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Abstract—One task of game designers is to give NPCs
fun behaviors, where “fun” can have many different
manifestations. Several classic methods exist in Game
AI to model NPCs’ behaviors; one of them is utility-
based AI. Utility functions constitute a powerful tool
to define behaviors but can be tedious and time-
consuming to make and tune correctly until the desired
behavior is achieved. Here, we propose a method to
learn utility functions from data collected after some
human-played games, to recreate a target behavior.
Utility functions are modeled using Interpretable Com-
positional Networks, allowing us to get interpretable
results, unlike regular neural networks. We show our
method can handle noisy data and learn utility func-
tions able to credibly reproduce different target be-
haviors, with a median accuracy from 64.5% to 83.7%,
using the FightingICE platform, an environment for
AI agent competitions. We believe our method can be
useful to game designers to quickly prototype NPCs’
behaviors, and even to define their final utility func-
tions.

Index Terms—Utility-based AI, Machine Learning,
Interpretable Results, Fighting Games.

I. Introduction

Rushing towards the player and raining blows. Dodging
attacks and waiting for the right moment. Or, showing
resistance and letting an opening on purpose so the player
can hit and enjoy the thrill of the fight. Part of the job of
game designers is to attribute adequate, challenging, yet
fun behaviors to Non-Player Characters (NPCs). There
are several ways to define a behavior logic. Among the
most classical methods used in the game industry, one can
find finite state machines, behavior trees, and utility-based
AI [23]. This paper focuses on the latter.

The idea behind utility-based AI controlling an NPC
is to have one function for each possible NPC action.
Given the current game state (players and NPCs hit
points, energies, positions, distances, etc), these functions
output a score indicating how appropriate each action is,
regarding the current situation. Such functions are named
utility functions, and they must be carefully designed to
get the desired NPC behavior.

One advantage of using utility-based AI is that utility
functions can be reused among different NPCs if they
share some facets of their behaviors. However, designing

and tuning utility functions can be quickly a complex and
tedious task [9], in particular if many actions are available
or if game designers are targeting a very specific behavior.
Indeed, an NPC behavior cannot most of the time be
summed up to one or a couple of independent actions, but
is expressed by complex action interlocks and relations.
Moreover, utility-based AI can imply some loss of control
for the game designer [9]. This paper proposes a method to
lessen this first issue, but also the second one to a certain
extent.
Rather than letting game designers and game developers

craft utility functions by hand, this study aims at helping
them by proposing a method to learn interpretable utility
functions automatically from game data. This paper con-
stitutes a first step towards this goal. It does not claim
to provide a tool that can be deployed at the moment for
commercial games; but this is an objective for future work.
Let’s consider the following use-case: Alice is a game

designer and wants to design the behavior of the final
boss of the game. She grabs a game controller and plays a
couple of games, but rather than controlling the player
character, Alice controls the boss while Bob, a game
developer, controls the regular player. During the runs,
Alice makes the boss act with a target behavior, e.g. very
aggressively. Game states as well as actions performed are
recorded at regular intervals, for example at each frame.
These recorded data will constitute our training data.
Now, Alice gives the training data to a system, based
on our method, that learns and produces utility functions
for each available boss action, such that the combination
of these utility functions satisfyingly reproduce the target
behavior, and such that these utility functions are easily
interpretable. The latter is important so that Alice can
modify and tweak them at will according to her needs,
and Bob can implement them within the game engine.
In this paper, we use a variant of artificial neural net-

works named Interpretable Compositional Networks
(ICN) to represent utility functions. ICNs were originally
proposed to model and learn error function in Constraint
Programming [13]. However, one can use an ICN to
learn any kind of functions decomposable into elementary
operations. In [13], they only need to learn one ICN at a
time, but learning utility functions require learning several



functions with the same inputs. Indeed, unlike [13], we are
not aiming to learn one function returning a target output,
but a set of functions where only the ranking of their
output is considered. This raises a scientific challenge: How
to efficiently learn several utility functions simultaneously
with ICNs, as well as the relation among their outputs?

This paper contributes to answering those questions and
proposes a method to learn interpretable utility functions
from game data. It is organized as follows: Section II intro-
duces Interpretable Compositional Networks, a variant of
artificial neural networks we use to model utility functions,
and presents the FightingICE platform we use as a test-
bed for our method. Section III suggests some related work
on player modeling, and Section IV contains the main
contribution of this paper, presenting our method. Experi-
mental results are given and analysed in Section V, and the
paper concludes with some discussions and perspectives.

II. Preliminaries
In this section, we introduce Interpretable Composi-

tional Networks. We show why ICNs are convenient mod-
els for our goal and what scientific challenges about them
required to be unlocked for this study. We also introduce
the FightingICE platform and explain why we chose it
to test our utility function learning method.

A. Interpretable Compositional Networks
The first scientific challenge of this study was to find

how to express utility functions in such a way we can
learn them from data and easily understand them. Indeed,
learning utility functions through a regular artificial neural
network would have been certainly possible, but we would
then get functions that game designers and developers
would not be able to extract from the neural network,
forcing them to run the learned neural network in a feed-
forward manner to compute the utility function. This may
not be desirable or suitable, both from a game design and
a technical point of view, because computing a function
through a neural network can induce significant overheads,
and because each slight modifications of the game mechan-
ics or game properties would imply to re-train these neural
networks.

In this study, we break down every utility function
into small computable pieces called elementary operations.
A utility function is thus a (non-linear) combination of
elementary operations. Learning a utility function boils
down to learning the right combination of elementary
operations.

To fit our needs, Interpretable Compositional Network
is the right model. ICNs are inspired from Compositional
Pattern-Producing Networks (CPPN) [17] often used to
generate 2D or 3D images. It takes these two principles
from CPPNs: 1. each neuron contains one activation
function picked among a large, diverse set of activation
functions, and 2. the network can deal with inputs of
any size. What distinguishes ICN from CPPNs is that

their architecture is fixed, with a specific purpose for each
layer, and the weights of the network are binary, taking
either 0 or 1 as value. This last characteristic is actually
critical to get interpretable functions. Therefore, the main
idea behind ICN is the following: it takes as input the
same input as the function it aims to learn. Information
within the input is extracted, broken down and recom-
posed through many different elementary operations (the
activation functions of neurons composing the ICN). The
outputed value entirely depends on the input and the
combination of elementary operations.
Thus, some new questions are raised:
• What elementary operations to choose to describe

generic utility functions?
• What kind of elementary operations combinations do

we need, i.e., what ICN architecture to choose?
These questions are answered in Section IV describing

our method.

B. FightingICE
FightingICE [7] is a fighting game platform developed

for research purposes at Ritsumeikan University. Figure 1
depicts a typical match of FightingICE. It provides
interfaces in JAVA and Python to get (almost) all pieces of
game information needed to allow artificial agents playing
the game.

Figure 1: A screenshot of the game in FightingICE.

This platform has been designed in such a way that
there is always a delay between actions performed within
the game logic and the game state received by users
through its programming interfaces. With the current
version of FightingICE, this delay is about 250ms (or 15
frames), corresponding to the mean human reaction time
to a visual stimulus. This design choice is motivated by
the will of its authors to propose a fighting game platform
where AIs play in similar conditions to human beings, but
also to balance AI games by penalizing strategies that are
overly defensive-oriented.
We choose this platform to be the test-bed of our

method because it offers several advantages:
• It is simple to use.



• It is easy to control a character and record game states
and actions.

• There are not too many possible actions (about 10,
see below), which is perfect for a first approach.

We can consider that a FightingICE agent is able
to do about 10 actions: stay idle, move forward, move
backward, dash, crouch, jump, block, punch, kick and if
the character has enough energy, throw a fireball. More
actions are available in the FightingICE API, but many
of them can be grouped. For instance, one can consider
that the “air kick” action is doing a kick action while being
in the air.

Note that our method can work for any kind of games
with NPCs, not only fighting games. Of course, this implies
choosing a correct architecture of ICNs and elementary
operations to deal with different game state inputs than
for FightingICE. Fighting games usually do not use
utility-based AI; we simply consider FightingICE to be
a convenient test-bed for this study.

III. Related Work
Player modelling, described in depth by Yannakakis et

al. [22], obtains computational models of players in games.
Some of these can be more detailed than others, and they
may have different scopes across video game development
and execution. They can be built following a top-down
approach using an existing theoretical description, or a
bottom up approach using data to tune a generic struc-
ture.

We focus on models that act as agents within the game
itself, rather than models used on support functions like
churn or matchmaking, or models of the player used to
predict their actions [5], or their interests [15]. These
"models-as-agents" combine the game input and some
internal state to decide which action to take. In the
terms described by Smith et al. [16], they are induced
from human reactions, have a generative purpose, and are
restricted to an individual.
The first game to create and use such models in a

commercial setting was Forza Motorsport in 2005, to
the extent of our knowledge [19]. The Drivatar concept
involved training Bayesian Neural Networks locally in the
user’s system, and later on using a cloud to obtain these
models with more computing power. Note that the use
of trainable agents using neural networks was already
present in games at least as back as 1997 in the game
Creatures [4]. Other techniques to synthesize driving con-
trollers with specific styles include fuzzy logic: Wang and
Liaw [21] aim at imitating a player’s style, although they
fine-tune the existing controller described by Onieva et
al. [11] (already based on fuzzy logic) instead of building a
controller from scratch. Traditional Q-Learning was used
by Trusler and Child [20], while Bayesian methods have
been implemented by several authors (see [2], [18], [20]).

Other types of games have also been addressed in other
work. Agent controllers that mimic the style of a specific

player have been described for the Super Mario Bros
platform game [12]. In the case of our specific genre of
fighting games, Saini’s Ph.D. Thesis [14] explores mim-
icking human player strategies with k-nearest neighbor
classification, data-driven finite state machines and hi-
erarchical clustering to identify patterns and strategies
upon data collected from games where the two players are
human. Lueangrueangroj and Kotrajaras [8] propose real-
time imitating learning via dynamic scripting to mimic
play style of human players upon the commercial game
Street Fighter Zero 3 Upper. Konečný’s Master thesis [6]
introduces a 7-variable model to characterise both Fight-
ing game human and artificial players. This model would
have been convenient for our research but it was not trivial
to get most of the 7 metrics composing the model from the
FightingICE platform. This would certainly need a lot of
engineering, requiring us to modify the platform. Finally,
we can cite the work of Martínez-Arellano et al. [10], using
genetic algorithm to generate enjoyable strategies to play
against in the MUGEN engine. Like this work, we also use
a genetic algorithm to learn models of our ICNs (although
this is not the main point of our paper). One interesting
aspect of Martínez-Arellano et al.’s result is that they do
not need any prior knowledge of how to code strategies of
their agents, and they do not require to directly interact
with the code of the game, meaning their method could
a priori work as-is on other fighting games, with minor
engineering.
For a utility-based AI learning, we can cite the work of

Bradley and Hayes [1], focusing on group utility functions
(i.e., utility functions describing the behavior of several
agents, not only for one agent), to learn cooperative NPC
behaviors via reinforcement learning. The main drawback
with this approach is that it is a black-box system where
utility functions are masked or unclear for human beings,
and need to be retrained entirely if the game has been
modified, which is an undesirable property during game
development.

IV. Main contribution
We start to answer questions listed in the introduction

and in Section II in this section. Since everything in our
method depends on the way we model utility functions, we
start showing how we describe game states and decompose
utility functions.

A. Game states
In this study, a game state is a vector of data from the

current frame of the game. These data can be of different
nature: integers, real values, Boolean values, . . .
To describe FightingICE game states, we only used

integer values (one of them describing in fact a Boolean
value). These values are:

• Player’s hit points,
• Opponent’s hit points,
• Player’s x-coordinate,



• Opponent’s x-coordinate,
• Player’s x-speed,
• Opponent’s x-speed,
• Boolean value indicating if the opponent is attacking.
More data could have been taken into account, such

as y-coordinates and speeds, energies, the type of action
performed by the opponent, the player status whether
available to do an action (when the player is not currently
in a recovery phase, for instance), etc. For the moment, we
consider a minimalist description of game states to learn
utility functions of simple behaviors.

B. Utility function decomposition
All utility functions u in this study can be represented

by Equation 1

u(~x) = coef × combinek
i=1

(
transformi(~x)

)
(1)

where ~x is a game state, coef is a real value, combinek
i=1

is a combination of k elements (for instance, the sum∑k
i=1) and transformi is a transformation operation

extracting and transforming specific data from a given
game state.

This decomposition is flexible enough to express differ-
ent utility functions such as:

u1(~x) = 0.5
(

exp_diff_HP (~x) + log_diff_speed(~x)
)

u2(~x) = 2.Mean
(

can_hit(~x), logistic_distance(~x)
)

The expressive power of such utility functions depends
mainly on transformation operations. We introduce them
along with our ICN architecture.

C. ICN architecture
Since each utility function is modeled by an ICN,

we need a generic ICN architecture that can be use to
learn any kind of utility function for our target platform
FightingICE. Designing a dedicated ICN architecture
for each action would be too time consuming and tedious
for users, for uncertain benefits.

Figure 2: Our ICN model to represent utility functions in
FightingICE.

The unique ICN architecture to learn our different
utility functions is illustrated by Figure 2. The network

is composed of three layers, each of them with their own
purpose. The transformation layer contains 30 neurons,
each with a unique elementary operation as an activation
function. The goal of this layer is to extract relevant data
from the game state given as input (like the player and
opponent hit points for example) and to transform these
data by applying a function. With our architecture, this
function can be either linear, exponential, logarithmic or
logistic. Due to page limit, we cannot give here the detailed
list of the 30 elementary operations in this layer1.
If we consider game states to be vectors of n values

(potentially mixing integer, real and Boolean values), the
transformation layer will output a vector of k values, where
k is the number of its neurons that have been selected
to contribute to the computation of the utility function.
Let’s call ~y = y1y2 . . . yk this k-vector. Then ~y is given as
input to the combination layer, which has the mission to
aggregate these k values into a unique real value. The com-
bination layer is composed of 4 neurons with the following
elementary operations: the sum of k elements

∑k
i=1 yi, the

mean Mean(y1, y2, . . . , yk), the minimum and maximum
value Min(y1, y2, . . . , yk) and Max(y1, y2, . . . , yk). This
outputted real value is then given to the last layer, the
constant layer, that simply multiplies its input with a
real coefficient: 0.25, 0.5, 1, 2 or 4. The final output is the
utility value of the action represented by the ICN.
Each neuron of a layer is connected to each neuron

of the next layer. Like written in Section II-A, weights
between neurons are binary, taking the value either 0 or 1.
Neurons for which the weight on the edge connecting
them is equal to one are selected. During the learning
process, we make sure that ill-formed configurations, such
as selected neurons with no input values, are impossible.
Blue neurons in Figure 2, corresponding to neurons from
the combination and the constant layers, are mutually
exclusive, meaning that exactly one neuron in each of these
layers must be selected.
Binary weights, as well as a structured architecture

with a specific purpose for each layer, is the key to get
interpretable utility functions. Indeed, with real-valued
weights as for regular neural networks, we would end
up with utility functions expressed by a combination of
all (non-mutually exclusive) elementary operations with
different real coefficients, making unreadable functions
that would be very difficult to understand.
Notice that, like artificial neural networks, an ICN can

have a very different architecture than the one proposed in
this paper, with different layers and different elementary
operations. Notice also that the scalability property of
ICN, making them able to learn functions of any arity,
is not used here: we consider that game states are vectors
composed of a fixed number n of values describing the
current state of the game. There is thus no need for
scalability in this context.

1However, their exact computation can be found in this C++ file.

https://github.com/Scdevcty/LearningUtilityFunctions/blob/main/learn/function_to_learn_icn.cpp


D. Supervised learning

We learn utility functions in a supervised learning
fashion. As written in the introduction, we collect game
data by playing a character and recording the game
state together with the action performed. We make one
game dataset for each target behavior we want to learn.
Therefore, we have labeled data: for each game state, we
know the action performed by the person controlling the
character, allowing us to learn utility functions through
supervised learning.

Observe that elementary operations within the ICN
may be not differentiable (it is the case with discrete
elementary operations). Therefore one cannot find their
derivative and then the classic back-propagation algorithm
to learn the weights of the network is not applicable. For
this reason, we use a genetic algorithm to learn models of
our ICNs. We reuse the same algorithm as the one learning
error functions in Constraint Programming in the original
paper introducing ICNs [13].

However, we must adapt both the loss function and the
gene representation of individuals composing the genetic
algorithm’s population. Indeed, in [13], they only need to
learn one ICN to model an error function. Here, we need
to learn simultaneously several ICNs modeling one utility
function each, and the ICNs outputs are not directly
meaningful to guide the learning: here, the output of
the ICN representing the desired action in the current
situation must be higher than the output of other ICNs.

Hence, our loss function only considers the rank of the
expected output rather than its value. Given a game state
labeled with the action A, if the utility for A is the highest
one, the loss equals 0, if it is the second highest one, the
loss equals 1, and so on.

Observe that if our problem looks like a classification
problem (choosing the right action), it is actually not:
we are not aiming to learn a classifier function, but a
set of utility functions. Therefore, loss functions usually
employed for classification problems do not fit our needs.

More formally, our loss function corresponds to the
following equation:

loss = RankA

(
o1, . . . , om

)
+ #selected neurons

#neurons (2)

where oi is the output of the i-th ICN and RankA is
the rank of the output of the ICN modeling the expected
action A. The fractional term in Equation 2 is the number
of selected neurons in all ICNs divided by the total number
of neurons composing them. This is a regularization term
to favor ICNs with fewer selected neurons, i.e., to favor
shorter representations of utility functions.

Since we need to learn utility functions simultaneously,
their model are all encoded into an individual’s gene of
our genetic algorithm. In [13], a gene was a Boolean
vector encoding the weight of the ICN. Here, we simply
concatenate the Boolean vector of each ICN weights into

a unique gene. An individual is then the weights of all our
ICNs.
The total loss for a game dataset is the sum of losses over

all training samples from the dataset. Since each dataset
is only composed of some thousands of samples collected
after 20 games in about 30 minutes (we won’t require game
designers to play their game for hours to collect data), we
split them into training and test sets following a 5-fold
cross validation procedure.
Finally, an important aspect to compute utility func-

tions with ICNs is normalization. Since elementary oper-
ations composing a utility function are very different one
from another, it is critical to have outputted values within
the same range. For this, we normalized each elementary
operations from the transformation layer to get values in
the range [-1,1], according to the data they are dealing
with. For instance, elementary operations dealing with
hit points divide the given hit points by the maximal hit
point for a character, and elementary operations dealing
with x-speed divide them by the maximal speed (speed
can be negative regarding the direction). Then, we design
transformation functions such that they output values in
[-1,1].

V. Empirical results

To empirically test our method, we make three distinct
datasets, each of them with a characteristic behavior:
aggressive, defensive, and a more complex behavior mixing
the two. To build each dataset, we played 20 Fight-
ingICE games, controlling a character to make it act
with the target behavior. Our method’s source code, as
well as experimental setups and results, are accessible on
GitHub2.
We run FightingICE with an option allowing it to

write in a JSON file the game state at each frame, with the
action IDs performed by both players. We then parse this
JSON file to extract data that interest us: each time our
character is doing an action we monitored, we extract it
from the JSON file and save the vector of data constituting
our game states (see Section IV-A) into a text file.
We defined our three target behaviors as follows:
• Aggressive: punch the opponent if it is in reach,

otherwise move forward the opponent.
• Defensive: block if the opponent is attacking us,

otherwise try to move backward to flee.
• Hybrid: apply the aggressive behavior first. If our hit

points is at least 50 points below our opponent’s hit
points, then switch to the defensive behavior until the
end of the game.

We have monitored the move_forward and punch ac-
tions for the aggressive behavior, move_backward and
block actions for the defensive behavior, and finally these
four actions for the hybrid behavior. The total size for

2github.com/Scdevcty/LearningUtilityFunctions/releases/tag/1.1

https://github.com/Scdevcty/LearningUtilityFunctions/releases/tag/1.1


each dataset and the number of entries for each action
composing them can be found in Table I.

Table I: Number of action entries of our different datasets
Aggressive Defensive Hybrid

move forward 3, 456 − 2, 302
punch 4, 907 − 3, 256
move backward − 4, 586 755
block − 5, 053 2, 725
Total 8, 363 9, 639 9, 011

Table II: Statistics on the accuracy of our 100 models for
each dataset

Aggressive Defensive Hybrid
Best model 79.7% 85.2% 69.3%
Worst model 76.7% 82.4% 57.1%
Median 78.6% 83.7% 64.5%
Mean 78.5% 83.7% 65.1%
Standard deviation 0.004 0.005 0.027

Table III: Aggressive dataset: Test sets loss values of the
most frequently learned model

Loss = 0 Loss = 1
move forward 455.6 (65.9%) 235.6 (34.1%)
punch 857.6 (87.4%) 123.8 (12.6%)
Total 1, 313.2 (78.5%) 359.4 (21.5%)

Table IV: Defensive dataset: Test sets loss values of the
most frequently learned model

Loss = 0 Loss = 1
move backward 820.4 (89.4%) 96.8 (10.6%)
block 786.2 (77.8%) 224.4 (22.2%)
Total 1, 606.6 (83.3%) 321.2 (16.7%)

Notice that we have unbalanced datasets: for instance
in the dataset for the hybrid behavior, we have 3,256
punches but only 755 move backward actions. This is not
surprising, since there are no reasons to have a uniform
number of performed actions among each type of actions
in our behavior.

Our learning method also needs to deal with noisy
datasets: human players can make mistakes while making
datasets, and they can play different actions under the
same situation (or very similar ones), which gives us non-
deterministic datasets since the same game state can be
labeled with different actions. Thus, a method for learning
utility functions from such human-made data must be
robust to noise to be usable in practice.

It is time to describe our experimental setup in de-
tail. We already wrote how we collect the three differ-
ent datasets and what they contain. Since we learn the
models of our ICN, i.e., their weights, via a genetic

algorithm, running twice the learning may not lead to
the same model. Therefore, we run 100 times the 5-fold
cross-validation learning process for each dataset, and the
results below compile statistics such as the best model, the
worst one, the average accuracy over the 100 models, their
median and their sample standard deviation, compiled in
Table II, as well as the detailed results on test sets of
the most frequently learned model for each dataset, in
Tables III, IV and V. Learning one model takes about
7 minutes on a regular MacBook with a 2.3GHz Intel
Core i5, independently of the number of utility functions
composing the model (learning a group of 2 or 4 utility
functions is done in 7 minutes for both). By parallelizing
the learning of 100 models over 4 threads, running our
experiments required about 3 hours for each dataset. We
use the same parameters of the genetic algorithm as the
ones of the original ICN paper [13].
Results from Table II are good. Notice that, unlike

most of Machine Learning results, we do not focus on
the best model among our 100 runs but on their average
and median. Indeed, if some game designers want to use
our method to learn utility function, we think the average
accuracy they can expect is a more useful metric than the
best one after many training instances. Another interesting
metric is the median, indicating that 50 learned models
over 100 show an accuracy equals to or greater than 78.5%,
83.7% and 64.5% for the aggressive, defensive and hybrid
behaviors, respectively. This means that, over unbalanced
and noisy datasets, 50% of learned utility function sets can
find the correct action at least about 2 times over 3 for the
more complex target behavior and about 4 times over 5
for the simpler ones. We also give the precision, recall and
F1-score of the most frequently learned model over test
sets of each dataset in Table VI.
We can see that for simple behaviors, the variance be-

tween the worst and the best models is very low. However,
when the behavior becomes more complex like with the
hybrid one, the variance can be significantly higher, with
an accuracy going from 57.1% to 69.3%. Several factors
can explain these results: of course, the behavior being
more complex and with more utility functions to learn,
it is not surprising that efficient models are harder to
learn properly. However, looking at the median, half of the
learned models reach an accuracy of at least 64.5% (where
a random guess would have a 25% accuracy). Without
begin impressive, this is a sufficient accuracy to obtain
credible complex behavior, and it shows that our method
is able to learn more complex behaviors than the basic
ones. Therefore, this gap between the worst and the best
model is more likely to be explained by the unbalanced
and noisy nature of the data. In particular, detailed results
from Table V show some evidence that unbalanced data
could be problematic, as discussed below.
Tables III, IV, and V show some more detailed results

on the loss values (without the regularization term which
is not meaningful here) of the most frequently learned



Table V: Hybrid dataset: Test sets loss values of the most frequently learned model
Loss = 0 Loss = 1 Loss = 2 Loss = 3

move forward 279.0 (60.6%) 161.8 (35.1%) 15.2 (3.3%) 4.4 (1.0%)
punch 550.6 (84.6%) 97.4 (15.0%) 3.2 (0.5%) 0.0 (0.0%)
move backward 0.0 (0.0%) 0.4 (0.3%) 30.6 (20.3%) 120.0 (79.5%)
block 415.2 (76.9%) 18.2 (3.4%) 73.0 (13.5%) 33.2 (6.2%)
Total 1, 244.8 (69.1%) 277.8 (15.4%) 122.0 (6.8%) 157.6 (8.7%)
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Figure 3: Most frequently learned utility function for the move forward action in the aggressive behavior
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2 − ln (x2 + 1) + 1
1 + e−(x2−0.5) − ex3

2 + ln (x3 + 1) + 1 − 2 · x4

2

)
Figure 4: Most frequently learned utility function for the move backward action in the defensive behavior

4 ∗
(

ex1

2 − ln (x2 + 1) + 1
1 + e−(x2−0.5) − ex3

2 + 1 − 2 ∗ x5

2 + 2 ∗ x6 − 1
2

)
Figure 5: Most frequently learned utility function for the block action in the hybrid behavior

Table VI: Precision, recall and F1-score of the most fre-
quently learned models

Precision Recall F1-score
Aggressive 0.78 0.78 0.79
Defensive 0.84 0.83 0.84
Hybrid 0.64 0.69 0.67

Table VII: Extracted and partially transformed inputs

Input Meaning

x1 Hit points diff. between the player and the opponent
x2 Distance between the player and the opponent
x3 Speed difference between the player and the opponent
x4 Is the opponent attacking?
x5 Is the opponent in range of attack?
x6 Is the player at a border of the stage?

model over test sets of the aggressive, defensive and hybrid
dataset, respectively.

Table V is certainly more interesting to analyse. We
can see that the model is correctly guessing the expected
action most of the time for every action but one: in this
model, the utility function corresponding to the “move
backward” action is unable to output a value sufficiently
high to be rank first or even second when moving backward
is expected, explaining why the precision, recall and F1-
score in Table VI are significantly lower here than for other
datasets. Actually, its output values are almost always the
smallest ones. Now, moving backward is also the action

with the smallest number of entries by far in the dataset,
when the punch action, with the highest accuracy among
the hybrid behavior’s actions, also has the highest number
of entries in the dataset (see Table I). Looking at Table IV,
we can see that our method is perfectly able to learn
good utility functions for the “move backward” action.
We formulate the hypothesis that our method is currently
too sensitive to unbalanced training data. Currently, it
may require game designers to deactivate some rarely used
actions in datasets before learning a behavior, which is
of course not the desired usage of our method. Future
improvements should focus of this current limitation.
Finally, we give below some examples of most frequently

learned utility functions, to illustrate their interpretable
nature; see equations of Figures 3, 4, and 5. At first
glance, these functions may look complicated, but they
are in fact simple compositions of very basic operations.
To make them shorter to write for this paper, instead of
writing the plain name of elementary operations of the
transformation layer, we choose to display the simple final
transformation operations applied to already extracted
and partially transformed input data. These inputs are
explained in Table VII.

VI. Conclusion

In this paper, we propose a method to learn utility
functions upon data coming from game played by human
beings, typically game designers and game developers
looking for utility functions to reproduce a target behavior.



The originality of our method is to produce interpretable
utility functions that can be easily understood, modified
at will and implemented within the game logic. For this,
we propose a decomposition of utility functions into ele-
mentary operations and use Interpretable Compositional
Networks, or ICN, to model utility functions. Our method
unlocks several scientific questions, mainly showing how to
decompose utility functions and how to learn simultane-
ously n functions with n ICNs where the loss function
implies a dependency between ICNs’ outputs.
We made three distinct datasets with their own target

behavior, and experimentally tested our method to learn
utility functions on each of these datasets, via supervised
learning with a 5-fold cross-validation. Instead of focusing
on the best results, like it is often the case with Machine
Learning results, we show some statistics of 100 learned
models for each dataset, with the best, worst, median and
mean accuracy, i.e., the rate of correctly predicted action
given a game state, regarding the label of this game state.
Our method exhibits satisfying results with a median
accuracy of 78.6%, 83.7% and 64.5% for the aggressive,
defensive and hybrid behaviors, respectively. Those data
are noisy since the same game situation, or very similar
ones, can be labeled with different actions. These results
confirm that our method is a promising direction to learn
utility functions from game data.

However, we think our method may be sensitive to un-
balanced data,and further work is required to get around
this limitation. A first direction could be to do data
augmentation. A second one could be to both consider
a larger scope of data composing game states, but also to
penalize models extracting too many data from these game
states: forcing learned utility function to only consider the
most significant values from game states to compute the
utility of their action could lead to utility functions more
focused to essential data, and then more efficient even with
rare labels.

Although linear functions, logistic functions and alike
are commonly used in utility functions for games [3], hav-
ing more intuitive and game-dependent functions would
certainly be welcomed by game designers and game devel-
opers. In addition, improvements can certainly be done
regarding the ICN architecture: for instance, splitting
the first transformation layer into two layers for data
extraction and then transforming them would be welcome
to have a clearer architecture and more independent layers.
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