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Abstract—Reinforcement learning (RL) research focuses on
general solutions that can be applied across different domains.
This results in methods that RL practitioners can use in almost
any domain. However, recent studies often lack the engineering
steps (“tricks”) which may be needed to effectively use RL, such
as reward shaping, curriculum learning, and splitting a large task
into smaller chunks. Such tricks are common, if not necessary, to
achieve state-of-the-art results and win RL competitions. To ease
the engineering efforts, we distill descriptions of tricks from state-
of-the-art results and study how well these tricks can improve
a standard deep Q-learning agent. The long-term goal of this
work is to enable combining proven RL methods with domain-
specific tricks by providing a unified software framework and
accompanying insights in multiple domains.

Index Terms—reinforcement learning, machine learning, video
games, artificial intelligence

I. INTRODUCTION

Reinforcement learning (RL) is a form of machine learning
that builds on the idea of learning by interaction and learns
solely from a numerical reward signal. Due to its generality,
reinforcement learning has found applications in many disci-
plines and achieved breakthroughs on many complex tasks,
including modern video games [!], [2].

Alas, such feats often require a large amount of training
data to learn. For example, in the case of the “OpenAl Five”
agent, it took roughly 40, 000 years of in-game time to train the
agent [2]. Instead of more training, one can incorporate human
domain-knowledge of the task and the environment to aid the
training of the agent (“tricks”), which are especially prominent
in the RL competitions [3]-[5]. As these tricks are domain-
specific, they are rarely covered by academic publications.
Nevertheless, their prevalence across domains hints that they
are a necessary step in practical applications. If a trick works,
it also tells something about the structure of the task and how
it could be solved in a more general fashion.

To broaden the knowledge on these tricks, we summarize
the approaches used by participants in RL competitions and
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Fig. 1. Environments used in the experiments: ViZDoom Deathmatch,
MineRL ObtainDiamond, and Google Research Football environment, in this
order. Pictures of ViZDoom and MineRL depict image inputs the agent
receives, while in Football agent receives direct information, such as the
location of the players.

state-of-the-art results. We categorize these tricks and then
apply them on three complex RL environments to conduct
preliminary ablation experiments to study how they affect
performance.

II. REINFORCEMENT LEARNING TRICKS IN THE WILD

In this work, a “trick” refers to a technique outside the RL
algorithm that improves the training results. We treat the RL
algorithm as a black-box function that takes in observations
and outputs actions, and given the reward signal learns to
pick actions with higher rewards. Tricks in this work take this
black-box function and build up around it to create an agent.
This means we do not include the choice of RL algorithm,
code-level improvements (e.g. normalizing values), or network
architecture choices, which can lead to improvements [ 1], [11].
We also do not include observation or action space shaping, as
these have been explored in previous work [17]. We emphasize
that we are interested in any reported tricks which improve the
results, regardless of the lack of generalizability.

Table I categorizes the tricks described in the reviewed
works. Some of these are common knowledge, like reward
shaping (RS) [18&], but others are less explored. For example,
Lample et al. (2017) [6] assist the learning agent by modifying
the actions (MA) to move the crosshair on top of the enemies
before shooting, but not during evaluation. This action is added
to the agent’s learning buffers, from which it learns to shoot
by itself. Another common trick is to hardcode the agent’s
behavior with scripted actions (SA), which can support the
agent with easy-to-script solutions [8]. Augmenting scripted



TABLE I
SUMMARY OF DOMAIN-SPECIFIC METHODS USED TO SUPPORT THE TRAINING OF RL AGENTS.

Trick name and abbrevation Description

References

Reward sharping (RS)

Manual curriculum learning (CL)
Manual hierarchy (MH)
Modified actions (MA)

Scripted actions (SA)

Modify reward function for a denser reward  [I1]
Increase difficulty gradually [2]
Split task into subtasks by manual rules [3],
Modify agent’s actions while learning [3]
Augment the agent with hardcoded actions [2]
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behavior with RL has also been shown to be an effective
strategy [16]. Another common solution to sparse reward
environments is to use curriculum learning to initially start
with an easy problem and gradually increase the difficulty [19].
This can be done by increasing the health and difficulty of the
opponents [8] or by gradually adding more tools to the agent’s
disposal [11].

Sometimes the task can be split into multiple subtasks, and
assigning one learning agent to each has yielded significant
performance gains [3], [13], [16]. This is credited to the
simplicity of the subtasks (easier for agents to learn) and to
catastrophic forgetting, where learning skills for new tasks
might interfere with skills learned for a previously learned
task. In most cases, one or more of these tricks were combined
into one. For example, a scripted logic decides which of the
subtask agents should take control next [3].

III. EXPERIMENTAL SETUP

With the above categorization of the tricks, we pick the
most prominent ones, implement them along with a deep Q-
learning (DQN) [20] RL agent and study their performance
in three different domains: Doom, Minecraft, and a Football
environment. We chose these environments as we, the authors,
are experienced in using these environments, and are familiar
with their challenges. We spread experiments over multiple en-
vironments to gain more general insights rather than domain-
specific knowledge.

We choose DQN as it is an off-policy RL algorithm,
meaning we can modify the actions for learning. Also, DQN’s
performance in discrete action spaces is well documented
and reputable implementations of it exist. We use the im-
plementation from the stable-baselines3 repository [21]. The
source code used for the experiments is available at https:
//github.com/Miffyli/rl-human-prior-tricks.

A. Reinforcement learning agent

By default, the DQN agents have a replay buffer of one mil-
lion transitions, start learning after 10K steps and update the
target network after 10K training steps. If the agent input is an
RGB image, it is processed with a convolutional layer network
of the original DQN paper [20]. The agent is updated at every
step to emphasize sample-efficient learning. For exploration,
we use an e-greedy strategy, where agents pick a random
action with a small probability. In ViZDoom and MineRL the
chance of a random action is linearly decayed from 100% to
5%/10% in the first 10%/1% training steps, respectively. In

GFootball the probability is fixed at 1%. Other settings are
taken from default settings of stable-baselines3 [21].

B. ViZDoom Deathmatch

The ViZDoom learning environment [22] provides an in-
terface to train RL agents in the Doom environment, based
on visual input (image pixels) similar to what a human
player would see (see Fig. 1 for an example). We use the
“Deathmatch” scenario where the agent is rewarded for killing
continuously spawning enemies. The scenario also includes
weapons and pickups for health and armor. Since killing
an enemy takes multiple shots, especially with the starting
weapon (a pistol), the reward is sparse, and with a crude
exploration strategy the RL agent has a hard time learning
the task (see results in Section V).

The same challenges arose in the ViZDoom competi-
tions [3], where instead of game enemies, the agents had to
play against each other. Competition participants employed
various tactics, most notably MH of agents [6], [13], CL
by starting with weaker enemies [8] and modifying agent’s
actions (MA) to optimal ones during training [6]. When
combined and tuned correctly, this turns basic RL algorithms
into capable agents in these competitions, approaching human-
level performance but not quite surpassing it [3].

We implement three of these tricks and try them in the
deathmatch scenario: RS, MA, and MH. With RS, the agent
is given a small reward (0.1) for hitting an enemy or when
picking up pick-ups. With MA, we force the agent to shoot if
an enemy is under the crosshair (used only during training).
In MH we create two learning agents, one for navigation and
one for combat, where the combat agent is activated when an
enemy is visible on the screen, otherwise, the navigation agent
plays. These two agents are separated with their own replay
buffers for training. When combined with RS and MA, both
agents use the same RS and the shooting agent also uses MA.

Agents are provided with an RGB image of size 80x60,
and on each step can choose one of 66 actions, which
consist of different combinations of buttons allowed (turn-
ing left/right, moving forward/backward/left/right, shooting,
selecting next/previous weapon, turning 180 degrees, and
enabling sprinting). The agent chooses an action every four
environment steps. During the evaluation, we always pick the
action with the highest Q-value.

C. MineRL ObtainDiamond

MineRL ObtainDiamond [23] is an environment built in
Minecraft, where the goal is to obtain a diamond. The player
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Fig. 2. MineRL ObtainDiamond item hierarchy. Subsequent items yield
exponentially higher rewards.

starts with no item in a randomly generated level. To mine
a diamond, the player must first collect and craft a list of
prerequisite items that hierarchically depend on each other (see
Fig. 2). The agent is rewarded the first time they obtain an item
in this hierarchy tree. The game ends when the player obtains
a diamond, dies, or after a maximum of 15 minutes in-game
time.

The MineRL ObtainDiamond task poses multiple challenges
for reinforcement learning agents. The sparsity of the reward
signal and the complexity of the state- and actions-space
make it a particularly hard exploration problem. Furthermore,
random level generation means that agents must generalize
across a virtually infinite number of levels.

To address these challenges, we use three tricks: RS, MH,
and SA. With RS, the agent receives a reward each time a
needed item is obtained, until the required amount is reached.
This is opposed to the default reward function that only awards
an item once when it is collected for the first time. As for
MH, we train one agent per intermediate item. This type of
hierarchical solution has had high performance in the MineRL
competitions [5]. Finally, some of the items require a specific
sequence of crafting actions, which can be easily scripted.
With SA, we replace sub-policies for crafting items with fixed
policies that follow a pre-defined action sequence.

Agents perceive the environment through an RGB render
image of size 64x64 and a list of the items currently equipped
and in the inventory. We simplify the action space of all
agents following [17], by discretizing camera actions, dropping
unnecessary actions (these vary between agents) and flattening
multi-discrete actions to discrete actions. Agent picks an action
once every eight frames.

D. The Football Project (GFootball)

Google Research Football [24] is a 3D RL environment that
provides a stochastic and open-source simulation. The engine
implements an 11 versus 11 football game with the standard
rules, including goal kicks, free kicks, corner kicks, yellow and
red cards, offsides, handballs, and penalty kicks. Each game
lasts 3000 frames. In the 11 versus 11 football game, the RL
agent faces a built-in scripted agent whose skill level can be
adjusted with a difficulty parameter between O and 1. The
agent controls one player at a time, the one in possession of
the ball if attacking or the one closest to the ball if defending.
The agent is rewarded with +1 when scoring and -1 when
conceding a goal.

Playing football is challenging as it requires a balance of
short-term control, learned concepts such as tackling, and
high-level strategy. The agents face a sparse reward signal,

TABLE II
FINAL PERFORMANCES OF THE MINERL AGENTS, EVALUATED ON 200
EPISODES, AND AVERAGED OVER FIVE TRAINING RUNS. “BEST” IS THE
AVERAGE PERFORMANCE OF THE BEST AGENT ACROSS THE FIVE RUNS.
“MAX” IS THE HIGHEST PER-EPISODE SCORE REACHED WHILE
EVALUATING THE AGENTS FROM THE FIVE RUNS.

Experiment Mean Best Max
RL 3.8+1.0 5.4 35
RL+RS+MH 4.5+0.7 5.4 99
RL+RS+MH+SA 33.5+£5.6 41.4 547

complex action- and observation-spaces, and a stochastic en-
vironment.

We approach these challenges in the 11 versus 11 easy
stochastic environment with two tricks: MH and CL. With
MH we evaluate a simple manual hierarchy with separate
sub-policies for situations with and without ball possession.
This allows each sub-policy to specialize in attacking or
defending independently. In CL we gradually increase the
game difficulty parameter as described in [12]. The agents
receive a 115-dimensional vector summarizing the game state.
The agent can choose one of 19 actions consisting of different
football-specific movements like passing, tackling, shooting,
and dribbling at every step.

IV. RESULTS AND DISCUSSION

The learning curves are reported in Fig. 3. In ViZDoom, all
tricks improve upon the DQN, but only RS, MA and MH
combined provide significant improvements. Most notably,
MH from an average score of less than one to an average
score of three, despite only splitting the task into two separate
learning agents.

In the MineRL experiments, MH and RS only slightly
improved the expected mean reward compared to DQN. How-
ever, the maximum achieved reward increased from 35 to
99 (Table II), which corresponds to two steps in the item
hierarchy. SA in combination with RS and MH resulted in
the significantly fastest training and best final performance.

In the GFootball environment, Only CL improved the mean
reward over the baseline. The use of MH isolated and in
combination with CL did not improve the average score, in
the latter case, it even led to decreased performance. When
using MH the attacking and defending agents have their
separate neural networks with no weight sharing. Therefore,
each network has fewer updates than the DQN or CL agents,
which could cause the performance drop. One could mitigate
this problem by implementing the agents with weight sharing
and their independent value heads.

In summary, most of the evaluated tricks did lead to
improvements over vanilla DQN, with a right combination
yielding significantly better results. Out of the individual
tricks, manually separating the task into subtasks (MH) yielded
the most promising results so far, but with a negative impact
on the GFootball environment. This concurs with the original
observation that, while these tricks are likely beneficial, the
exact effect is highly dependent on the environment.
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Fig. 3. Training results with different tricks on top of a normal DQN agent (RL). Abbreviations are as in Table I. RL is a vanilla DQN learning agent without
tricks. We average results over five training runs for ViZDoom and MineRL, and three for GFootball.

V. CONCLUSIONS AND FUTURE WORK

In this work, we summarized the different domain-
knowledge techniques (“tricks”) used by researchers in state-
of-the-art results, both in academic publications and compe-
titions. While individual tricks rarely generalize outside the
specific environment and task, we find that tricks of the
same category (e.g. reward shaping, hierarchy) span various
environments and, overall, are reported as significant steps to
obtain the reward. We then took the most prominent tricks,
implemented them in three different environments along with
a DQN agent, and ran preliminary experiments to study
their impact on the learning. The results so far indicate that
manually splitting the task into subtasks and hardcoding the
agent’s actions are very effective tricks to improve the agent’s
performance, especially when these are easy to implement.

The future of this work consists of more systematic study
and categorization of the tricks, providing more formal def-
initions for the tricks to understand them better, and finally
conducting large-scale experiments over various environments
for general information. Along with this, a unified software
framework for combining scripted and learned behavior would
be a useful tool for easing the use of RL in practical applica-
tions. Finally, even though the tricks assume human domain
knowledge is available, we believe these large-scale results on
them would serve as a useful tool for RL applications and a
source of directions for RL researchers.
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