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Fig. 1: Our interactive explanations framework.

Abstract—Reinforcement learning techniques successfully gen-
erate convincing agent behaviors, but it is still difficult to tailor
the behavior to align with a user’s specific preferences. What is
missing is a communication method for the system to explain the
behavior and for the user to repair it. In this paper, we present a
novel interaction method that uses interactive explanations using
templates of natural language as a communication method. The
main advantage of this interaction method is that it enables a
two-way communication channel between users and the agent;
the bot can explain its thinking procedure to the users, and
the users can communicate their behavior preferences to the
bot using the same interactive explanations. In this manner,
the thinking procedure of the bot is transparent, and users can
provide corrections to the bot that include a suggested action to
take, a goal to achieve, and the reasons behind these decisions.
We tested our proposed method in a clone of the video game
named Super Mario Bros., and the results demonstrate that our
interactive explanation approach is effective at diagnosing and
repairing bot behaviors.

Index Terms—Game Human Computer Interaction, Reinforce-
ment Learning, Explainable Al

I. INTRODUCTION

Creating agents using reinforcement learning (RL) tech-
niques is a research area that has seen many advances in
recent years but many challenges remain. Arguably, one of the
main obstacles in RL research is the agent alignment problem
[1]; this problem arises when we try to create agents that
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act as the users envision [2], [3]. In this paper, we focus on
one of the main difficulties of the agent alignment problem:
facilitating the diagnosis and repair of unacceptable outcomes
while minimizing the need for feedback from users.

Creating RL-based bots that extract interesting elements
regarding their thinking procedure is an effective way to
diagnosis the cause of bugs in their policy [4]. Also, in
the same direction, we find works that enable RL agents to
explain their behavior by contrasting the outcomes of multiple
policy options [5], [6]. For this work, we developed a bot
that combines both aforementioned approaches; our bot can
explain its thinking procedure and can compare the results of
multiple policies and present the contrasting outcomes to the
user. Furthermore, we extend the scope of the explanations by
providing information about the uncertainty of the results after
taking a particular action, and what goal the bot is trying to
achieve in the next few time-steps. This additional information
in the explanations is vital for understanding the accuracy of
the transition model of the bot, and to better understand how
the reward function affects the policy at a given state.

To repair the behavior of a bot, we make templates of natural
language explanation interactive for the user to give feedback
to the bot (see Figure 1). With this novel interaction procedure,
the user provides corrections that include a suggested action to
take, a goal to achieve, and the reasons behind these decisions.
In the literature, we can find works that map natural language
to a reward function [7], for describing goals [8], or learning
about the dynamic of the environment [9]. In contrast to these
approaches, we used the explanations to design constrained
testbeds for our bot to train in with a biased exploration
process. After this attention-based exploration process, we
compute a value function and policy, which we apply to all
the states in the environment that match the description given
by the user. Our method provides fast learning cycles that let
the users observe the results of their feedback after just a few
seconds.

We evaluated our proposed method in a clone of the video
game named Super Mario Bros. In our user test with 13 non-
experts in RL with varied backgrounds (design, humanities,
and computer science), we demonstrated that users were able
to diagnose and repair the policy of the bot. Moreover, users
were able to adapt the play style of the bot according to
their preferences. This empirical evidence suggests that our



interactive explanation method is an economical and pragmatic
alternative to tackling the agent alignment problem. Besides,
since our system is based on the Markov Decision Process
(MDP) framework, it would be relatively easy to adapt our
method for different applications that could be useful in
modern game development such as synthetic testers [10], [11],
human-like bots [12], [13], and procedural content generation
via RL [14].

II. RELATED WORK

Research on explainable artificial intelligence [15]-[17] and
agents that learn from natural language [18], [19] is extensive.
For brevity, in the rest of this section, we focus on contrasting
our work against current related research on these subjects that
specifically use the reinforcement learning (RL) framework as
a basis.

A. Interactive Reinforcement Learning (RL)

For our work, we follow an interactive RL setting since
we have a human-in-the-loop that tailors the underlying RL
algorithm to improve, or personalize, the policy of the bot.
According to the classification by [20], our work fits the design
dimension that focuses on adapting the exploration process of
the bot. The most similar implementations to ours are the goal
biasing [21] and action biasing [22] approaches.

[21] propose a method that directs the agent’s attention
towards an object of interest on the screen; the exploration
bias is driven by selecting actions that will get the agent close
to the selected object (goal). [22] present an algorithm that
biases the exploration process based on the binary feedback
from the user; that is, the agent tends to perform the actions
that the user evaluated as good over those marked as bad.

The main difference between our biased exploration process
and the work in [21] and [22] is that using all the information
from the interactive explanations, we generate a small training
environment where the bot learns how to achieve the proposed
goal by exploring it and following a strategy that is biased by
the suggested action. Once finished the exploration process, we
compute a value function and policy that we integrate into the
main policy (used in all the state-space) in the states that suit
the description given by the user in the interactive explanation.
In this manner, we minimize the required feedback from users
since we generalize their feedback to all the similar states in
the environment.

Another difference is that [21] uses the goal to bias the
decision-making of the bot to take actions that lead it to the
suggested object/goal. Differently, in our method, we use the
proposed goal for reward shaping. We carry out the reward
shaping method by suppressing all the reward signals except
for the one that the user is proposing. Our approach has the
advantage of not requiring a precise model of the dynamics
of the environment to effectively choose actions that will take
to bot closer to the goal. Besides, we use the action as advice
that biases the exploration rather than a critique like [22] do.

For a survey on interactive RL, we refer our reader to [20].

B. Explainable RL

We build our interactive explanation based on the work by
[4]. They propose a three-level introspection procedure for
RL agents that extracts interesting elements from the agent’s
behavior and its interactions with the environment. For the
first level, the bot analyzes the transitions and rewards of its
underlying Markov Decision Process (MDP). In the second
level, the analysis focuses on the history of interactions with
the environment. For the third level, a meta-analysis combines
elements generated by the previous levels. We implement these
three levels of introspection: we provide the users with infor-
mation about the environment, the task that the bot is trying to
solve, the interaction between the bot and the environment, and
an analysis of the current goal. Furthermore, we complement
our interactive explanation with an interrogative analysis sim-
ilar to the work by [23]. This analysis empowers users with
the ability to ask “why” and “why not” questions. We use
these questions to form explanations that contrast the result
against one particular action (“why not”) or against all possible
actions (“Why”’). Moreover, in the interactive explanations we
include information about how safe (or unsafe) performing a
specific action is at a given state. Users can use this uncertainty
information to get a better idea of the model of the bot or to
correct it by manually changing its value.

C. Using Natural Language to Aid RL

When we use our interactive explanations as input, users
aid the agent with natural language templates. [8] propose an
approach, similar to ours, to train RL agents through reward
shaping by specifying the goal-states with natural language
templates. Similarly, [24] map natural language to a set of
rules that increase or decrease the probability of selecting
specific actions during training in an RL setting. On the
other hand, our interactive explanations approach provides
users with a natural language template that lets them specify
more elements besides goals or preferred action. Additionally,
using our interactive explanation to tailor the elements of the
underlying RL algorithm allows us to create fixing patches for
the main policy in a fast manner, which is vital to have a good
user experience.

We refer our readers to [25] for a survey on RL informed
by natural language.

III. INTERACTIVE EXPLANATIONS

In Figure 2, we present the interface of our system. We
introduce how to use our interface using an example of a user
study in which Rey, a game enthusiast, wants to personalize
the behavior of a bot that plays her favorite game — Super
Mario Bros.

First, Rey pushes the (1) “Start” button in panel (C) so
the game screen (A) appears, and a precomputed bot begins
playing. Then, Rey notices that the bot always runs at an
enemy and dies. She doesn’t like it, so she goes back to the
frame in which she considers that the bot should try to kill
the enemy, and she does that by pausing the game with the
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button (3) “Pause/Continue” in panel (C) and then selecting
the said frame using the timeline in panel (B).

Now Rey wants to know why the bot doesn’t try to kill the
enemy by jumping to the right. To do that, in panel (C), she
selects the (7) “Why didn’t” checkbox, selects action “jump
right” from the (8) “Actions” dropdown menu, and finally
presses the button (9) “Ask”. After a few seconds, Rey can
read the generated explanation in panel (D).

The explanation in (D) gives Rey a better idea of the bot’s
model, so she can provide the appropriate feedback to fix
its behavior. Accordingly, Rey selects the suitable features
and their values using the dropdown menus from (1) to (7).
Furthermore, using the dropdown menu (8), she proposes the
best action the bot can take at that particular state to achieve
the goal “kill an enemy”, which she selects from the dropdown
menu (9). Finally, she presses button (10) “Submit Fix” in
panel (D) and waits a few seconds to see the updated behavior
of the bot by pressing the button (3) “Pause/Continue” in panel
©.

Another way Rey could’ve asked about the bot’s decision
is by choosing from panel (C) the (6) “Why did?” checkbox
and then pressing the button (9) “Ask”. In this manner, the
contrasting part of the explanation, shown in the zone marked
as “Contrasting outcomes” in panel (D), would compare the
outcomes of performing the action in 7(s) against the second-
best action the bot can take.

IV. IMPLEMENTATION

Our interactive explanation framework, presented in Figure
1, consists of two main modules. First, we need a module that
generates explanations that describe the reasons that cause the
agent to select a particular action in a given state. Second,
we design a module that takes the data from the interactive
explanations as input to compute patches that fix the policy of
the bot.

To generate both modules we need to model the problem
at hand as a Markov Decision Process (MDP). In particular,
an MDP defined by the tuple (S, A, T, R), where S is a set
of states and A is a set of actions; T: S x A x S — [0,1] is
the transition function that assigns the probability of reaching
state s when executing action a in state s, and R: Sx A — R
is the reward function. Also, we assume that the agent state
is outlined by a finite set of features Z; = 2%, i = 1,...,N,
each taking values in a feature space Z’. Furthermore, the
computed policy 7: S — A and value function V: S — R
are deterministic.

We assume that an expert designs an effective reward
function in a way that captures the desirables states (or goals)
with values > 0, and undesirable states with values < 0.

A. Generating Explanations

For the explanations, we use the MDP data to create
explanations that characterize (E1) the most relevant variables
in the current state to make a decision, (E2) the environment’s
dynamics, (E3) the short-term goal that the agent is trying
to achieve, and (E4) contrasting outcomes between different
actions.

The idea to estimate the explanation element (E1) is to
find the feature-sets of similar states that frequently appear
conditioned on a particular action a determined by the policy
m. That is, for a given state s for which users are asking
for an explanation, we compute the appearance frequency of
features in similar states to s. We chose to use a value-based
metric since it’s simple and can be approximated to reduce its
computational cost [26]. Our similarity metric groups states
that have a similar value v to the reference vyeference Within
the range 1.0 £ 0.05 X Vreference- We empirically found that
this range was effective for our testbed. Then, we present to
users the two features with the highest number of appearances
in the set of similar states.

To present users the (E2) environment’s dynamics, we take
the values of the transition function 7' that lead to negative
states s’ and translate them into words to express probability
according to the ranges: 0.9 < T'(s,a) < 1.01is certain, 0.75 <
T(s,a) < 0.9 is almost certain, 0.55 < T(s,a) < 0.75 is
probable, 0.45 < T'(s,a) < 0.55 is changes are even, 0.25 <
T(s,a) < 0.45 is probably not, 0.10 < T(s,a) < 0.25 is
almost certainly not, and 0.0 < T'(s,a) < 0.10 is impossible.
This information gives a sense on the lowest time-scale of
environmental dynamics.

As part of the explanation element (E2), we provide infor-
mation about the perceived safety by the bot. We compute
this by averaging the probability of transitioning to a negative



state given the current policy. Negatives states are defined in
the reward function with a scalar with a value < 0. Therefore,
we describe the transition as “Dangerous” if it is more likely
to reach a negative state or as “Safe” if otherwise. The agent
learns by exploration the transition probabilities to safe and
dangerous states.

There’s evidence that suggests that the human brain uses a
hierarchy of temporal scales to represent the dynamics of the
environment [27]. The decision that the bot takes at every
time-step represents the lowest level in this hierarchy. For
the (E3) the next subgoal that the bot is pursuing, we want
to give users information about the next time-scale level in
the hierarchy that encodes changes in the environment every
few seconds. In particular, we simulate the environment for
2 seconds to measure the accumulated reward that the bot
receives for each reward component. That is, we keep track of
the individual contributions of each reward component in the
reward function. We identify as the next subgoal the reward
component that accumulated more value.

Finally, we also provide an interrogative debugging mecha-
nism that allows users to ask “why” and “why not” questions,
which outputs a (E4) comparison between the outcomes of
performing different actions at a 2 seconds time-scale. When
users ask a “why” question, our system compares the selected
action by the policy to the second-best option the bot has.
To find the second-best option, we use the same simulation
mechanism we implemented for (E3), and from there, we
choose the action that gives more reward in the near future as
the second-best option. On the other hand, to use a “why not”
question, users have to specify an action to compare to; that is,
our system compares between the selected action by the policy
and the proposed action by the user. For both types of question,
we frame the differences between the results of (E1), (E2), and
(E3) in a way that is readable for users. Furthermore, for “why
not” questions, we search in the feature space to find which
specific value would make the bot take the suggested action
by the user. In Table II, we show examples of the explanations
generated by our system.

B. Fixing Behaviors

We designed our strategy for creating policy patches based
on what we call an attention-based exploration process; by tak-
ing as input the information from the interactive explanations,
we can drive the attention of the bot to train in a limited space
of the environment to achieve a particular goal in a specific
way.

For limiting the size of the training environment, we use the
variables I'y;,, that the user considers to be the most important
for deciding a given state. Concretely, we create a training
environment that fits the specification of the state for which
users want to create a patch and the specified features in it
(E1).

We designed Algorithm 1 to bias the exploration process
using the action ay;, and goal gy, that the user suggests to
the bot. The main idea of this algorithm is to restrict the time
that the bot spends exploring the training environment and

Algorithm 1: Computing Behavior Patch
Input: (Fiz, 9fiz: Qfiz)

Output: computed (775, Viig)

gp < 0;

gn < 0;

Restart,, < Number of positive restarts;
Restart,, + Number of failed restarts;
while Exploration is running do

Step; < CurrentTimeStep();

s < ObserveState();

a + using Eq. 1;

ExecuteAction(a);

s" « ObserveState();

Update Ty, (s, a,s")

if Bot achieved gy;, then

| g+ 1

else if Bot failed then

L In < gn+ 1

UpdateParameters(Eq. 1);

if g, > Restart, or g, > Restart,, then
L StopExploration();

(T iz, Viig) < Solve Tig;
return (7siq, Viig);

make it more likely to choose a;, over the rest of the actions
in A. The action selection method is shown in the following:

Gfiz if Step; < Biasgteps
a = ¢ Random() wiprob. 1 (1)
7(s) w/prob. (1 —)

That is, for the first time steps Biasseps of the exploration
process the bot will select action a ;... After this, the bot will
follow the policy 7 (s) with a probability of (1—1)) or a random
action from A with a probability 1), where v starts with a value
of 0.2 and increases by 0.05 every time the bot fails to achieve
goal gy;;. Furthermore, the goal gy;,, becomes the only reward
signal in the environment. We combine the resampling of the
transition functions (using the biased exploration process) with
a goal-based reward shaping mechanism.

The exploration process finishes when the bot achieves the
goal gr;, a given number of times (3 times in our testbed).
Then, with the experience T';, that the bot acquires in the
training environment, we compute a new policy 7 ;. and value
function Vy;, with the model-based RL algorithm in [28].

We then use the policy 7 ;. and value function Vy;; to patch
the policy 7 in the states defined by the features Fy;,. We filter
a set of states in the global policy to be updated by using the
most relevant variables and their corresponding values in E1.
In this manner, we create the set S,.cjevan: that includes all the
states in the environment that are also defined by the current
values in E1. Then, we integrate the policy patches into the
global policy 7 by updating its values in Sy¢jepqns With those



in 7y;,. Similarly, for the global value function we apply the
update function V' (s) = V(s) 4+ 0.1 x Vy;,(s) to the states in
S’rele'uant-

Generally speaking, our policy patches aim to learn effective
policies in cases of misspecified rewards, or unexact transition
models, in problems that we can decompose into a sequence
of subgoals.

V. TESTBED

We use the Mario Al Framework ! as a testbed, this
framework is a clone of the game named Super Mario Bros.
In particular, we use the work by [28] as a basis to imple-
ment our interactive explanation system. Therefore, our Super
Mario Bros. bot uses a model-based reinforcement learning
algorithm.

To perform our experiments, we use a laptop computer with
an 8th generation Intel Core i7 CPU and 16 GB of RAM. The
time needed to compute a policy patch varies depending on the
situation and goes from ~ 5 to ~ 30 seconds. The computation
of the explanations takes ~ 5 seconds for the “Why didn’t”
questions, and ~ 15 seconds for the “Why did?” questions.

A. Bot Definition

Coin n =
Enemies & &
Platforms i =

Fig. 3: The state representation of our bot in Super Mario Bros.

We use the variables shown in Figure 3 to represent the
Super Mario Bros. game as a Markov decision process (MDP).
We use a 3 x 3 grid of variables V1 that code terrain
information. This grid can recognize between platforms, empty
space, and coins. In particular, we use the name variable
boxIType for these 9 squares that represent the value of each
square in the grid. The bold I in the name is the index of each
square. The index starts at 1 with the top left corner, then
continues to the right, and then on the next row.

Our MDP also accounts for the position (in X with name
variable enemyDistanceX and Y axes with name variable
enemyDistanceY) of the closest enemy (V3) to Mario. The
position variables are discretized into 7 values (b3, b2, bl, fI,
12, 13, no). The values that start with a “b” represents when an
enemy is behind Mario; while the variables that start with an
“f” represent the opposite. The numbers (from 1 to 3) represent
how far the enemy is where 1 means it’s very close and 3
means it’s far.

We also added a binary variable V2 that detects whether
there is a cliff close to Mario.

Additionally, we have a few variables that encode relevant
information about the bot. We have a binary variable that

Thttps://github.com/amidos2006/Mario-Al-Framework

represents if Mario can jump or not (named canJump). Another
binary variable to know if Mario is on the ground (a solid
platform) or not (named onGround). Finally, we add three
binary variables that encode important states. One represents
if Mario has made progress (it has got close to the goal) in
the X axis (the variable name is anyXProgress). Similarly, we
have another variable (anyYProgress) that encodes if Mario
has made some progress in the Y axis. Finally, we have a
variable to know if Mario is dead or not (named as isDead).
In Table I, we present the names of each variable and the
values they can take.

Variable Values
boxIType platform, coin, air
canJump yes, no
onGround yes, no
isDead yes, no
isCliffNear yes, no
anyXProgress yes, no
anYProgress yes, no
enemyDistanceX b3, b2, bl, fl, f2, f3, no
enemyDistanceY b3, b2, bl, f1, f2, f3, no

TABLE I: Variables names and their possible values in our bot
definition.

Our bot can perform 10 different actions in total. Mario can
do the next actions to the left or right of the screen: walk, run,
jump, and quick jump. Furthermore, Mario can do nothing, as
well as perform a neutral jump.

VI. USER STUDY

For our user study, we asked 13 non-experts in reinforce-
ment learning to fix and personalize the behavior of our bot
using our proposed method. The subjects are students and staff
members with an age range from 20 to 34, and backgrounds in
design (23.07%), humanities (15.38%), and computer science
(61.53%).

A. Task

First, we explain the capabilities of our system to users with
an example. Then, we proceed to explain the task they have to
complete. This task consists of fixing the policy of a bot that
plays Super Mario Bros. that stops it from finishing a given
game level. In particular, we designed the game level for the
test to make the bot fail at three different points; subjects had
to solve all of them. Also, we encouraged the users to make
at least one change in the policy to personalize the play style
of the bot according to their preferences.

B. The Bugs

We created the base policy of our system by letting Mario
explore the original first level of Super Mario Bros.. Then, we
designed the level that we use for our testbed with previously



unseen states. Some of these novel states caused unwanted
behaviors in Mario.

The first of these bugs (B1) is shown in the top row of
Table II. Bug B1 makes Mario run into enemies when there
are coins above him. In the row below B1 in Table II, we show
the second bug B2. This bug makes Mario die because when it
tries to stomp on enemies, its jump trajectory is modified when
it hits the platform on top of him. In the row below B2 in Table
II, we show the third bug B3 which makes Mario infinitely
jump in circles when it faces the traped enemy between the
pipe and the platform. In the last row, we present how a user
personalizes the bot’s behavior to make it kill enemies that are
behind it.

C. Survey

Once the users completed the assigned task, they took a
survey with the following closed-ended questions:

o Q1 - Have you ever played the game called Super Mario
Bros.? With options: Yes, No, I’ve only watched other
people playing it

e Q2 — Were you able to fix all the problems in the policy
that you wanted? With options: Yes, No

e Q3 - How close are the bot behaviors you created to
what you had envisioned? With options not similar at all,
some resemblance, very similar, perfect match

o Q4 — How clear were the bot explanation? With options:
not clear at all, a little clear, clear, perfectly clear

e Q5 — How effective were the explanations for helping
you diagnosing and repairing the bot behavior? With
options: not effective at all, a little effective, effective,
very effective

e Q6 — Was your bot able to complete the level? With
options: yes, and no

Then, we asked users the next open-ended questions:

e Q7 — Which are the parts in the interactive explanations
that were more useful for you?

o Q8 — How would you describe the most effective work-
flow using our system?

e Q9 — Which parts of the contrasting outcomes explana-
tion were most useful?

VII. RESULTS

In this section, we present some examples of the produced
explanations and the results of the conducted survey. We invite
our readers to use our system by downloading our software
from this repository 2.
A. Explanations

In Table IT we show a few instances of the explanations that
our system produces.
B. Survey

Regarding Q1, all users stated that they have previously
played Super Mario Bros. For Q2, 61.53% of the users were

Zhttps://arzate-christian.github.io/InteractiveExplanations/index.html
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Fig. 4: Box plots of the survey results.

able to make all the changes in the policy they wanted, while
the rest of them couldn’t. For the results of questions Q3-Q5,
we present three box plots in Figure 4 with the answers on a
corresponding 4-level Likert scale. For the last closed-ended
question (Q6), 92.30% of the users were able to fix the policy
so the bot could complete the given game level.

The answers for the first open-ended question (Q7) reveal
that most users (57.14%) prefer using the parts where the bot
describes the best action and goal (marked from 6 to 9 in
panel (D) in Figure 2); while 42.85 of the users mentioned that
they prefer using the variables that describe the environment
(marked from 1 to 4 in panel (D) in Figure 2) and the parts
where the bot describes the best action and goal. Only one
of the users mentioned the contrasting outcomes of the “Why
did?” question as the most useful to diagnose and repair the
bot’s behavior.

For question Q8, we can summarize the described workflow
of the users as follows: (1) pause at a frame close to the
behavior which needs some fix, (2) scroll to the closest frame
possible in the timeline, (3) ask the bot for an explanation,
(4) read the explanation, (5) modify the dropdown menus, (6)
submit a fix, (7) test and iterate. It’s worth mentioning that
most users mentioned that it’s very important to find the exact
frame where the bot starts to perform an unwanted action.
Besides, 69.23% of the users preferred to use only “Why
didn’t?” questions so they could compare the outcomes with
the action they believe was the best to perform.

Finally, for question Q9, the majority of users (38.88%)
found most useful the information about the changes needed
in the environment so the bot would choose to perform the
suggested action in the “Why didn’t?” question. The parts
related to the information about the goal that the bot wouldn’t
achieve if it performs the suggested action, the information
regarding the danger, and the rewards in the long-run have
the same preference percentage at 16.66%. The second-best
option in the “Why did?” has an 11.11% of popularity among
users.

VIII. DISCUSSION

The results of our user test are promising; users felt com-
fortable using our interactive explanations system. Also, they



Original Policy (B1)

Interactive Explanation

Because Box6Type is air and EnemyDistanceX
is f3, it is certain that it’s safe performing action
RunRight. Therefore, my plan is taking action
RunRight to achieve goal Make Progress in X.
Fix

Because EnemyDistanceY is b2 and EnemyDis-
tanceX is f3, it is certain that it’s safe performing
action JumpRight. Therefore, my plan is taking
action JumpRight to achieve goal Kill an Enemy.

Contrasting Outcome Why?

The second best option is doing FastJumpRight
and performing it would give similar results.

Contrasting Outcome Why?

The second best option is doing Down, but
I wouldn’t kill the enemy, I wouldn’t make
progress in X. And in the long-run is a worse
option. Also, it’s more likely to die if T don’t
perform action JumpRight.

Contrasting Outcome Why didn’t JumpRight?
If T perform action JumpRight I won’t make
progress in X, and in the long-run is a worse
option. However, if variable box6Type is pipe I'd
perform the suggested action.

Contrasting Outcome Why didn’t RunRight?
If I perform action Run Right in the long-run is
a worse option. Also, it’s more likely to die if
I don’t perform action JumpRight. However, if
variable EnemyDistanceY is no I'd perform the
suggested action.

Interactive Explanation

Because EnemyDistanceY is b2 and EnemyDis-
tanceX is f2, it is certain that it’s safe performing
action DoNothing. Therefore, my plan is taking
action DoNothing to achieve goal Kill an enemy.
Fix

Because EnemyDistanceY is b2 and box2Type
is ground, it is certain that it’s safe performing
action DoNothing. Therefore, my plan is taking
action JumpLeft to achieve goal Kill an enemy.

Contrasting Outcome Why?

The second best option is doing RunRight and
performing it would give similar results. Also,
it’s more likely to die if I don’t perform action
DoNothing.

Contrasting Outcome Why?

The second best option is doing NeutralJump and
performing it would give similar results. Alsoo,
it’s more likely to die if I don’t perform action
DoNothing.

Contrasting Outcome Why didn’t JumpLeft?
If T perform action JumpLeft in the long-run is

a worse option Also, it’s more likely to die if T
don’t perform action DoNothing.

Contrasting Outcome Why didn’t JumpRight?
If I perform JumpRight I will die. However, if

variable EnemyDistanceY is no I'd perform the
suggestted action.

Updat ollcy

Interactive Explanation

Because EnemyDistanceY is b2 and EnemyDis-
tanceX is f3, it is certain that it’s safe performing
action RunLeft. Therefore, my plan is taking
action RunLeft to achieve goal Kill an enemy.
Fix

Because EnemyDistanceY is b2 and EnemyDis-
tanceX is f3, it is certain that it’s safe performing
action RunLeft. Therefore, my plan is taking
action FastJumpRight to achieve goal MakePro-
gressInX.

Contrasting Outcome Why?

The second best option is doing FastJumpRight
and performing it would give similar results.
Also, it’s more likely to die if I don’t perform
action RunLeft.

Contrasting Outcome Why?

The second best option is doing FastJumpRight
but I would’t make progress in X. Also, it’s more
likely to die if I don’t perform action JumpRight.

Contrasting Outcome didn’t
FastJumpRight?

If I perform action FastJumpRight in the long-
run is a worse option. Also, it’s more likely to
die if I don’t perform action RunLeft. However,
if variable EnemyDistanceY is no I'd perform the
suggestted action.

Contrasting Outcome Why didn’t JumpLeft?

Why

If I perform action JumpLeft in the long-run is
a worse option. Also, it’s more likely to die if I
don’t perform action JumpRight.

Updated Policy

Interactive Explanation

Because EnemyDistanceX is b3 and Box5Type
is air, it is certain that it’s safe performing action
RunRight. Therefore, my plan is taking action
RunRight to achieve goal Make Progress in X.

Fix

Because EnemyDistanceY is b2 and EnemyDis-
tanceX is b3, it is certain that it’s safe performing
action NeutralJump. Therefore, my plan is taking
action NeutralJump to achieve goal Kill an En-
emy.

Contrasting Outcome Why?

The second best option is doing FastJumpRight
and performing it would give similar results.

Contrasting Outcome Why?

The second best option is doing Run Left, and
I wouldn’t make progress in X. Also, it’s more
likely to die if I don’t perform action Neu-
tralJump.

Contrasting Outcome Why didn’t Neu-
tralJump?

If I perform action NeutralJump in the long-run
is a worse option. Also, it’s more likely to die if
I don’t perform action RunRight

Contrasting Outcome Why didn’t RunRight?

If T perform action RunRight in the long-run is
a worse option. Also, it’s more likely to die if
I don’t perform action NeutralJump. However, if
variable EnemyDistanceY is no I'd perform the
suggested action.

TABLE II: Explanations and fixes examples.

found it natural to use and effective at fixing the bot’s behavior.
Furthermore, users created novel playstyles and fixed multiple
bugs besides those we asked to fix for the user test. For
instance, users taught the bot how to kill enemies when its
jump trajectory is limited by a platform above it.

Users spent using our platform between 30 to 190 minutes.
The mean time spent fixing the 3 bugs of the task was 24.67
minutes. Only one user couldn’t fix a bug (B3) that stopped
Mario from finishing the level.

To shed some light on the cause of the bugs, we tried to
fix them using traditional reward shaping. We created 8 new
bots, and our system took between 3 and 7 hours to find a
policy for them (£ = 6.175). From all the new bots, 2 of them
couldn’t solve any bug, and the rest of them solved all bugs
except the bug B1. We believe that an unexact transition model
caused bug B1, while a misspecified rewards function caused
the rest. This evidence suggests that our method can fix bugs

caused by both misspecified rewards and unexact transition
models. However, we require to implement a mechanism to
better understand the cause of bugs and how our algorithm
solves them.

IX. LIMITATIONS

One limitation of our method is that we require a base policy
for which we can create patches that make adjustments to the
base behavior but this can make it difficult to make a global
change. Besides, if users create patches with contradictory
goals that affect similar states, these changes can create
unwanted behaviors in the bot. We can mitigate the latter
by giving the users the option of specifying whether a patch
should be globally applied or only for the given place.

Some users were not able to make all the changes to the
policy that they wanted. They were limited by the representa-
tion of the environment of the bot and the time-scale of our



model. To solve this, we would need to give users the ability
to create arbitrary (sub)goals and create transition models at
a higher level time scales.

Another disadvantage is that we need hand-engineered
MDPs to generate the explanations which is time-consuming.
One way to reduce the time of experts is using an inverse RL
algorithm [29] to find a base policy and reward function for the
problem at hand. To facilitate the generation of explanations
with our framework, we could implement object grounding
techniques [30] so non-experts in RL could teach the bot the
meaning of objects and actions using natural language.

X. CONCLUSIONS

In this paper, we introduced a novel interaction mechanism
for diagnosing and repairing agent behaviors through editable
explanations in natural language templates. The main advan-
tage of our method is that it enables a two-way communication
channel between users and bots. Furthermore, in our user
test, we found out that our editable explanations framework is
effective at providing clear explanations that facilitate users to
patch the behavior of the bot with a fast interaction cycle.
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