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Abstract—Recent years have witnessed the great breakthrough
of deep reinforcement learning (DRL) in various perfect and
imperfect information games. Among these games, DouDizhu, a
popular card game in China, is very challenging due to the imper-
fect information, large state space, elements of collaboration and
a massive number of possible moves from turn to turn. Recently, a
DouDizhu AI system called DouZero has been proposed. Trained
using traditional Monte Carlo method with deep neural networks
and self-play procedure without the abstraction of human prior
knowledge, DouZero has outperformed all the existing DouDizhu
AI programs. In this work, we propose to enhance DouZero by
introducing opponent modeling into DouZero. Besides, we pro-
pose a novel coach network to further boost the performance of
DouZero and accelerate its training process. With the integration
of the above two techniques into DouZero, our DouDizhu AI
system achieves better performance and ranks top in the Botzone
leaderboard among more than 400 AI agents, including DouZero.

Index Terms—DouDizhu, Reinforcement learning, Monte-Carl
Method, Opponent Modeling, Coach Network

I. INTRODUCTION

During the development of artificial intelligence, games
often serve as an important testbed as they are good abstraction
of many real-world problems, and more objective compared
to environments specially designed for testing AI since games
are developed for humans. In recent years, significant progress
has been made in solving perfect-information games such as
Go [1]–[3], Shogi (Janpanese chess) [4] and even fighting
game [5]. The current research efforts are turning to more
challenging imperfect information games (IIG) where agents
may cooperate or compete with each other under a partially
observable environment. Encouraging achievements have been
made from two-player games, such as simple Leduc Hold’em
and limit/no-limit Texas Hold’em [6]–[9] to multi-player
games, including multi-player Texas Hold’em [10], StarCraft
[11], DOTA [12] and Japanese Mahjong [13].

In this work, we are dedicated to designing an AI program
for DouDizhu, a.k.a, Fighting the Landlord, which is the most
popular card game in China with hundreds of millions daily
active players. DouDizhu has two interesting characteristics
that pose great challenges for AI programs. First, this game
involves both cooperation and competition simultaneously in a
partially observable environment. To be specific, the two Peas-
ant agents play as a team to fight against the Landlord agent.
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Fig. 1: A case example about cooperation in DouDizhu. If
the Peasants learn to cooperate with each other, current player
should play small Solo to let the teammate to win the game.

For example, Figure 1 shows a typical situation where the
bottom Peasant can play a small Solo card to help his partner
to win. This property makes the popular algorithms for Poker
games, such as Counterfactual Regret Minimization (CFR)
[14] and its variants not suitable in such a complex three-player
setting. Second, DouDizhu has a large and complex state and
action space due to the combination of cards and the complex
rules compared to other card games. There are thousands of
possible combinations of cards where different subsets of these
combinations are legal to different hands. Figure 2 exhibits an
example of a hand that has 119 legal moves, including Solo,
Pair, Trio, Chain of Solo and so on. Unlike Texas Hold’em,
the actions in DouDizhu can not be easily abstracted, which
makes search computationally expensive and the commonly
used reinforcement learning (RL) algorithms less effective.
The performance of Deep Q-Learning (DQN) [15] will be
greatly affected due to the overestimating issue in large action
space [16] while policy gradient methods such as A3C [17]
fail to leverage the action features, limiting the capability of
generalizing over unseen actions. In this way, previous work
has shown that DQN and A3C have a poor performance in
DouDizhu, only having less than 20% winning percentage
against simple rule-based agents even with twenty days of
training [18].

Despite the challenges mentioned above, some achieve-
ments have been made in building DouDizhu AI. To deal with
the large action space in DouDizhu, Combinatorial Q-Network
(CQN) [18] decouples the actions into decomposition selec-
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Fig. 2: A hand and its corresponding legal moves.

tion and final move selection. However, the decomposition
selection relies on human heuristics and is time-consuming,
which limits its performance. In fact, CQN does not have
preponderance over the heuristic rule-based model. DeltaDou
[19] is the first bot that reaches top human-level performance
compared to human experts. It makes use of an AlphaZero-like
algorithm, which combines neural networks with Fictitious
Play Monte Carlo Tree Search (FPMCTS), and an inference
algorithm in a self-play procedure. However, DeltaDou pre-
trains a kicker network based on heuristic rules to reduce the
action space size, which may have a negative impact on its
strength if the output of the kicker network is not optimal.
Moreover, the inference and search are so computationally
expensive that it takes two months to finish the training of
DeltaDou. Recently, DouZero [20] has attracted considerable
attention due to its outstanding performance in this complex
game. It utilizes self-play deep reinforcement learning without
the abstraction of state/action space and human knowledge.
It combines classical Monte-Carlo methods [21] with deep
neutral networks to handle the large state and action space,
which opens another door for such complex and large-scale
games.

In this work, we improve DouZero by introducing opponent
modeling and coach-guided learning. Opponent modeling aims
to determine a likely probability distribution for the opponents’
hidden cards, which is motivated by the fact that human
players will try to predict the opponents’ cards to help them
determine the policy. Due to the complexity of DouDizhu, a
lot of actions may be appropriate when making the decision.
In this case, analyzing the opponents’ cards will be of great
importance because grasping this information helps the bot
choose the optimal move. On the other hand, we propose
coach-guided learning to fasten the training of the AI. Due
to the large information space in this game, the training of
the AI program for DouDizhu costs a lot of time. Considering
the fact that the outcome of DouDizhu depends heavily on
the initial cards of three players, quite a few games are
of little value for learning. To this end, we design a novel
coach network to evenly pick matched openings so that the
models can learn from more valuable data without wasting

time to play valueless games, thus accelerating the training
process. Through integrating these techniques into DouZero,
our DouDizhu AI program achieves a better performance
than the original DouZero and ranks the first on the Botzone
[22]–[24] leaderboard among more than four hundred agents,
including DouZero.

II. RELATED WORK

In this section, we briefly introduce the application of
reinforcement learning in imperfect-information games as well
as the works about opponent modeling.

A. Reinforcement Learning for Imperfect-Information Games

Recent years have witnessed the successful applica-
tion of reinforcement learning in some complex imperfect-
information games. For instance, there are quite a few works
about reinforcement learning for poker games [7], [25], [26].
Different from Counterfactual Regret Minimization (CFR)
[14] that relies on game-tree traversals, RL is based on
sampling so that it can easily generalize to large-scale games.
In this way, OpenAI, DeepMind and Tencent have utilized
this technique to build their game AI in DOTA [12], StarCraft
[11] and Honor of Kings [27], respectively and acquired amaz-
ing achievements, proving the effectiveness of reinforcement
learning in imperfect-information games. More recently, there
are some research efforts that combine reinforcement learning
with search and have shown its effectiveness in poker games
such as heads-up no-limit Texas Hold’em poker and DouDizhu
[19], [28].

However, due to the complexity of DouDizhu, traditional
reinforcement learning methods such as DQN [15] and A3C
[17] exhibit poor performance in this game as discussed above.
Even an improved method, i.e. Combinatorial Q-Network,
also fails to achieve satisfactory performance. What’s more,
DeltaDou [19], which infers the hidden information and uses
MCTS to combine RL with search, is computationally expen-
sive and depends on human expertise, limiting its practicability
and performance. To this end, DouZero [20] utilizes Monte-
Carlo methods [21] and manages to defeat all DouDizhu
AI programs by now. We note that this technique is also
adopted in some other game AIs, such as a modern board
game, Kingdomino, and a kind of new chess, Tibetan Jiuqi
[29], [30]. But unlike these environments, DouDizhu is a
complex imperfect-information game that requires competition
and cooperation over the large state and action space. The
amazing performance of DouZero reveals the good results of
Monte-Carlo methods in such large-scale complex card games,
providing new insight into future research on handling com-
plex action space, sparse reward and imperfect information.

B. Opponent Modeling for Games

In human practice, gaining an abstract description of the
opponent will give the player a clear advantage in games,
especially imperfect-information games. As a result, oppo-
nent modeling has attracted substantial attention in game AI.
For example, Southey et al. [31] put forward a Bayesian



(a) The overall framework (b) The details about prediction model

Fig. 3: An overview of the framework that combines opponent modeling with DouZero and the details about the prediction
model. The prediction model takes the state information, which is the same as DouZero, as input and outputs the probability
of the number of every card in the hand of the next agent. The decision model is trained using deep Monte-Carlo algorithm
like DouZero. The prediction result about hand cards of the next player is concatenated with the state features as well as the
action features and all these information is input to decision model to decide which action to take. As for the prediction model,
it can be viewed as a multi-head classifier, which consists of a layer of LSTM to encode historical moves, five shared layers
of MLP and multi-head FC layers to output the probability. We can extract “legal label” from the state information, which
represents how many cards of each kind the next player has at most, to help filter out impossible answers.

probabilistic model for poker games which infers a posterior
over opponent strategies and makes an appropriate response
to that distribution. In another complex imperfect-information
game, Mahjong, an AI bot is designed based on opponent
modeling and Monte Carlo simulation [32]. In this work, the
opponent models are trained with expert game records and the
bot decides the move using the prediction results and Monte-
Carlo simulation. What’s more, Schadd et al. [33] propose an
approach for opponent modeling in RTS games . It employs
hierarchically structured models to classify the strategy of the
opponent, where the top-level can distinguish the general style
of the opponent and the bottom level can classify the specific
strategies that define the opponent’s behaviour.

Recently, inspired by the success of reinforcement learning,
many researchers combine opponent modeling with reinforce-
ment learning and have made much progress. In combination
with deep Q-learning, opponent modeling achieves superior
performance over DQN and its variants in a simulated soc-
cer game and popular trivia game [34]. Knegt et al. [35]
introduces the opponent modeling technique into an arcade
video game using reinforcement learning, which helps the
agent predict opponents’ actions and significantly improves
the agent’s performance. In addition, opponent modeling can
be adopted in multi-agent reinforcement learning problems
where RL agents are designed to consider the learning of other
agents in the environment when updating their own policies
[36]. Another promising solution is to mimic human players
by combining opponent models used by expert players and
reinforcement learning [37]. All the above works demonstrate
that combining opponent modeling with reinforcement learn-
ing is beneficial to achieve performance gain in multi-agent
imperfect-information games, which also inspires this work.

III. PRELIMINARY

In this section, we first discuss the main algorithm of
DouZero, i.e. Deep Monte Carlo (DMC), which generalizes
Monte Carlo (MC) method with deep neural networks for
function approximation. Then, we briefly describe the details
of DouZero system.

As a key technique in reinforcement learning, Monte Carlo
(MC) method learns value functions and optimal policies
from experience, namely, sampling sequences of states, actions
and rewards from actual or simulated interactions with the
environment [21]. This technique is designed for episodic
tasks, where experience can be divided into episodes that
eventually terminate, and it updates the value estimation and
policy only when an episode is completed. To be specific,
after each episode, the observed returns are used for policy
evaluation and then the policy can be improved at the visited
states in the episode. To optimize a policy π using MC
methods, the procedure is intuitively described as follows:

1) Generate an episode using π.
2) For each state-action pair (s, a) visited in the episode,

calculate and update Q(s, a) with the average return.
3) For each state s in the episode, update the policy:

π(s)← argmaxa∈AQ(s, a).
When putting MC methods into practice, we can utilize

epsilon-greedy to balance between exploration and exploita-
tion in Step 1. Also, the above procedure can be naturally
combined with deep neural networks, leading to Deep Monte-
Carlo (DMC). In this way, the Q-table Q(s, a) can be replaced
by neural networks which can be optimized with mean-square-
error (MSE) loss in Step 2.

As DouDizhu is a typical episodic task, MC is naturally
suitable for this problem. What’s more, DMC requires a large
amount of experience for training while it’s easy to generate



data efficiently in parallel, which can also alleviate the issue of
variance. In addition, adopting DMC in DouDizhu has some
clear advantages compared to other reinforcement learning
algorithms, such as policy gradient methods and deep Q-
learning, which can be referred to in DouZero [20]. Owing to
the advantages that DMC has in DouDizhu, DouZero adopts
this algorithm and achieves an outstanding performance.

In the implementation of DouZero system, it makes use of a
self-play procedure, where the actors play games to generate
samples while the learner updates the network using these
data. The input of the network consists of state features and
action features. The state feature represents the information
that is known to the player, while the action feature describes
the legal move corresponding to the current state. Specifically,
the action in action features is encoded with a one-hot 4×15
card matrix. For the state features, they contain card matrices
that represent the hand cards, the union of other players’
hand cards, the played cards of other players and the most
recent moves and some one-hot vectors that represent that
number of cards of other players, and the number of bombs
played so far. For the architecture, a layer of LSTM is used to
encode historical moves and the output is concatenated with
other state/action features. There are six layers of MLP with
a hidden size of 512 to produce Q values.

Besides, the system parallelizes DMC with multiple actor
processes and one learner process. The learner maintains three
global networks for the three positions and updates them to
approximate the target values based on data samples generated
by actor processes. Each actor maintains three local networks
which are synchronized with the global networks periodically.
The communication of the learner and actors is implemented
with three shared experience buffers. In this way, the system
can be trained in an effective self-play procedure.

IV. METHOD

In this section, we introduce opponent modeling and coach
network in our design and describe how they are applied.

A. Opponent Modeling

Opponent modeling studies the problem of constructing
models to make predictions about various properties of the
modeled agents, e.g. actions, goals and so on. Classic methods
such as policy reconstruction [38] and plan recognition [39]
tend to develop parametric models for agent behaviours. These
methods tend to decouple the interactions between the mod-
eled agent and others to simplify the modeling process, which
may introduce bias when there exists coupling between agent
interactions. In this way, executing opponent modeling when
concurrently training all the agents in a self-play procedure
is more natural [40] and suitable to the training procedure
of DouDizhu AI system. What’s more, concurrent learning
helps opponent modeling adapt to different levels of the agent
as it has witnessed the evolution of the agent’s skills during
training.

When adopting opponent modeling in DouDizhu, we predict
the hand of the player behind current agent so that the model

Fig. 4: The overview of the framework that utilizes coach
network. In this figure, we use the Cardinitial, Pwin and β to
represent generated initial hand cards, the predicted probability
of winning for Landlord and the threshold value, respectively.
The coach network is composed of one embedding layer and
several fully connected layers and the model takes Cardinitial
as input and outputs Pwin. If Pwin is in the range defined,
which is decided by β, the game with such Cardinitial will
be carried on and generates samples for training. Otherwise,
another initial hand cards will be generated.

can make decisions accordingly. As for the implementation of
opponent modeling, we can naturally take advantage of deep
neural networks to make predictions. To avoid confusion with
the network that chooses which move to take, we call the part
of opponent modeling as “prediction model” and the part that
makes decisions as “decision model”. Following the practice
of DouZero that trains three models for the three players in
the game, we also train three prediction models for opponent
modeling. The prediction model can be viewed as a multi-head
classifier and outputs the probability of the number of every
kind of card in the hand of the next agent. To be specific, it has
to predict how many Card 3, how many Card 4, etc, the next
player has in his hand. Since the environment of DouDizhu is
easy to realize, we can acquire the true hand of the next player
and use it as labels to train the prediction model. What’s more,
taking Card 3 as an example, we can also know how many
card 3 of one kind the next player has at most, which can be
calculated by the agent’s own hand and how many Card 3 has
been played. We call this information “legal label” and this
information can be utilized to help the training of prediction
models as it can be used to filter out the wrong answers.

As for the input of prediction models, we make use of the
same state features as DouZero. The architecture of prediction
models is also similar to DouZero with a layer of LSTM to
encode historical moves and five shared layers of MLP. The
final layer works as a multi-head classifier where each head
corresponds to a fully connected layer and outputs the predic-
tion of one kind of card. This model is trained using cross-
entropy loss function. As for the decision model, the features
used are also similar to DouZero, except for the prediction
of hand cards of the next player in state information. For
simplicity, we just concatenate the prediction results as well
as original state features for state input of decision models.
To sum up, the overview of the framework that combines
opponent modeling with DouZero is shown in Figure 3.



B. Coach-guided Learning

During the training of DouDizhu AI system, we discover
that the training process costs a lot of time. To this end,
we propose a method to help the agent master the skills
faster. In this work, our DouDizhu AI system does not have
a bidding phase as the bidding network in DouZero is trained
with supervised learning. In other words, the initial hand
cards of the three players are fixed at the beginning of the
game. However, as a shedding-type game where the players’
objective is to empty one’s hand of all cards before others,
the quality of the initial hand cards has a great impact on
the result of this game. If one player gets a very strong hand
at the beginning, he can win easily as long as he does not
make serious mistakes. In this way, such initial cards are of
little value for learning as they can hardly help the agent learn
new knowledge. On the other hand, if one player always plays
matches where the initial hand cards are relatively balanced,
he can learn some skills faster and better as he will lose and
receive a negative reward if he makes any unsuitable decision.
In the setting of DouZero, we uncover that the initial cards of
the three players are generated randomly so that quite a few
samples may be not matched in strength. However, the actors
still have to play the game using these initial cards that are
heavily unbalanced, which also takes much time. If we only
allow the actors to generate samples that are based on balanced
initial hand cards, the agent can learn faster and form policies
that can deal with such situation.

Based on the above discussion, we propose a coach network
to identify whether the initial hand cards are balanced in
strength. It takes the initial hand cards of the three players
as input and outputs the predicted probability of winning for
the Landlord in one game, which we call Pwin. Then we can
set a threshold, which is represented with β, to filter out the
games whose Pwin is too small or too big. In this case, there
is no need for the actors to play with these initial hand cards,
thus setting aside time to carry on more valuable matches.

The input of coach network is the vectors of initial hand
cards for Landlord and Peasants, whose dimensions are 20
and 17, respectively. For the architecture of coach network,
it consists of an embedding layer to process the input vec-
tors and several layers of fully connected layers to extract
representations and make predictions. As our DouDizhu AI
system is trained in a self-play manner, the coach network
is also concurrently trained with the decision models. The
results of self-play games can be used as labels for training
the model. Considering that the AI system learns from scratch,
the threshold is set to 0 at first and increases through the
training process. What’s more, we only need to train one
coach network for prediction as this module has nothing to
do with the positions in DouDizhu. In other words, our coach
network only works at the beginning of one game to pick
suitable initial data and does not influence the subsequent
processes. Therefore such idea can also be transferred into
the development of other similar game AIs and benefits the
training.
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Fig. 5: ADP of “maphack” models, which can see the hand
cards of the next player, and DouZero models. Both these
models are tested with DouZero baseline that is trained with
ADP. “Landlord” means that the models play as Landlord
against Peasants of DouZero baseline and the same goes for
the reverse.

V. EXPERIMENT

In this section, we conduct experiments to demonstrate
the effectiveness of the improvement that we introduce to
DouZero. To be specific, we first evaluate the performance of
opponent modeling and coach network, respectively, and then
combine them together. All experiments are conducted on a
server with 4 Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz
and GeForce RTX 2080Ti GPU. Our codes are available at
https://github.com/submit-paper/Doudizhu.

A. Experiment Settings

Exploitability is a commonly used measure of strategy
strength in poker games [41]. However, the huge state and
action space in DouDizhu make it intractable to calculate
exploitability, not to mention that there are three players in
this game, which brings more difficulty in evaluation. In
order to evaluate the performance of the model, we launch
tournaments that include the two opposite sides of Landlord
and Peasants, following what DouZero [20]and Deltadou do
[19]. To be specific, for two competing algorithms A and B,
they will first play as Landlord and Peasants, respectively, for
a given deck. Then we switch the sides, i.e. A takes Landlord
position and B takes Peasants position, and they play the
same deck again. To show the performance of the model in
the training process, we execute the test for 10000 episodes
every 30 minutes. As our DouDizhu AI is based on DouZero,
we just compare the performance between them. We make
use of the open-source models of DouZero as the opponent.
To demonstrate the improvement, we also realize the original
DouZero to intuitively exhibit the performance difference. As
for the evaluation metrics, we also follow DouZero and use
Winning Percentage (WP) and Average Difference in Points
(ADP). Specifically, WP represents the number of games won
by algorithm A divided by the total number of games. ADP
indicates the average difference of points scored per game
between algorithm A and B, where the base point is 1 and
each bomb will double the score.



0.0 1.0 2.0 3.0 4.0 5.0 6.0
training steps(1e5)

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

AD
P

Oppo Modeling vs DouZero(Landlord)

oppo_vs_douzero
douzero_vs_douzero

0.0 1.0 2.0 3.0 4.0 5.0 6.0
training steps(1e5)

2.5

2.0

1.5

1.0

0.5

0.0

AD
P

Oppo Modeling vs DouZero(Peasants)

oppo_vs_douzero
douzero_vs_douzero

Fig. 6: ADP of models, which combine opponent modeling
and DouZero, and DouZero models. Both these models are
tested with DouZero baseline that is trained with ADP. “Land-
lord” means that the models play as Landlord against Peasants
of DouZero baseline and the same goes for the reverse.

Our implementation is based on DouZero and training
schedules such as the number of actors and training hyper-
parameters are kept the same as the default ones. As the
DouDizhu environment is realized by ourselves, the reward
also needs to be defined. The evaluation metrics of WP and
ADP can be utilized when defining the reward. For WP, the
agent winning a game is given +1 reward otherwise -1 reward
while ADP can be directly used as rewards for ADP settings.
DouZero provides two kinds of models which are trained using
WP and ADP, respectively. For simplicity, we train our AI
system with ADP as objective and compare its performance
with the corresponding baseline. Also, we use the metric of
ADP when evaluating the performance of the models.

B. Evaluation on Opponent Modeling

In this part, we demonstrate the effectiveness of introducing
opponent modeling to DouDizhu. As the state features utilized
by DouZero contain all the information that can be known,
the information about the hand cards of the next player
is included implicitly while the idea of opponent modeling
is essentially making such information explicit. In order to
investigate whether such an idea helps the agents learn better,
we firstly make a pre-experiment where we add the hand
cards of the next player into state features directly, whose
result is shown in Figure 5. It can be observed that adding the
hand cards of the next player into state features indeed boosts
the performances of the agents, especially for Peasants. We
assume that the obvious improvement of Peasants is attributed
to the fact that knowing the hand cards of the next player helps
Peasants not only choose cards that the Landlord can’t afford
but also cooperate with the teammate better. Whereas for the
Landlord, knowing the hand cards of next player indeed helps
to make decisions, but if the hand is weak, even having such
information can not help a lot. To sum up, the result of the pre-
experiment illustrate that introducing explicit representations
of the next player’s hand cards improves the performance of
DouDizhu AI.
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Fig. 7: ADP of models, which combine coach network with
DouZero, and DouZero models. Both these models are tested
with DouZero baseline that is trained with ADP. “Landlord”
means that the models play as Landlord against Peasants of
DouZero baseline and the same goes for the reverse.

After verifying the validity of our idea, we concurrently
train the prediction models as well as the decision models
as is discussed in Section IV-A and the result is shown
in Figure 6. It reveals that introducing opponent modeling
to DouZero mainly improves the performance of models
of Peasants, which is corresponding to the analysis above.
Although the models perform worse than DouZero at first
because the network has to take more features as input and has
more neurons, which will slow down learning, they manage
to grasp more knowledge after enough training and achieve a
performance better than DouZero.

C. Evaluation on Coach Network

Apart from the experiments above, we also conduct exper-
iments to show how coach network” performs in DouDizhu
game. The training procedure is discussed in Section IV-B
and the upper limit of threshold β is set to be 0.3. The result
of the experiment is shown in Figure 7 and the significant
improvement proves the effectiveness of this method. It can be
observed that the improvement of Peasants is also greater than
that of Landlord. Considering that Peasants have an advantage
in this game due to cooperation, this phenomenon is acceptable
as they can learn more skills in balanced games. Besides,
this coach-guided learning strategy just controls the initial
state of the game while the results demonstrate the significant
improvement it can bring. This fact reveals that the luck factor
plays an important role in such kind of imperfect-information
games. In other words, our method can be migrated into other
environments, helping game AI achieve better performance.

What’s more, we also show some cases about the prediction
of our coach network from games on Botzone platform, which
is illustrated in Table I. In case 1, it can be observed that the
Landlord is allocated with a very strong hand, which consists
of most cards of high rank and cards of low rank that can
compose other combinations so that the Landlord can win the
game easily. As for case 2, even Landlord has a bomb in his
hand, the hand cards of Peasants are also very strong. What’s
worse, the Landlord also has quite a few cards of low rank



Landlord Landlord down Landlord up Prediction of Pwin for Landlord Actual result(Landlord)

Case1 3455677789JQKAAAA22R 334569TTTJJQQQKK2 344566788899TJK2B 0.9932 Win
Case2 45667788889TTTKKA22B 334567TJJJQQQQK22 33445567999JKAAAR 0.1726 Lose
Case3 3455556677799JJQKAAB 3467889TTQKKK222R 33446889TTJJQQAA2 0.5843 Lose

TABLE I: Case study to show the effect of “coach network”. It predicts the winning probability of Landlord based on the
initial hand cards of the three players. We pick some cases from games from Botzone to show the predicted results of “coach
network” and also show the actual result from the view of the Landlord. To be mentioned, T means 10, J means Jack, Q means
Queen, K means King, A means Ace, B means Black Joker, and R means Red Joker.

that are difficult to play out. In case 3, the initial hand cards
are relatively balanced. However, the Peasant win the game
finally, indicating the importance of cooperation. This example
illustrates that the balanced samples can indeed help the agents
learn cautious policy and cooperation better, thus proving the
correctness of our idea.

D. Combination of Two Methods

From the above discussion, it is known that both our
improvements can help enhance the performance of DouZero.
The result of combining these two methods is shown in
Figure 8. As the improvement of “coach network” is more
obvious than opponent modeling, to intuitively demonstrate
whether the combination of these two techniques brings further
improvement, we also add the result of just using “coach
network” in the figure. It can be observed the performance
is a little worse than just using coach network at first, which
is consistent with the discussion of just introducing opponent
modeling. To be mentioned, when the performance of the mod-
els reaches a certain level, achieving a little improvement is
very difficult so the progress that combining the two methods
makes is not that apparent. However, further improvement still
proves the effectiveness of combination of the two methods.

To comprehensively compare the performance of our
DouDizhu AI, we upload our final model to BotZone [23],
an online platform with DouDizhu competition. This platform
supports more than 20 games apart from DouDizhu, including
Go, Mahjong, Chess and so on. There are more than 3500
users on this platform uploading their bot programs to com-
pete with other bots in a selected game. Botzone maintains
a leaderboard for each game, which ranks all the bots in
the Botzone Elo system by their Elo rating scores. In the
Botzone Elo of DouDizhu (named “FightTheLandlord” on the
platform), each game is played by two bots, with one acting
as the Landlord and the other as Peasants. A pair of games
are played simultaneously where the two bots play different
roles and the initial hand cards also keep unchanged. Although
Elo rating is generally considered as a stable measurement of
relative strength, DouDizhu Elo ranking on Botzone suffers
from some fluidity due to the nature of high variance of this
game. What’s more, due to the limit of server resources, Elo
rating games are not scheduled very frequently. One bot plays
less than 10 Elo rating games on average every day so that it
may take a lot of time to achieve a stable ranking. However,
keeping a high ranking can still prove the strength of one AI
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Fig. 8: ADP of models, which combine both improvements
with DouZero, and DouZero models. Both these models
are tested with DouZero baseline that is trained with ADP.
“Landlord” means that the models play as Landlord against
Peasants of DouZero baseline and the same goes for the
reverse. For comparison, the result of models improved by
“coach network” is also included.

system. Even if DouZero has obvious superiority over other
DouDizhu AI systems trained by reinforcement learning, it
has ranked about 20th so far on Botzone leaderboard as most
bots are realized by strong heuristic rules. Nonetheless, our
DouDizhu AI has always ranked top five, even ranked first for
several months, proving the effectiveness of the improvements
that we make.

VI. CONCLUSION AND FUTURE WORK

In this work, we put forward some improvements to the
state-of-the-art DouDizhu AI program, DouZero. Inspired by
the human player’s prediction about opponents’ hand cards
in practice, we introduce opponent modeling. Based on the
nature of high variance of this game, we originally propose
a “coach network” to pick valuable samples to accelerate
the training. The outstanding performance of our AI on the
Botzone platform proves the effectiveness of our improvement.

Although our DouDizhu AI performs well after adopting
these techniques, there is still room for improvement. First, to
better show the effect of our improvement, we do not make
changes on the architectures of neural networks in DouZero
unless necessary. We plan to try other neural networks such
as convolutional neural networks like ResNet [42]. Second,
we find that there are still some cases where the model
can not make good decisions. We hope to combine search
with our AI to enhance the performance as search plays an



important role and performs well in research about game AI
[43], [44]. Finally, we will investigate how to improve the
sample efficiency with experiment replay [45] as it still costs
a lot of time even utilizing our “coach network”. In addition,
we will also try to transfer our methods to other games for
stronger game AIs.
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T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker,” Science, vol. 356,
no. 6337, pp. 508–513, 2017.

[9] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, 2018.

[10] ——, “Superhuman ai for multiplayer poker,” Science, vol. 365, no.
6456, pp. 885–890, 2019.

[11] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft II using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[12] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[13] J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao,
T. Qin, T.-Y. Liu, and H.-W. Hon, “Suphx: Mastering mahjong with
deep reinforcement learning,” arXiv preprint arXiv:2003.13590, 2020.

[14] T. W. Neller and M. Lanctot, “An introduction to counterfactual regret
minimization,” in Educational Advances in Artificial Intelligence (EAAI),
vol. 11, 2013.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor,
“Learn what not to learn: Action elimination with deep reinforcement
learning,” arXiv preprint arXiv:1809.02121, 2018.

[17] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning
(ICML), 2016, pp. 1928–1937.

[18] Y. You, L. Li, B. Guo, W. Wang, and C. Lu, “Combinatorial q-learning
for dou di zhu,” in AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, no. 1, 2020, pp. 301–307.

[19] Q. Jiang, K. Li, B. Du, H. Chen, and H. Fang, “Deltadou: Expert-level
doudizhu ai through self-play.” in International Joint Conferences on
Artificial Intelligence (IJCAI), 2019, pp. 1265–1271.

[20] D. Zha, J. Xie, W. Ma, S. Zhang, X. Lian, X. Hu, and J. Liu, “Douzero:
Mastering doudizhu with self-play deep reinforcement learning,” arXiv
preprint arXiv:2106.06135, 2021.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[22] H. Zhou, Y. Zhou, H. Zhang, H. Huang, and W. Li, “Botzone: A com-
petitive and interactive platform for game ai education,” in Proceedings
of the ACM Turing 50th Celebration Conference-China, 2017, pp. 1–5.

[23] H. Zhou, H. Zhang, Y. Zhou, X. Wang, and W. Li, “Botzone: an online
multi-agent competitive platform for ai education,” in ACM Conference
on Innovation and Technology in Computer Science Education, 2018,
pp. 33–38.

[24] H. Zhang, G. Gao, W. Li, C. Zhong, W. Yu, and C. Wang, “Botzone:
A game playing system for artificial intelligence education,” in Inter-
national Conference on Frontiers in Education: Computer Science and
Computer Engineering (FECS), 2012, p. 1.

[25] N. Sweeney and D. Sinclair, “Applying reinforcement learning to poker,”
in Computer Poker Symposium, 2012.

[26] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat,
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