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Abstract—Self-supervised learning (SSL) techniques have been
widely used to learn compact and informative representations
from high-dimensional complex data. In many computer vision
tasks, such as image classification, such methods achieve state-
of-the-art results that surpass supervised learning approaches.
In this paper, we investigate whether SSL methods can be
leveraged for the task of learning accurate state representations
of games, and if so, to what extent. For this purpose, we collect
game footage frames and corresponding sequences of games’
internal state from three different 3D games: VizDoom, the
CARLA racing simulator and the Google Research Football
Environment. We train an image encoder with three widely
used SSL algorithms using solely the raw frames, and then
attempt to recover the internal state variables from the learned
representations. Our results across all three games showcase
significantly higher correlation between SSL representations and
the game’s internal state compared to pre-trained baseline models
such as ImageNet. Such findings suggest that SSL-based visual
encoders can yield general—not tailored to a specific task—
yet informative game representations solely from game pixel
information. Such representations can, in turn, form the basis for
boosting the performance of downstream learning tasks in games,
including gameplaying, content generation and player modeling.

Index Terms—digital games, computer vision, self-supervised
learning, state representation learning

I. INTRODUCTION

Research on representation learning within the field of
computer vision aims to transform high-dimensional pixel
information to compact low-dimensional vector embeddings
that capture the essential features describing the image content.
These compact representations are assumed to be general—i.e.
not tailored to a specific task—and can be used in any vision-
based learning task such as object recognition, object detection
and image segmentation. Representation learning in digital
games, however, remains an open challenge [1]. Many end-
application tasks in games research—including gameplaying,
modeling user behavior, and content generation—use image
representations of games containing information about critical
factors describing the current state of the game [2]. These
critical factors are defined in relation to the specific objectives
and constraints of the particular game world (see Fig. 2 for
examples). Along with the presence and identity of objects in
a gameplay frame, a good representation should be able to
ignore the game’s aesthetics [3], capture the spatio-temporal
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Fig. 1: Illustrative example of a Self Supervised Learning task
that facilitates learning of visual features of football and is
able to distinguish between different states of the game.

relations among objects—even if occluded or off-screen—
and infer the dynamics and underlying rules of the game
[4]. Having access to the game model—and thus, the game’s
internal state—renders representation learning trivial or even
redundant, as visual information can be explicitly mapped to
the internal state. Game models, however, are rarely available
(especially for commercial games) and thus representation
learning is required to implicitly map the visual information
obtained from a game’s footage to the game’s internal state.

In this study, we investigate the degree to which we can
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learn the mapping from gameplay frames to the game’s
model—as represented by critical internal variables—without
any knowledge about games’ internal state. For this purpose,
we take advantage of popular self-supervised learning (SSL)
algorithms widely used for learning general representations in
a plethora of computer vision tasks [5]–[7]. SSL refers to a
family of machine learning algorithms that can learn essential
features describing the visual content of images without re-
quiring any label information, i.e. image characterization [8].
SSL algorithms thus alleviate the tedious and time consuming
process of data labelling. Instead, training is based on the
inherent properties and characteristics of the images’ visual
content, which are used as learning signals.

To better realise how SSL can be utilised for state represen-
tation learning in games, consider the example of an auxiliary
task shown in Fig. 1. An anchor image is presented along with
six different states of the same football game. The objective
is to find which of the six images corresponds to the game
state depicted in the anchor image. To achieve that objective,
one needs to be able to extract the critical gameplay factors
from the images of the game, such as the relative position of
the players and the ball on the football pitch and disregard
non-critical factors related to game aesthetics (e.g. ambient
light levels or the advertisements displayed beyond the pitch).
Based on such information, one can deduce that (d) is the view
that most closely matches the anchor image. Thus, in trying
to solve this auxiliary task, one ends up learning to predict
the important features of a football game—i.e. the spatial
information regarding the positions of players and the ball—
from just the image of the game. This is how an SSL algorithm
operates and learns general representations from a high-level
perspective, which can, in turn, be used for any downstream
task that requires such a representation of the game state.

This paper introduces the notion of SSL within games and
explores its capacity for state representation learning in 3D
games. Our hypothesis is that SSL is beneficial for learning
representations that are able to infer core elements of games,
their objects and their underlying mechanics without access to
such data. To test our hypothesis we employ three popular SSL
methods with dissimilar learning properties—SimCLR [8],
SwAV [9] and BYOL [10]—and test them across three games
that vary with regards to their genre, image resolution, artistic
style and object properties (i.e. size and number of objects).
In particular we train SSL methods on a new benchmark
dataset we name 3D-SSL that contains 150, 000 game footage
frames of VizDoom [11], CARLA driving simulator [12] and
Google Research Football Environment [13] and we evaluate
the models’ capacity to predict internal game variables (e.g.
the position of the ball, teammates, enemies or cars) on over
10, 000 frames per game. Results suggest that SSL—compared
to pretrained models such as ImageNet—learn general rep-
resentations that are able to predict the internal state of all
3D games with high degrees of R2 correlation via linear
probing [2]. The key findings of the paper indicate that SSL
is a highly recommended method for constructing game state
representations that can be employed for any downstream

task that requires such a game state representation including
gameplaying, content generation or player modeling [1].

II. BACKGROUND

A substantial volume of AI and games research [1] fo-
cuses on the use of AI for building game-playing agents,
for modeling players and their emotions, and for generating
aspects of game content. Feeding directly the pixels of the
game to the input of any AI model—predominately a neural
network model—remained a challenging task for many of
these applications owing to the high-dimensional nature of
images. For that purpose, the majority of such studies have
traditionally used some form of internal state representations
of the game coming directly from interfacing with the game
engine (e.g. [14]–[17] among many).

The recent success of Convolutional Neural Networks (Con-
vNets) in dimensionality-reduction for image processing has
enabled research with raw game footage pixels. Indicatively, a
number of recent studies have effectively used ConvNets with
reinforcement learning for playing Atari games [18]–[20] by
mapping the game’s raw image to an action to be performed
for maximizing the game’s score. Beyond gameplaying, a
number of recent ConvNet studies focus on modeling play-
ers’ affect [21]–[23]. All of the aforementioned approaches,
however, train ConvNets with task-specific output labels such
as actions (i.e. for imitation learning), affect annotations (i.e.
for affect modeling) or reward values (i.e. for reinforcement
learning). This dependency on labelled data gives rise to two
primary issues. First, while the labels are related to the learning
task, they might not necessarily be informative about (or
associated to) the visual information being processed [24].
Second, these approaches tend to learn only highly task-
specific information observed in the pixel input.

As a response to these challenges, most modern approaches
employing ConvNets attempt to separate the visual informa-
tion processing part from the overall pipeline of the down-
stream application task. To this end, Chaplot et al. [25] used
the game’s internal state as additional labels within their rein-
forcement learning framework in order to guide the ConvNet
to learn more useful visual features describing the game state.
This approach, however, still requires access to the internal
state of the game, making it impractical for most games where
the world model is unavailable. A popular workaround is
to simply use models pre-trained on large, universal image
datasets such as ImageNet [26]–[28], or massive generalized
models such as CLIP [29], [30]. We use such approaches to
form the baseline in our experiments and empirically showcase
their shortcomings on capturing meaningful internal game
states as depicted on game frames.

In order to learn highly informative and compact state
representations from images of the game, several self-
supervised approaches have been used that learn using image-
reconstruction techniques [4], [31], [32]. The key advantage
of these methods is that they do not require access to the
game’s internal world model. More recently, Anand et al.
[2] proposed a self-supervised learning method which utilizes



Fig. 2: Games and their critical game-state features included in the 3D-SSL Benchmark Dataset used in our experiments.

the spatial and temporal relations between frames of different
Atari games to learn important visual features of the game’s
image. This approach, however, has two core limitations:
first, it requires time-distributed images as the method’s loss
function incorporates temporal difference between the game’s
images and, second, it presents results on basic Atari games
that are restricted to simple and abstract 2D grid environments,
which are not representative of most modern era games.

In this paper, instead, we attempt to address these two
limitations by testing recent SSL methods that do not rely on
images with any temporal association between them. More-
over, we extend SSL investigations to 3D games that provide
more complex and challenging visual information to process.
Importantly we test the capacity of such algorithms on captur-
ing key internal game state variables across 3 very different
games. We showcase that SSL, in contrast to pretrained image
models, constructs general-purpose representations that can
effectively predict such information.

III. THE 3D-SSL BENCHMARK DATASET

As mentioned earlier, recent work in self-supervised repre-
sentation learning considered 2D game environments such as
Atari [2]. Instead, this work investigates how these methods
translate to more complex, 3D games with more sophisti-
cated graphics and more detailed game states. Towards this
endeavour, we choose three games from different game genres,
representing different difficulty levels with regards to the task
of obtaining an accurate game state from the image of the
game. All three games provide access to their game engines
and hence, we are able to extract accurate and precise internal
state values associated with each frame. The features (internal
state variables) illustrated for each game are hand-engineered
such that the values obtained from the game engine are either

TABLE I: Summary of the 3D-SSL Benchmark Dataset.

ViZDoom CARLA GRFE
Images (Training) 50,000 50,000 50,000
Image Size 400×225×3 224×224×3 224×224×3
Image Frequency 1 per time-step 3 per second 1 per time-step
Images (Evaluation) 10,500 20,108 10,000
State Variables 12 7 94

clearly visible or can be easily inferred from the image. Note
that the three games are rather representative and differ in
terms of genre (i.e. FPS, racing, sports), image resolution
(i.e. photorealistic vs. pixelated) and key information depicted
such as size and number of objects. In this section we outline
the three games and the corresponding 3D-SSL Benchmark
dataset, which is summarized in Table I.

A. ViZDoom (First Person Shooter)

From the shooter genre, we select the Doom (Id Software,
1993) game via the ViZDoom environment [11]. We use a
pre-trained model named ARNOLD [25] to play the game
and collect synchronized pairs of the RGB image of the game
and its internal state. We represent the game’s internal state
using 12 features related to the enemy positions. In particular,
we identify the closest enemy in the left 40% of the screen,
and use its (x, y) location in screen buffer coordinates, and
the width and height of its bounding box to represent its
position on the screen. In the same manner we represent the
position of the enemies in the middle 20% and the right
40% of the screen (see Fig. 2). We choose to use these
variables for representing the game’s internal state since they
largely determine the behaviour of the Doom player. In total,
we collected 50, 000 images for training and 10, 500 pairs



of images and the corresponding internal state variables for
evaluation. ViZDoom represents a fairly easy task of state
representation learning as the graphics of the game are low-
resolution and all enemies have the same look and design.

B. CARLA (Racing)

From the car racing genre, we use the CARLA open-
source simulator for autonomous driving research [12]. The
inbuilt autopilot AI drives a car (ego-vehicle) around an
urban simulation environment, and we collect the game state
information at 3 frames per second.

The game state variables collected describe the nearby
traffic for the ego-vehicle. To describe the traffic on the left
lane of the ego-vehicle, we find the nearest vehicle that is in a
region of 10 metres by 50 metres (see Fig. 2) to the left of our
vehicle and store its distance and direction. We do the same for
the nearest vehicle on the right lane of the ego-vehicle as well
as in front of the ego-vehicle. We also calculate the curvature
of the road by measuring the angle between the direction of the
ego-vehicle’s current steering vector and the vector describing
the curvature of the lane such that the vehicle remains at the
center of the lane. The reason for choosing these 7 variables
for describing the internal state (see Fig. 2) is because they
largely determine the steering and throttle inputs that should
be given to the ego-vehicle in order to keep moving forward
in the simulator environment. In total, we collected 50, 000
images for training and 20, 108 pairs of images with their
corresponding internal state variables for evaluation. Here the
evaluation set is larger than that of VizDoom because some
variables such as traffic information have very low frequency,
i.e., not every image has an associated variable value present
in case there are no vehicles around our ego-vehicle.

CARLA presents a more challenging representation learning
task than VizDoom: the graphics of the game are far more
detailed, the vehicles surrounding the ego-vehicle have varying
shapes and styling (unlike the enemies in VizDoom) and also
determining the direction in which a vehicle is headed requires
to acquire visual understanding of the design of these vehicles.

C. GRFE (Football)

Lastly, we include the football simulator named Google
Research Football Environment (GRFE) [13]. To create a
training dataset, we trained a Proximal Policy Optimization
[33] agent using stable-baselines [34] to play an 11 vs 11
game against the inbuilt game bot and we collected RGB
gameplay frames along with the game state at each timestep of
the simulation. The game state consists of the (x, y) positions
of each of the 22 players (11 per team) on the pitch along with
the (x, y) directions in which they are headed. Additionally,
we collect the (x, y, z) positions and directions of the ball.
Positions are based on gameworld coordinates, rather than the
screen buffer. The internal game state is represented by 94
variables (see Fig. 2). We choose these variables since they
are used as input by the PPO agent that plays this game and
hence are considered as essential game state information that
must be captured from the game’s RGB gameplay frames. In

total we collected 50, 000 training images and 10, 000 pairs of
images and corresponding internal state values for evaluation.

GRFE is the most difficult state representation learning task
since it involves inferring the precise location and movement
information of 22 players. Note that for any given frame of
the game, only some of the players are on screen and others
are hidden off-screen and their information would have to
be extrapolated by the computer vision system estimating the
game’s state from just the image, by learning about the rules
and dynamics of the game of football.

IV. SELF-SUPERVISED LEARNING METHODS

In this study we explore three types of self-supervised learn-
ing algorithms: a contrastive method (SimCLR), a contrastive
method employing an online clustering approach (SwAV)
and a non-contrastive method (BYOL). We choose to use
three conceptually different SSL algorithms for two reasons.
First, by using different algorithms we gain insights on the
applicability of the SSL paradigm on game-state representation
learning based only on games’ pixel information. Second,
we are able to investigate the degree to which different
SSL approaches can efficiently learn informative game-state
representations. We use the solo-learn framework [35] for the
implementation of all SSL methods in our experiments. This
section outlines the key elements of these three methods.

A. SimCLR Approach

SimCLR [8] is a contrastive method that learns image rep-
resentations by pairwise comparison of similar and dissimilar
images. In this method, we first take an image and apply
certain content-preserving data augmentations such as scaling,
rotation, jitter, etc. to obtain two different views of the same
image (similar to Fig. 1). We define a loss such that the
representation obtained from these two views of the same
image lie close to each other in the feature space (positive
pair), and at the same time, lie as far away as possible from
representations of other images (negative pairs).

In terms of SSL in games, we can think of this method as
trying to identify the important visual features of a gameplay
frame that characterise the game’s current state so that two
views of the same game-state have similar representations,
whereas different states have dissimilar representations. To
achieve, however, good performance, especially for high-
dimensional representations, this method requires a large num-
ber of negative samples. Therefore, during training, it requires
a huge batch size to assure that the employed negative samples
are representative of the entire dataset.

B. BYOL Approach

Bootstrap Your Own Latent (BYOL) is a non-contrastive
approach to self-supervised learning suggested by Grill et
al. [10]. This method does not require negative examples
(dissimilar images), but only focuses on learning the similar
representations of two views of the same image, hence the
name. In absence of negatives, BYOL uses a stop-gradient
method coupled with a Siamese-based network architecture to



Fig. 3: The two step process employed in this paper: we first pre-train the Convolutional Encoder using different SSL methods
(left), then evaluate the learned representations with Linear Probing on the test set (right).

overcome the limitation of all representations collapsing to a
constant (an undesired, trivial solution [10]). This implies that
the two views of the same image are propagated through two
identical neural networks, but the gradients are passed through
only one of the networks and the weights of the other network
are updated as a moving-average of the first. This behavior
simulates a “memory” mechanism activated during training,
which indirectly provides the effect of using negative samples
typically used in the contrastive learning paradigm.

In terms of game-state representations, this method focuses
solely on learning similarities between two views of the same
gameplay frame. It makes it interesting to see how well this
approach holds in distinguishing different game-states without
the need of explicit negative examples.

C. SwAV Approach

Swapping Assignments between Views (SwAV) [9] is an-
other contrastive learning approach that attempts to address
the requirement for large number of negative examples (and
thus large batch sizes). SwAV uses an online clustering al-
gorithm that maintains a codebook of clusters of different
representations encountered during training. This codebook
is formed by online clustering the derived representations
based on the idea that differently augmented views of the
same image (positive pair) should be clustered together, while
representations corresponding to dissimilar images (negative
pairs) should be assigned to different clusters. By imposing
certain constraints such as assigning equally-distributed cluster
labels to an input batch, this method prevents the collaps-
ing representation problem [9]. Finally, based on clusters’
information, SwAV waives the need for large batch sizes. In
theory, SwAV should be among the more practical and scalable
methods for representation learning in games in terms of lower
hardware-resource requirements for training.

V. GAME REPRESENTATION LEARNING

This section presents our approach for training and evaluat-
ing the employed SSL algorithms on the problem of game-
state representation learning based only on games’ pixel

information using the dataset described in Section III. To
evaluate the quality of the SSL-based representations of game-
play frames’ visual content, we use a ResNet50 [36] model
pretrained on the ImageNet dataset [37] as a baseline.

A. Training

We use the ResNet50 architecture as our backbone model
for transforming frames’ pixels information to compressed yet
informative game state representations. For all the employed
games, the ResNet50 encoder receives as input RGB gameplay
frames of dimension 224 × 224 × 3 and compresses it to a
representation vector of 2048 real numbers. This encoder is
trained with the three SSL algorithms described in Section IV
using the default hyper-parameters in solo-learn [35]. For each
of the games, we use 50K images as training set and train the
encoder for 50 epochs. The training step is visually presented
in the left side of Fig. 3.

B. Evaluation

Once the backbone encoder has been trained, we evaluate
the quality of the derived representations. To perform this, we
prepare a separate evaluation dataset (detailed in Section III)
consisting of images not seen during training, accompanied by
the corresponding ground truth internal game state variables.
The size of the evaluation dataset is different for each game
because it is based on the appearance frequency of the internal
game state variables. That means that when one or more game
state variables are not present in a particular game state (e.g.
no enemy is present on the screen in ViZDoom), we do not
consider the frame that corresponds to that particular game
state for evaluation purposes.

Following the principles of [2] the evaluation takes place by
quantifying the capacity of a linear model to recover or predict
the internal game state variables based on the derived SSL rep-
resentations. This evaluation approach, called linear probing
[2], has been used to evaluate representations of Atari games.
The internal state of Atari games is described via discrete
variables, and thus linear probing in [2] evaluated the capacity
of a linear model to predict the class of the internal game



state variables. In our study, however, the employed games’
internal states are characterised by continuous variables. For
this reason, instead of a linear classifier, we apply the linear
probing technique with a linear regression model.

In particular, for a game with k internal state variables
V = {v1, v2, .., vk}, we train k different linear regression
models. For each of these models, the d-dimensional latent
representations zd obtained from the backbone encoder are
treated as the input or independent variables while the associ-
ated values in V are treated as the dependent variables. With
ResNet50 as the backbone in this paper, d = 2048. For our
dataset of n pairs of images and each of the k state variables,
we fit the following least-squares linear regression model:

vik = βk0+βk1z
i
1+...+βk2048z

i
2048+ε

i for i = 1, ..., n (1)

where β are the coefficients and ε is the error. Here, we
utilize the coefficient of determination (commonly known as
R2 correlation) of this model to quantify its performance.
Higher values of R2 indicate that the ResNet image encoder is
better equipped to accurately extract the values of the internal
state variables into the compressed representation, compared to
those encoders with lower values of correlation. Thus, ideally,
we want our R2 values to be close to 1.0, so that any down-
stream application that uses these representations works with
the correctly interpreted state of the game from its image input.

At this point we should emphasize that the evaluation
process relies only on linear probing models, as opposed to
more complex nonlinear ones, since we want to evaluate the
quality of the derived representations. This implies that the
derived representations should be easily mapped to the internal
game state variables via simple linear functions. In other
words, we do not want to evaluate the prediction accuracy
of a regression model, but the representation power of the
SSL-based backbone encoder. The evaluation procedure is
illustrated at the right image of Fig. 3. In the following section
we summarize the evaluation results obtained using R2.

VI. RESULTS

Table II presents the quality of representations produced by
the baseline ImageNet and the three SSL methods in terms of
R2 correlation (see Section V-B) with the internal game state
variables. For all games examined, SSL-based representations
correlate better to the internal games state compared to the
baseline method. Specifically, SSL algorithms yield average
performance improvement, compared to the baseline model, of
19%, 51% and 145% for the ViZDoom, CARLA and GRFE
games, respectively. In addition, SSL approaches managed to
achieve a maximum R2 value (best correlated internal state
variable) higher than 0.9 for two out of the three games.

Figure 4 illustrates the percentage of improvement over
baseline for the three SSL employed methods and for each of
the internal game state variables. For all three games, BYOL
and SimCLR appear to produce representations that are better
correlated, compared to the baseline, to each one of their
internal game state variables considered. The SwAV method,
however, performs better than the baseline only for CARLA

TABLE II: Minimum (min), average (avg) and maximum
(max) R2 correlation values between representations of images
and the synchronized internal state variables across games. The
best method (highest average R2) per game is in bold.

ImageNet SimCLR BYOL SwAV

ViZDoom
min 0.42 0.55 0.54 0.42
avg 0.68 0.77 0.81 0.64
max 0.78 0.86 0.91 0.76

CARLA
min 0.52 0.79 0.85 0.71
avg 0.59 0.83 0.89 0.82
max 0.63 0.88 0.93 0.88

GRFE
min 0.08 0.16 0.21 0.22
avg 0.11 0.20 0.23 0.27
max 0.19 0.22 0.26 0.32

and GRFE. Nevertheless, it achieves the best performance on
GRFE, which is the largest performance improvement across
all games: three times higher R2 values than the baseline.

For the ViZDoom game, we observe that SSL represen-
tations yield higher improvements over the baseline for the
internal state variables that correspond to the middle part of the
gameplay frames. This behavior could perhaps be pertaining
to the fact that the (x, y) position values of the enemy on the
left part of the screen lie towards the periphery of the image
frame while that for the center and right parts of the screen lie
closer to the center of the image, affecting the performance of
the ResNet encoder owing to its convolutional architecture.

For the CARLA game the improvement across the internal
state variables that correspond to the distance between the
ego-vehicle and its surrounding vehicles, as well as to the
direction of the surrounding vehicles presents very small
fluctuations (between 35% to 50%). We observe, however,
a larger improvement for the road curvature internal state
variable; i.e. ∼65% of improvement with the BYOL method.

Finally, for the GRFE game, since there is a large number
of state variables (4 variables for each of the 22 players), we
aggregate the correlation metrics as per the position of the
players on the football pitch. For each of the 4 variables, we
average the correlation figures for all the defensive players (1
goalkeeper and 4 defenders) of both teams. These 4 combined
variables for positions and directions are labelled as pdx, pdy ,
ψd
x and ψd

y in Fig. 4. We repeat the same for the remaining
6 offensive players of both teams, labelled as pox, poy , ψo

x and
ψo
y . The 6 variables associated with the ball positions (pb)

and directions (ψb) are presented as-is. We observe higher
improvements for the internal state variables of defensive
players of both teams compared to their offensive players. We
assume that this is because defensive players (especially the
goalkeeper) move far less from their usual positions compared
to offensive players. This behavior is embedded into the rules
of football, and we expect that any SSL method employed in
games will yield higher predictive capacity if it incorporates
rules and game dynamics in its learning process. We notice
that SwAV builds on its clustering capacity and achieves larger
percentage improvement for variables corresponding to the
defensive players and thus outperforms BYOL and SimCLR.



Fig. 4: Difference of R2 correlation values as a percentage over the ImageNet baseline model. Results are presented for all
three games, their corresponding internal states considered and across the 3 SSL methods.

Based on the obtained results across games, we can con-
clude that SSL methods can produce better internal game state
representations describing the games’ internal state than mod-
els that are pretrained on huge datasets. The BYOL method
seems the most robust of the three SSL methods tested in
this work. It yields the best results for ViZDoom and CARLA
games and the second best for the GRFE football game. The
SwAV method achieves the best performance on the GRFE
game; however, its behaviour seems to be highly affected by
the game at hand as it performs worse than the baseline on the
ViZDoom game. Finally, SimCLR produces consistent results
across all games that outperform the baseline, although it is
not the best performing for any of the three games examined.

VII. DISCUSSION

The key takeaway from the experiments presented in this
paper is that self-supervised learning, when applied directly
to raw gameplay images, can derive game representations that
are general, as SSL manages to capture and correlate to key
features of each game. Compared to the model pretrained on
ImageNet, SSL is more efficient and robust across all three
very different games tested: the games vary not only in terms
of game mechanics but also in terms of image resolution,
object sizes, and number of internal variables. Comparing the
performance of the three SSL approaches examined we can
conclude that the non-contrastive approach (BYOL) seems
better suited for the task of state representation learning in
complex 3D games, compared to the contrastive approaches.
To solidify these conclusions, further investigation would
be required with other contrastive and non-contrastive SSL
methods such as Barlow Twins [5], SimSiam [6], VICReg [7],

and DINO [38], as well as time-distributed SSL approaches
such as ST-DIM [2]. Beyond testing our hypothesis across
more SSL algorithms, we plan to test the robustness of the
proposed method across a larger variety of games and game-
genres with dissimilar types of graphics, aesthetics, and rules.

In terms of applications of self-supervised learning in AI
and games research [1], we recommend that when using
convolutional networks for processing visual input one should
take advantage of pretraining the network using SSL. Since
the optimization criteria in SSL methods are independent of
the end-task, such methods can provide more general-purpose
representations that can be used for a multitude of tasks. This
covers a wide range of applications such as training and testing
game-playing bots, deep reinforcement learning, procedural
content generation, affective computing, player experience
modeling, and generative modeling, which all can make use
of the general features learned by these SSL frameworks. This
should not only improve their performance by providing more
meaningful and informative input from the game, but also help
improve efficiency in learning the indicated task in the game.
In addition, the training time of any given learning task is
significantly reduced since the processing and compression of
raw pixels is handled by the general-purpose SSL pre-trained
models. As a result one can simply focus on optimizing the
objective of the learning task at hand.

VIII. CONCLUSION

In this study we demonstrated that self-supervised learning
methods can be used for learning highly informative, descrip-
tive and general-purpose representations from RGB images
of games. In particular, we presented a new dataset of three



dissimilar games in terms of genre, footage resolution and
key object sizes that appear on screen: VizDoom (clone of
Doom first-person shooter), CARLA (racing game simulator),
and GRFE (football game simulator). The dataset contains
the internal state of the game—a vector of critical features
about each game—with the corresponding RGB frames seen
in the game’s renderer. To test our hypothesis that SSL derives
more descriptive and hence general representations of games,
we employ three representative SSL methods and attempt to
predict the internal state values of the three games from their
RGB frames. Our results suggest that SSL-based represen-
tations are more powerful than general-purpose pre-trained
models at correctly extracting the internal game states from
images. This comes without any cost of labor since the SSL
methods are trained on just images and no special annotations
or manual labelling is required. Our key findings suggest
that SSL is not only a practical but a highly recommended
approach for deriving general-purpose and meaningful com-
pressed representations for dissimilar AI task within games:
from gameplaying and testing agents, and generative/creative
AI systems all the way to player modeling tasks.
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