4.525 9 2.38% 3.24% 

p4 1 5 4.583 9 2.38% 3.41% 

p5 1 4 3.851 10 5.75% 1.73% 

p6 1 4 3.848 10 5.75% 1.56% 

p7 1 4 4.245 9 3.63% 1.68% 

p8 1 4 4.236 9 3.63% 1.47% 

 



 

 
Figure A1. Distributions of the numbers of guesses that were used by different strategies to solve the 2315 problems 


