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Abstract—This paper presents a new use case for continuous
crowdsourcing, where multiple players collectively control a
single character in a video game. Similar approaches have already
been proposed, but they suffer from certain limitations: (1) they
simply consider static time frames to group real-time inputs
from multiple players; (2) then they aggregate inputs with simple
majority vote, i.e., each player is uniformly weighted.

We present a continuous crowdsourcing multiplayer game
equipped with our Crowdsourcing Controller. The Crowdsourc-
ing Controller addresses the above-mentioned limitations: (1)
our Dynamic Input Frame approach groups incoming players’
input in real-time by dynamically adjusting the frame length;
(2) our Continuous Reliability System estimates players’ skills
by assigning them a reliability score, which is later used in a
weighted majority vote to aggregate the final output command.

We evaluated our Crowdsourcing Controller offline with sim-
ulated players and online with real players. Offline and online
experiments show that both components of our Crowdsourcing
Controller lead to higher game scores, i.e., longer playing time.
Moreover, the Crowdsourcing Controller is able to correctly
estimate and update players’ reliability scores.

Index Terms—Crowdsourcing, Multiplayer, Reliability system

I. INTRODUCTION

Crowdsourcing systems are fascinating and powerful tools
that can be utilized in a variety of use cases [3]. Thanks to wide
access to a stable and fast network connection, it is possible
now to develop those systems for real-time applications, i.e.,
continuous crowdsourcing. In recent years, research has been
dedicated to real-time and online crowdsourcing systems, with
use cases such as video captioning, robot controls, audio
processing, and assistive technology [8].

Another topic that emerged in recent years are video game
streams, where spectators become active players by voting on
certain gameplay choices or even taking direct control of the
game. Recent research has found that watching a stream of
a video game is more about social interaction than the game
content itself [2]. This type of games, where larger crowds
play and cooperate together through aggregated network input
are described as Emergent Multiplayer Games (EMG) [14].
The popularity of these events shows that there is a market
for new, innovative ways in which players can cooperate in
game contexts. Although research has been put into how a
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multiplayer voting mechanisms can work from a gameplay
perspective [14], there is little insight into merging crowd-
sourcing approaches with multiplayer video game controllers.

In this paper, we explore continuous crowdsourcing ap-
proaches in the context of multiplayer games, in which players
make collective decisions regarding the gameplay. We present
a new use case for continuous crowdsourcing, where multiple
players collectively control a single character in a video game.
Similar approaches have already been proposed in different
contexts, but they suffer from certain limitations. They con-
sider static frames to group inputs from multiple users and
they do not utilize approaches commonly implemented in
crowdsourcing systems to estimate players reliabilities when
aggregating inputs.

The contribution of this paper is twofold. The first part
is a simple video game with an innovative mechanic that
lets multiple network players control one character through
an aggregated input. The second part is our Crowdsourcing
Controller, which controls how to: (1) group real-time inputs
coming from multiple users into frames; (2) aggregate inputs
within a frame and issue a single output command. We propose
two novel approaches to aggregate and process crowdsourced
inputs: the Dynamic Input Frame to group inputs and the
Continuous Reliability System to aggregate them. The former
aims at detecting a precise moment in time when the input
should be issued to the game, while the latter focuses on
recognizing and utilizing reliable players during the play
session. A combination of offline, AI-based experiments, as
well as online experiments, with 9 real players, has been
conducted to gather the data needed for the analysis and
evaluation of the proposed solutions.

The paper is organized as follows: related work on crowd-
sourcing and online multiplayer games (§ II); the online game
(§ IV); our Crowdsourcing Controller (§ IV); experimental
evaluation (§ V); conclusions and future work (§ VI).

II. RELATED WORK

First, we describe crowdsourcing, its definitions and most
prevalent use cases (§ II-A). Then we present related work on
Emergent Multiplayer Games (EMG), a type of online video
streams in which viewers have direct control over the game
through voting mechanisms (§ II-B).
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A. Crowdsourcing

The term crowdsourcing firstly appeared in 2006 with the
meaning of “taking a function once performed by employees
and outsourcing it to an undefined (and generally large)
network of people in the form of an open call” [6]. Over
the years, this idea has gained much interest both in industry
and academia and became an umbrella term that encompasses
many different use cases, as distributed-human-intelligence
tasks, knowledge discovery and management, etc. [3]. One
of the most famous examples is Amazon Mechanical Turk, a
crowdsourcing platforms where requesters can submit small
jobs, such as image labeling, called Human Intelligence Tasks
(HITs), which are performed by a remote community of
workers. In recent years, researchers explored novel ideas to
use crowdsourcing such as software development [11] and
even writing fiction [7].

A persistent problem in crowdsourcing is how to engage
crowd workers when performing HITs. Usually crowd workers
are paid a small amount of money [10], which does not
guarantee that workers perform to the best of their ability,
even if a fair payment can be helpful [5], [15]. Another way
of engaging workers is through gamification: in [1] a novel
platform is designed, where users playing an online game were
labeling images while competing against each other.

Providing engaged and motivated workers does not always
guarantee that their answers will be correct. Therefore each
HIT is usually assigned to multiple crowd workers, whose
inputs are aggregated with statistical methods. The simplest
way to aggregate multiple answers is by Majority Vote (MV),
i.e., the answer that is the most popular among the workers
is predicted to be correct. This, however, does not take into
consideration differences in workers’ expertise.

Expectation Maximization (EM) algorithm has been used as
early as in [4] to tackle this problem. EM iteratively estimates
the probability that a worker correctly completes a set of HITs
(this probability is called reliability in § IV). Some limitations
of EM are that it needs to run offline on the whole dataset and
it is costly due to its iterative nature. Both of these arguments
prevent EM application in real-time scenarios.

A relatively new type of crowdsourcing is Continuous
crowdsourcing [8] which engages workers over long peri-
ods and allows them to maintain the context of the task.
Moreover the tasks change over time reacting to workers’
input. The responses from the workers are processed in so-
called input mediators that aggregate them to produce the
system output. Continuous crowdsourcing has been applied
to a variety of use cases, for example, real-time continuous
video/audio captioning to collect activity recognition labels
from video stream [9], and a robot control system able to
react to unforeseen circumstances [8].

Continuous crowdsourcing requires to dynamically estimate
workers’ reliabilities. Such calculations need to be done in
real-time, as workers’ input is immediately applied to the task
at hand and different reliabilities affect the votes aggregation.
In [13] a modified version of the EM algorithm is used in real-

time to estimate workers’ reliabilities. The authors, however,
do not mention the time complexity of this approach, and
using an iterative method in real-time scenarios might not be
optimal. In this paper, we propose a method of calculating
workers reliabilities in a real-time scenario without the need
to perform high complexity calculations.

B. Video Games Controlled by Multiple Players

There is a growing trend of multiplayer video games, where
multiple network users control a single instance of a video
game streamed through an online platform. One of the first,
and to this day the most popular event using this approach was
Twitch Plays Pokemon, where thousands of players watched a
video stream of an ongoing Pokemon Red game while issuing
commands through the chat. The game creators defined two
modes: anarchy, all inputs from all players are forwarded to
the game; and democracy, all inputs are considered as votes,
counted and then forwarded to the game, similarly to input
mediators (§ II-A). The democracy mode resulted in a more
conservative and slower behavior of the character, but allowed
the players to beat the hardest challenges.

Twitch Plays Pokemon is one of the earliest examples of
an Emergent Multiplayer Game (EMG) [14], a video game
in which large crowds play collectively through a network
voting system. EMGs utilize a set of relatively simple game
mechanics and subsystems, that when controlled by large
crowds result in creative and unique ways of playing. They
encourage coordination and self-organization of the crowd,
both in-game and outside of it. Explored mechanics usually
use a voting system that gathers input from a large crowd and
applies the results after a certain delay. The time reserved for
collecting the input, however, makes the system not adequate
for fast-paced, real-time scenarios. We address this challenge
using our Crowdsourcing Controller.

III. SYSTEM OVERVIEW AND USE CASE

Our continuous crowdsourcing system is presented in Fig-
ure 1. The central part of the system is a simple video game
(described in § III-A). Players issue inputs through the network
as if they were the only player in control of the game character.
The input is aggregated and processed by the Crowdsourcing
Controller. The output of the system is a singular game
command, whose type and issue time are calculated based
on all the inputs sent over the network. The aggregated game
command is applied with immediate effect, which influences
the state of the game and is seen by all players on their
screens. The source code of the implementation of our system
is publicly available1.

A. Use case: a Simple Video Game

Our Crowsourcing Controller controls a character in a
simple video game which we describe next. We choose this use
case because: (1) crowd workers are generally familiar with
simple controls as well as typical challenges presented in video
games; (2) we wanted to explore the presented crowdsourcing

1https://github.com/KacperKenjiLesniak/crowded-dinosaur
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Fig. 1. General system overview with technologies used for implementation

Fig. 2. Crowd controlled dinosaur (black) and player dinosaurs (different
colors) jumping over an obstacle

system as part of a novel gameplay mechanic; (3) gamification
has proven to be a viable method to engage users in a variety
of tasks [12] which can help with keeping workers motivated
throughout the course of experiments.

The implemented game is a clone of a well-known mini-
game played in Chrome (see Figure 2). Players are assigned
their own dinosaur character of a different color. The crowd-
controlled dinosaur which corresponds to the aggregated out-
put is represented by a black dinosaur. Players’ dinosaurs
behave like “ghosts” and they serve purely as a visual clue
to the players (Figure 2). Thanks to them the players can see
that their input is being processed and is working as intended,
even when the crowdsourced dinosaur is not reflecting their
actions at the current moment. The players also see each other
characters, which can enhance engagement and competition,
and it provides further visual feedback. Players seeing the
black dinosaur impacting an obstacle, even when they issued
a correct input, can feel frustrated and believe that the system
is not working. Seeing that others failed to issue the correct
input can help alleviate this issue. Moreover, seeing all other
characters can lead to players quickly realizing that they are

issuing the inputs out of sync.
We chose this game because it meets a specific set of

requirements: the input comes in real-time and jumping or
crouching at the right moment is crucial for progression; the
input is discrete (short jump, long jump, crouch); there is a
player score which can be used as an estimate of player skills,
and the game is widely known and simple to play.

IV. CROWDSOURCING CONTROLLER

We describe the Crowdsourcing Controller next, which is
responsible for analyzing the inputs coming from the players,
aggregating them, and issuing a single command that best
represents the combined inputs.

Let us consider a system where four players are able to
issue two types of input - 1 and 2. The example in Figure 3
presents a certain moment in time, during which the system
receives four inputs, each coming from a different player, three
of them are of type 1 and one is of type 2.

1 21 1

Time

Fig. 3. Inputs of 2 types issued by 4 players in a short period of time

This situation poses two challenges. The first challenge
relates to the definition of the input frame, i.e., the time
window where all inputs correspond to the players’ reaction
to the same game event, for example an obstacle appearing on
screen. In the example in Figure 3, all 4 inputs are issued at a
similar time, so it is reasonable to consider them in the same
group or input frame. As for when the input frame should be
analyzed further by the system, in the presented example it is
reasonable to do it immediately after receiving the last input.
Moreover, since no more inputs are issued after the last one,
all inputs can be grouped and processed by the system for
further analysis. However, it is not possible to make similar
decisions in a real-time setting without knowing what comes
next. Section IV-A describes how we tackle this problem with
dynamic and static input frames.

The second challenge relates to the aggregation approach,
i.e., how to combine multiple inputs in a single one. In the
presented example, three players voted for input 1 and one
player for input 2, so according to majority vote, the output
of the system should be 1. However, majority vote treats all
payers equally and does not consider the expertise of each
player, e.g., the vote of an expert or reliable player can weight
more than the vote from a beginner and lead to a more accurate
aggregated score. Section IV-B describes how we estimate
such weights, called reliabilities.

The above mentioned challenges are handled by input medi-
ators, illustrated in Figure 4. Input mediators are components
of the crowdsourcing system that: (1) process the input stream
coming in real-time from several players and group inputs
into frames; and (2) produce the final aggregated output that
is issued to the game. These two components together define
our Crowdsourcing Controller.
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A. Dynamic and static Input Frames

The first component of the Crowdsourcing Controller groups
continuous input into input frames, which contain no more
than a single input for each player (a missing input from a
player is represented as 0). A frame represents a short moment
in time in which the users issue the commands which can result
in a specific behavior of the system. We use 2 types of input
frames, static and dynamic, which we describe next.

The Static Input Frames [8] slice the input stream into
frames of a constant length. In case of multiple inputs from
the same player in a single frame, the system uses the most
recent one. One limitation of this approach is how to define
the frame length: too short frames will wrongly group inputs
related to the same event in different frames, too long frames
will negatively affect the system responsiveness.

To address this limitation, we propose the Dynamic Input
Frame approach, where the frame length is dynamically de-
fined based on players’ inputs. The system forms a queue of
incoming inputs and decides in real-time when to slice the
input frame. The inputs in the queue have a specific Time To
Live (TTL), after which they are discarded. When the number
of inputs in the queue surpasses a threshold (T), the system
begins the procedure of defining the frame. It waits for a time
equal to half of the TTL, then gathers all the inputs in the
queue, passes them to the aggregator component, and clears
the input queue. It is crucial to correctly estimate TTL, as it
creates a trade-off between the responsiveness of the system
and its accuracy, as illustrated in Figure 5.

When the Dynamic Input Frame is used together with the
Continuous Reliability System (§ IV-B), instead of using the
number of inputs to compare to the threshold (T) we calculate
a weighted sum using players’ reliabilities, so that reliable
players have more control over when the input frame is issued.

B. Inputs Aggregator

The second component of the Crowdsourcing Controller
gets all the inputs within the input frame and returns a single
aggregated input. We consider two approaches to aggregate
inputs: (1) Majority Vote (MV); and (2) our Continuous
Reliability System.
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Fig. 5. Dynamic frames, threshold (T) of 2 players out of 4 marks the center
of the frame: a) too short duration, part of input ignored; b) too long duration,
unresponsive system; c) correct duration for the situation

MV simply selects the most popular input among players.
Ties are arbitrarily broken with a predefined order of preferred
inputs. Note that no or missing input also counts as a valid
input, because sometimes the correct action is not issuing any
commands at all.

The Continuous Reliability System uses weighted MV,
where the votes are weighted according to the reliability score
of each player, i.e., an estimate of the ability of each player
to issue correct inputs. Next, we describe how to compute and
update reliabilities in real-time.

Inspired by the idea of Collective Intelligence, the Contin-
uous Reliability System rewards players that issue the same
input as the majority and punishes those that vote for unpopu-
lar options. The system starts by aggregating inputs with MV,
i.e., uniform reliabilities. Every time the system receives an
input frame, the reliability scores are updated proportionally
to how popular the players’ votes are. For example, when 95%
of the players vote for input A and 5% vote for input B, the
reliabilities of the players that voted for option B will drop
significantly, compared to a situation where a split between A
and B is 60% to 40%. After a certain number of iterations,
reliability scores might change the final output: the aggregated
input is not the most popular one, but a less popular option can
be chosen because of the high reliability of the players who
issued that command. This system is completely decoupled
from the game itself, it does not need to be aware of whether
an input was good or bad based on the game state, which
makes it easier to apply it to other scenarios in the future.

Next we formally describe the Continuous Reliability algo-
rithm (Algorithm 1). Let I = {0, 1, . . .K − 1} be the list of
all possible inputs issued by players and Np be the number of
players. A single input frame F is an Np-dimensional vector
with values from I, i.e., the votes of the players within the
time frame. Rj is the reliability score of player j and R is the
Np-dimensional vector containing all current reliability scores.

The Continuous Reliability algorithm is recurrent. At the
start, each player is assigned the same reliability score of
1, then at each iteration we compute ∆R, i.e., the vector of
reliability changes that is added to update reliability scores.



Consider a fixed iteration with input frame F . We define
V = {v0, v1, . . . vK−1} as a K-dimensional vector counting
the number of votes for each input in F . We say that an input
j is viable when it receives “enough” votes, i.e., vj ≥ γ∗vmax,
where γ is an agreement threshold and vmax = max(V), i.e.,
the maximum number of votes achieved by a single input. This
handles cases when the votes are evenly split between more
than one inputs: we do not want to decide that only one input
is correct, but we will consider all viable votes when updating
player reliabilities.

If all inputs in F are viable we do not change reliabilities,
because all players selected a potentially correct input. If there
are non-viable inputs, we proceed to compute ∆R.

First we treat non-viable inputs in F , intuitively they should
affect ∆R in a proportional way: the less popular an input,
the lower the player reliability who issued that. We define this
as follows:

∆Rjnv = −vmax

vFj

∗ δ (1)

where j is a player who issued a non-viable input; vFj
is the

number of votes received by the input issued by player j; and
δ ≥ 0 is the reliability step coefficient, which controls how
much a viable or non-viable input affects the reliability score.
The higher δ, the faster the system will adjust the reliabilities.
The current reliability of player j, Rj , is updated by adding
(subtracting) the quantity in Equation (1).

Note that the reliability scores might fall below 0, which
means that unreliable players will in fact decrease the number
of votes for the input they choose. This mechanism can be
effective when dealing with players that issue wrong inputs
on purpose, as they still unknowingly help the system in
selecting the correct input. On the other side, a limitation of
this mechanism arises when the same player keeps on issuing
wrong inputs, e.g., inactivity, network lag, etc. If the player
resumes the game and starts issuing correct inputs, his/her very
low reliability will disrupt the voting, since weighted MV will
heavily favor options not chosen by this player. Therefore, we
introduce a lower bound ω ≥ 0, which clamps the change of
the reliability if it brings the total player reliability below −ω:

∆Rjnv =

{
vmax

vFj
∗ δ, if Rj + ∆Rjnv

≥ −ω

ω −Rj , otherwise

where Rj is the current reliability score for player j. The
opposite problem is not a concern for the upper bound. For
players to have a high reliability score, they not only have to
be consistent in issuing the input, but also other players have
to vote similarly to them. This makes a situation where one
of the players has a significantly larger reliability score than
others very unlikely.

Then, we treat viable inputs in F . Again they should affect
∆R in a proportional way: the more popular an input, the
higher the player reliability who issued that. We do this as
follows:

∆Rjv = vFj ∗
∑

k∈nv ∆Rk∑
k∈v vFk

(2)

Algorithm 1: Calculating the reliability updates
Input: Players input frame F , current reliabilities
R = [R0, . . . RNp−1]

Result: Vector of reliabilities updates
∆R = [∆R0, . . .∆RNp−1]

∆R = [0, 0, . . . 0]Np

vFj
=

∑
k(Fj == Fk) // Number of votes for

the input issued by player j

if ∀j ∈ viable(vFj ) then
return ∆R

end
// First pass - non-viable votes

for not viable(vFj
) ∈ V do

∆Rj = −vmax

vFj
∗ δ

if Rj + ∆Rj ≤ −ω then
∆Rj = ω −Rj

end
end
norm =

∑
k∈nv ∆Rk∑
k∈v vFk

// Viable votes

normalization factor

// Second pass - viable votes

for viable(vFj
) ∈ V do

∆Rj = vFj ∗ norm
end
return ∆R

where the first factor vFj
is the number of votes received

by the input issued by player j and the second factor is a
normalization factor. The normalization factor is computed as
the ratio of the sum ∆R for non-viable inputs and the sum of
vFk

for the viable inputs. The normalization factor is needed
to guarantee that the sum of reliabilities remains constant and
equal to the number of players, which is needed by weighted
MV.

V. EXPERIMENTAL EVALUATION

Next we evaluate the performance of the Crowdsourcing
Controller, i.e., input frames and input aggregators.

A. Experimental Setup

The Crowdsourcing Controller depends on a number of
parameters. For static input frames we need to set only the
frame length. For dynamic input frames we need to set the
TTL and the frame threshold T, i.e., the number of inputs
from different users needed to determine the centre of the
dynamic time window (see Figure 5). We set TTL to 300ms,
so on average the time between issuing an input and seeing a
response on the screen is around 150ms. Threshold T = 0.5
was set so that half of the inputs marked the centre of the
dynamic frame. For the continuous reliability system, we
need to estimate the agreement threshold γ ∈ [0, 1], i.e., the
proportion of votes needed to define a viable input, and the
reliability step coefficient δ ∈ [0, 1], which determines the
speed in updating reliabilities. The parameters have been fine-
tuned for offline and online experiments during development



and used consistently to compare the system under the same
circumstances. The values were chosen so that the learning
process of the system can stabilize in few minutes, as longer
sessions could cause players’ fatigue. The values used were
γ = 0.8 (offline), γ = 0.6 (online) and δ = 0.05. The lower
bound ω is set to 0.5.

For the input frame component, we consider the simple
static input frame approach as our baseline opposed to our
dynamic input frame approach. For the inputs aggregator com-
ponent we consider MV as baseline opposed to our Continuous
Reliability System. In the experiments we consider 4 different
system configurations: (1) static frame with Continuous Re-
liability System; (2) Dynamic Input Frame with Continuous
Reliability System; (3) Static frame with MV; (4) Dynamic
Input Frame with MV.

For the evaluation, there is no available ground-truth, i.e.,
single correct sequence of inputs, that we can use to evaluate
the Crowdsourcing Controller. This is because the game is
dynamic and there is more than one way of beating obsta-
cles, e.g., some obstacles can be beaten with both short and
long jumps. Therefore we use the game score as evaluation
measure. The game score represents how long it takes for the
players to lose the game, by issuing the wrong type of input or
providing it at the incorrect time. The higher the game score
the better.

Additionally we consider EM [4] as our reference or
“ground-truth”. Due to its iterative definition, EM can not
be run online, therefore it is run offline when all data are
gathered. Then we compute the agreement between one of the
4 configurations and EM, i.e., the accuracy with the inputs
issued by a configuration and the inputs predicted by EM as
ground-truth. The higher the agreement the better.

B. Offline Experiment with Synthetic Players

In this experimental scenario we evaluate the Crowdsourc-
ing Controller in an artificial setting with synthetic players.
Players are replaced with AIs designed to represent humans
of different skills. The Perfect AI always issues a correct input
at each time-stamp during the game. All other AIs are defined
by adding noise to the perfect AI behaviour. This is done with
3 parameters representing: noise, noise shift and chance of
error. We generated a total of 14 different AIs: 1 Perfect, 3
Good, 4 Bad, 1 Shifted (-), 2 Shifted (+), 1 Majorly Shifted (-
), 1 Confused, and 1 Random. Each AI was individually tested
3 times and their mean scores are in Table I.

The comparison of scores achieved by different system con-
figurations across 6 consecutive trials is presented in Figure 6
and in Table II. We stopped after 6 trials since we reached
convergence of the reliability scores, i.e., after trial 6 there
was little change in reliability scores.

From the results we can see that the Dynamic Input Frame
configurations outperform the static ones, both in terms of
game score and agreement with EM. Moreover, the configu-
rations with the Continuous Reliability system outperformed
MV, both in terms of scores and similarity with respect to

TABLE I
AIS INDIVIDUAL GAME SCORES

Name Average Score Max Score
Perfect 1182 1353
Good 250 488
Bad 63 66
Confused 23 28
Random 48 64
Shifted (-) 164 398
Shifted (+) 27 30
Majorly Shifted (-) 98 175
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Fig. 6. 14 AIs scores with different system configurations

EM. For the Dynamic Input Frame with Continuous Reliabil-
ity System (the best configuration), the agreement with EM
reached a value of 99.37% compared to 94.40% if the system
is replaced with majority voting (5.26% relative improvement).
In Figure 6, the Dynamic Input Frame with Continuous
Reliability System outperforms all other configurations already
after 1 trial. This means that the system quickly and correctly
learns which players are more reliable.

Figure 7 shows the process of the reliability training with
the Dynamic Input Frame configuration. The reliability scores
(y-axes) are plotted for each of the analyzed input frames (x-
axis). The process is chaotic at the beginning but stabilizes
after circa 100 frames. After 100 frames, the estimated relia-
bilities correlate with the AIs skills: the top reliability score
(red line) belongs to the Perfect AI. The inputs issued by the
perfect AI will be weighted as 7 players. The following 3
reliabilities scores belong to the 3 Good AIs. At the end of
the experiment, the Perfect AI with the help of just one of
the Good AIs can outvote the rest 12 AIs combined. Indeed,
the top 4 AIs alone have an impact of over 18 players. This

TABLE II
14 AIS EXPERIMENT RESULTS

Name Aggrement
w/ EM predictions

Mean
score

Max
score

Dynamic Reliability 0.9937 852 1211
Dynamic Majority 0.9915 474 981
Static Reliability 0.9553 309 610
Static Majority 0.9714 94 277
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TABLE III
USER STUDIES RESULT SUMMARY

Name Aggrement
w/ EM predictions

Mean
score

High
score

Dynamic Reliability 0.9619 255 541
Dynamic Majority 1.00 194 516
Static Reliability 0.9108 76 434

exceeds the total number of players (14) because the rest of the
reliabilities are less than 0. We can also observe the effect of
the lower bound ω, which prevents bad players from disrupting
the weighted voting system.

C. Online Experiment with Real Players

In this experimental scenario, we evaluate the proposed
Crowdsourcing Controller with real users. We tested only
3 configurations out of 4: Dynamic Input Frame with MV,
Dynamic Input Frame with Continuous Reliability System, and
static frame with Continuous Reliability System. We did not
test the static frame with MV because: (1) the experiment with
4 configurations was too long and players’ fatigue could affect
the quality of the collected data; (2) the offline experiments
show that this is the worst performing configuration (see
§ V-B)

We enrolled a total of 9 players, all of them were university
students with a scientific background. Before starting the
experiment, participants were trained by playing individually
for 3 minutes. Afterward they had 3 trials to achieve their
highest scores. Then we Started the multiplayer phase. Each
configuration was played for 3 minutes for training, followed
by 5 trials to beat the highest score. The whole process was
repeated 2 times to collect more data. Exact user instructions
can be found in our code repository. During the experiments
the reliability scores were not shown to the players. This was
done to avoid the possibility of the players feeling discouraged
due to low impact of their inputs. There was a short break
between the sets of configurations to give the players a chance
to rest.

The game scores achieved by the players during the first set
of trials (both training and game) are shown in Figure 8. The
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Fig. 9. Player reliability training in one of the sessions with the Dynamic
Input Frame

results for the second trial are comparable. Table III reports
the results aggregated over all trials.

Online experiments corroborate the observations from of-
fline experiments with respect to input frames. The Dynamic
Input frame configurations outperform the static input frame
configuration (green line in Figure 8). This is true both in
terms of game score and agreement with EM. Second, in terms
of game score, the Dynamic Input Frame with Continuous
Reliability outperforms the other 2 configurations.

Online experiments differ from offline experiment with
respect to the agreement with EM. We can observe that using
a real-time MV system with dynamic frames yields the same
results as using an offline-trained EM. This suggests that
the majority of the players are similarly skilled, thus using
a weighted MV instead of the uniform MV does not make
a significant difference. We further analyzed the agreement
among the players which showed that a particular majority
(specifically 5 players out of 9) agreed with each other on
issuing the same input over 80% of the times. This can be
seen also in Figure 9, where the reliability scores of the top 5
players are clearly separated from the rest of the group.

Even if all the players are similarly skilled, the better
performance of the Continuous Reliability system in terms of



game scores might come from the fact that fewer players with
stronger influence more quickly surpass the needed threshold
of votes required by the Dynamic Input Frame, which helps
with beating obstacles that require fast decisions.

At the end of the user studies, participants filled a short
survey. Among different observations, over half of the partic-
ipants mentioned, in different words, that they focused more
during multiplayer than individual sessions, which is aligned
with previous results about gamification approaches to en-
courage crowd workers (see Section II-A). Some participants
mentioned the social aspect of playing together, saying that
winning and losing together was more fun. This suggests
that the system could be used as a gameplay mechanic in
EMGs. Some players, however, reported feeling frustrated
when they lost despite seemingly issuing correct inputs, some-
times blaming it on the network delay or software errors.
This implies that players could benefit from even more visual
feedback regarding the decision making of the Crowdsourcing
Controller.

D. Discussion

Next, we summarize the main conclusions and observations
from offline and online experiments. The Dynamic Input
Frame proves to be more efficient than a static approach
proposed earlier in the literature. It is able to achieve much
higher scores thanks to more precise predictions of the correct
time that the input should be issued at.

The Continuous Reliability System increases the game score
to a large extent for offline experiment, but to a smaller extent
for online experiments. The reason for this is the observed
lack of differences in the skills of real players. Although a
small number of them did in fact perform worse than others,
the majority usually agreed on the input type and time. In this
situation, it is expected that MV gives similar results as the
Continuous Reliability System. Moreover, analyzing players’
inputs proves that participants usually agreed on the type of
the input, with the differences mostly showing in the precise
time of issuing it. The reason for this comes from the nature of
the game that was used to test the system. The real challenge
was in fact issuing the input at the right time, since choosing
the right input was relatively simple as different obstacles were
easily distinguishable.

Both user surveys and observations during the study showed
a significant social aspect of playing the game together, where
synchronization seemed like one of the goals that the players
wanted to achieve, knowing it would raise their chances of
getting high scores.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a prototype of an online video
game, where multiple players control simultaneously the same
character. We propose the Crowdsourcing Controller, i.e., a
system that: (1) groups real-time inputs from multiple players
into time frames; (2) aggregates the inputs within a frame
and returns a single output command. We propose the Dy-
namic Input Frame method, which adjusts the frame length

dynamically based on the inputs received. To aggregate the
inputs, we propose the Continuous Reliability System, which
computes a weighted MV by estimating players’ reliabilities.
Offline and online experiments show that the Dynamic Input
Frame is better than state-of-the-art static frames and that the
Continuous Reliability System leads to higher game scores.

As future work we plan to test the proposed crowdsourcing
system with a larger and more diverse set of players. Moreover,
we will explore how the proposed systems cope in different
settings, for example scenarios featuring more agency and
creativity on the players’ side. Finally, we want to inspect the
possibilities of automatically optimizing some of the system
parameters that were arbitrarily chosen, for example the TTL
of the Dynamic Input Frame.
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