
Experience-Driven PCG via Reinforcement
Learning: A Super Mario Bros Study

Tianye Shu∗†, Jialin Liu∗†
∗ Research Institute of Trustworthy Autonomous System

Southern University of Science and Technology
†Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation

Department of Computer Science and Engineering
Southern University of Science and Technology

Shenzhen, China
11710101@mail.sustech.edu.cn, liujl@sustech.edu.cn

Georgios N. Yannakakis
Institute of Digital Games

University of Malta
Msida, Malta

georgios.yannakakis@um.edu.mt

Abstract—We introduce a procedural content generation
(PCG) framework at the intersections of experience-driven PCG
and PCG via reinforcement learning, named ED(PCG)RL, EDRL
in short. EDRL is able to teach RL designers to generate endless
playable levels in an online manner while respecting particular
experiences for the player as designed in the form of reward
functions. The framework is tested initially in the Super Mario
Bros game. In particular, the RL designers of Super Mario Bros
generate and concatenate level segments while considering the
diversity among the segments. The correctness of the generation
is ensured by a neural net-assisted evolutionary level repairer
and the playability of the whole level is determined through
AI-based testing. Our agents in this EDRL implementation
learn to maximise a quantification of Koster’s principle of fun
by moderating the degree of diversity across level segments.
Moreover, we test their ability to design fun levels that are diverse
over time and playable. Our proposed framework is capable
of generating endless, playable Super Mario Bros levels with
varying degrees of fun, deviation from earlier segments, and
playability. EDRL can be generalised to any game that is built
as a segment-based sequential process and features a built-in
compressed representation of its game content.

Index Terms—PCGRL, EDPCG, online level generation, pro-
cedural content generation, Super Mario Bros

I. INTRODUCTION

Procedural content generation (PCG) [1], [2] is the algo-
rithmic process that enables the (semi-)autonomous design of
games to satisfy the needs of designers or players. As games
become more complex and less linear, and uses of PCG tools
become more diverse, the need for generators that are reliable,
expressive, and trustworthy is increasing. Largely speaking,
game content generators can produce outcomes either in an
offline or in an online manner [2]. Compared to offline
PCG, online PCG is flexible, dynamic and interactive but it
comes with several drawbacks: it needs to be able to generate
meaningful content rapidly without causing any catastrophic
failure to the existing game content. Because of the many
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challenges that arise when PCG systems operate online (i.e.
during play), only limited studies have focused on that mode
of generation [3]–[6].

In this paper we introduce a framework for online PCG
at the intersections of the experience-driven PCG (EDPCG)
[7] and the PCG via reinforcement learning (PCGRL) [8]
frameworks. The ED(PCG)RL framework, EDRL for short,
enables the generation of personalised content via the RL
paradigm. EDRL builds upon and extends PCGRL as it makes
it possible to generate endless levels of arcade-like games
beyond the General Video Game AI (GVGAI) framework
[9], [10] in an online fashion. It also extends the EDPCG
framework as it enables RL agents to create personalised
content that is driven by experience-based reward functions.
EDRL benefits from experience-driven reward functions and
RL agents that are able to design in real-time based on these
functions. The result is a versatile generator that can yield
game content in an online fashion respecting certain functional
and aesthetic properties as determined by the selected reward
functions.

We test EDRL initially in Super Mario Bros (SMB) (Nin-
tendo, 1985) [11] through the generative designs of RL agents
that learn to optimise certain reward functions relevant to level
design. In particular, we are inspired by Koster’s theory of fun
[12] and train our RL agents to moderate the level of diversity
across SMB level segments. Moreover, we test the notion of
historical deviation by considering earlier segment creations
when diversifying the current segment. Finally, we repair
defects in levels (e.g., broken pipes) via a neural net-assisted
evolutionary repairer [13], and then check the playability of
levels through agent-based testing. Importantly, EDRL is able
to operate online in SMB as it represents the state and action
via a latent vector. The key findings of the paper suggest that
EDRL is possible in games like SMB; the RL agents are able
to online generate playable levels of varying degrees of fun
that deviate over time.

Beyond introducing the EDRL framework, we highlight a
number of ways this paper contributes to the current state of
the art. First, to the best of our knowledge, this is the first978-1-6654-3886-5/21/$31.00 ©2021 IEEE
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functional implementation of PCGRL in SMB, a platformer
game with potentially infinite level length, that is arguably
more complex than the GVGAI games studied in [8]. Second,
compared to tile-scale design in [8], the proposed approach is
(required to be) faster as level segments are generated online
through the latent vectors of pre-trained generators. Finally, we
quantify Koster’s fun [12] as a function that maintains mod-
erate levels of Kullback-Leibler divergence (KL-divergence)
within a level teaching our RL agent to generate levels with
such properties.

II. BACKGROUND

A substantial body or literature has defined the area of PCG
in recent years [1], [2], [7], [14]–[19]. In this section, we
focus on related studies in PCG via reinforcement learning
and approaches for online level generation.

A. PCG via Reinforcement Learning

Togelius et al. [15] have proposed three fundamental goals
for PCG: “multi-level multi-content PCG, PCG-based game
design and generating complete games”. To achieve these
goals, various types of PCG methods and frameworks have
been researched and applied in games since then [1], [2],
[7], [14]. The development of machine learning (ML) has
brought revolution to PCG [2]. The combination of ML and
PCG (PCGML) [16] shows great potential compared with
classical PCG methods; in particular, deep learning methods
have been playing an increasingly important role in PCG in
recent years [19]. Furthermore, PCG methods can be used
to increase the generality in ML [18]. PCGML, however, is
limited by the lack of training data that is often the case in
games [16]. Khalifa et al. [8] proposed PCG via reinforcement
learning (PCGRL) which frames level generation as a game
and uses an RL agent to solve it. A core advantage of PCGRL
compared with existing PCGML frameworks [16] is that no
training data is required. More recently, adversarial reinforce-
ment learning has been applied to PCG [20]; specifically, a
PCGRL agent for generating different environments is co-
evolved with a problem solving RL agent that acts in the
generated environments [20]. Engelsvoll et al. [21] applied a
Deep Q-Network (DQN) agent to play SMB levels generated
by a DQN-based level designer, which takes as input the latest
columns of a played level and outputs new level columns in
a tile-by-tile manner. Although, the work of [21] was the first
attempt of implementing PCGRL in SMB, the emphasis in that
work was not in the online generation of experience-driven
PCG.

B. Online Level Generation

Content generation that occurs in real-time (i.e. online)
requires rapid generation times. Towards that aim, Greuter et
al. [22] managed to generate “pseudo infinite” virtual cities in
real-time via simple constructive methods. Johnson et al. [23]
used cellular automata to generate infinite cave levels in real-
time. In [4], the model named polymorph was proposed for
dynamic difficulty adjustment during the generation of levels.

Stammer et al. [5] generated personalised and difficulty ad-
justed levels in the 2D platformer Spelunky (Mossmouth, LLC,
2008) while Shaker et al. formed the basis of the experience-
driven PCG framework [7] by generating personalised plat-
former levels online [3]. Shi and Chen [24] combined rule-
based and learning-based methods to generate online level
segments of high quality, called constructive primitives (CPs).
In the work of [6], a dynamic difficulty adjustment algorithm
with Thompson Sampling [25] was proposed to combine these
CPs.

III. EDRL: LEARN TO DESIGN EXPERIENCES VIA RL

Our aim is to introduce a framework that is able to generate
endless, novel yet consistent and playable levels, ideally for
any type of game. Given an appropriate level-segment genera-
tor, our level generator selects iteratively the suitable segment
to be concatenated successively to the current segment to build
a level. This process resembles a jigsaw puzzle game, of which
the goal is to pick suitable puzzle pieces (i.e., level segment)
and put them together to match a certain pattern or “style”.

Playing this jigsaw puzzle can be modelled as a Markov
Decision Process (MDP) [26]. In this MDP, a state s models
the current puzzle piece (level segment) and an action is the
next puzzle piece to be placed. The reward r(s, a) evaluates
how these two segments fit. The next state s′ after selecting
a is set as a itself assuming deterministic actions, i.e., s′ =
MDP (s, a) = a. An optimal action a∗ at state s is defined as
the segment that maximises the reward r(s, a) if being placed
after segment s, i.e., a∗ = argmaxa∈A r(s, a). A denotes the
actions space, i.e., the set of all possible segments. An RL
agent is trained to learn the optimal policy π∗ that selects the
optimal segments, thus a∗ = π∗(s). Endless-level generation
can be achieved if this jigsaw puzzle game is played infinitely.

One could argue that the jigsaw puzzle described above
does not satisfy the Markov property as the level consistency
and diversity should be measured based on the current and
the concatenated segment. When a human plays such a game,
however, she can only perceive the current game screen. In
fast-paced reactive games, the player’s short term memory is
highly active during reactive play and, thus episodic memory
of the game’s surroundings is limited to a local area around
play [27]. Therefore, we can assume that the Markov property
is satisfied to a good degree within a suitable length of such
level segments.

The general overview of the EDRL framework is shown
in Fig. 1. The framework builds on EDPCG [7] and PCGRL
[8] and extends them both by enabling experience-driven PCG
via the RL paradigm. According to EDRL an RL agent learns
to design content with certain player experience and aesthetic
aspects (experience model) by interacting with the RL envi-
ronment which is defined through a content representation.
The content quality component guarantees that the experience
model will consider content of certain quality (e.g., tested via
gameplay simulations). The RL designer takes an action that
corresponds to a generative act that alters the state of the
represented content (s′) and receives a reward r′ through the



Fig. 1: General overview of the EDRL framework interweaving elements of both the EDPCG and the PCGRL frameworks.
White rounded boxes and blue boxes depict components of EDPCG [7] and PCGRL [8], respectively. Content representation
(i.e., environment in RL terms) is a common component across the two frameworks and is depicted with a dashed line.

experience model function. The agent iteratively traverses the
design (state-action representation) and experience (reward)
space to find a design policy that optimises the experience
model.

The framework is directly applicable to any game featuring
levels that can be segmented and represented rapidly through
a compressed representation such as a latent vector. This
includes Atari-like 2D games [9], [28] but can also include
more complex 3D games (e.g., VizDoom [29]) if latent vectors
are available and can synthesise game content.

A. Novelty Of EDRL

The presented EDRL framework sits at the intersection
of experience-driven PCG and PCGRL being able to create
personalised (i.e., experience-tailored) levels via RL agents in
a real-time manner. EDRL builds on the core principles of
PCGRL [8] but it extends it in a number of ways. First, vanilla
PCGRL focuses on training an RL agent to design levels from
scratch. Our framework, instead, teaches the agent to learn to
select suitable level segments based on content and game-play
features. Another key difference is the action space of RL
agents. Instead of tile-scale design, our designer agent selects
actions in the latent space of the generator and uses the output
segment to design the level in an online manner. The length of
the level is not predefined in our framework. Therefore, game
levels can in principle be generated and played endlessly.

For designing levels in real-time, we consider the diversity
of new segments compared to the ones created already, which
yields reward functions for fun and deviation over time; earlier
work (e.g., [4], [6]) largely focused on objective measures for
dynamic difficulty adjustment. Additionally, we use a repairer
that corrects level segments without human intervention, and
game-playing agents that ensure their playability. It is a hard
challenge to determine which level segment will contribute
best to the level generation process—i.e. a type of credit
assignment problem for level generation. To tackle this chal-
lenge, Shi and Chen [6] formulated dynamic difficulty adjust-

ment as an MDP [26] with binary reward and a Thompson
sampling method. We, instead, frame online level generation
as an RL game bounded by any reward function which is not
limited to difficulty, but rather to player experience.

IV. EDRL FOR MARIO: MARIOPUZZLE

In this section we introduce an implementation of EDRL
for SMB level generation and the specific reward functions
designed and used in our experiments (Section IV-D). EDRL
in this implementation enables online and endless generation
of content under functional (i.e., playbility) and aesthetic (e.g.,
fun) metrics. As illustrated in Fig. 2, the implementation
for SMB—namely MarioPuzzle1—features three main compo-
nents: (i) a generator and repairer of non-defective segments,
(ii) an artificial SMB player that tests the playability of the
segments and (iii) an RL agent that plays this MarioPuzzle
endless-platform generation game. We describe each compo-
nent in dedicated sections below.

A. Generate and Repair via the Latent Vector

As presented earlier in Section III, both the actions and
states in this MDP represent different level segments. Our
framework naturally requires a level segment generator to
operate. For that purpose we use and combine the Mar-
ioGAN [30] generator and CNet-assisted Evolutionary Re-
pairer [13] to, respectively, generate and repair the generated
level segments. The CNet-assisted Evolutionary Repairer has
shown to be capable of determining wrong tiles in segments
generated by MarioGAN [30] and repairing them [13]; hence,
the correctness of generated segments is guaranteed. In par-
ticular, we train a GAN2 on fifteen SMB levels of three types
(overworld, underground and athletic) in VGLC [31]. The
CNet-assisted Evolutionary Repairer trained by [13] is used
directly and unmodified 3.

1Available on GitHub: https://github.com/SliverySky/mariopuzzle
2https://github.com/schrum2/GameGAN
3https://github.com/SUSTechGameAI/MarioLevelRepairer

https://github.com/SliverySky/mariopuzzle
https://github.com/schrum2/GameGAN
https://github.com/SUSTechGameAI/MarioLevelRepairer


Fig. 2: Implementing EDRL on Super Mario Bros: the Mari-
oPuzzle framework.

It is important to note that we are not using a direct tile-
based representation as in [8] or one-hot encoded tiles as
in [21]; instead we use the latent vector of MarioGAN to
represent the agent’s actions and states for the RL agent. Thus,
the selected action a or state s are sampled from the latent
space, rather than the game space.

B. The AI Player

The A∗ agent in the Mario AI framework [32] is used as
an artificial player for determining the playability of generated
segments4.

C. The RL Designer

MarioPuzzle is embedded into the OpenAI gym [33] and
the PPO algorithm [34] is used to train our agent [35]. The
training procedure of MarioPuzzle is described in Algorithm
1. The actions and states are represented by latent vectors of
length 32. When training the PPO agent, the initial state is a
playable segment randomly sampled from the latent space of
the trained segment generator, as shown in Algorithm 1. The
latent vector of the current level segment feeds the current
observation of the PPO agent. Then, an action (i.e., a latent
vector) is selected by the PPO agent and used as an input of the
generator to generate a new segment. The repairer determines
and fixes broken pipes in the new segment. The fixed segment
is concatenated to the earlier one and the A∗ agent tests if
the addition of the new segment is playable. Then, the latent
vector of this new segment (same as action) is returned as a
new observation to the agent. The agent receives an immediate
reward for taking an action in a particular state. The various
reward functions we considered in this study are based on both
content and game-play features and are detailed below.

4https://github.com/amidos2006/Mario-AI-Framework

Algorithm 1 Training procedure of MarioPuzzle.

Require: G : [−1, 1]32 7→ segment, trained GAN
Require: F : segment 7→ segment, trained repairer
Require: P : segment 7→ [0, 1], A∗ agent
Require: π : [−1, 1]32 7→ [−1, 1]32, RL agent
Require: Reward, reward function
Require: T : maximum number of training epochs
Require: N : maximum segment number of one game

1: t← 0
2: while t < T do
3: PreS ← Empty List
4: n← 0
5: sn ← NULL
6: repeat
7: s← uniformly sampled from [−1, 1]32
8: S ← G(s) // Generate a segment
9: S ← F(S) // Repair the segment if applicable

10: isP layable← P(S) // Play this segment
11: if isP layable then
12: sn ← v
13: end if
14: until sn is not NULL
15: Add S to PreS
16: while isP layable and n < N do
17: an ← π(sn) // Select an action
18: S ← G(an) // Generate a segment
19: S ← F(S) // Repair the segment if applicable
20: isP layable← P(S) // Play this segment
21: scoresn,an

← Reward(S) with previous PreS //
According to metrics

22: Update π with scoresn,an

23: Update PreS with S // According to metrics
24: n = n+ 1
25: end while
26: t = t+ 1
27: end while
28: return π

D. Reward Functions

Designing a suitable reward function for the RL agent to
generate desired levels is crucial. In this implementation of
EDRL, we design three metrics that formulate various reward
functions (Reward in Algorithm 1) aiming at guiding the RL
agent to learn to generate playable levels with desired player
experiences.

1) Moderating Diversity Makes Fun!: Koster’s theory of
fun [12] suggests that a game is fun when the patterns a
player perceives are neither too unfamiliar (i.e., changeling)
nor too familiar (i.e., boring). Inspired by this principle, when
our agent concatenates two segments, we assume it should
keep the diversity between them at moderate levels; too high
diversity leads to odd connections (e.g., mix of styles) whereas
too low diversity yields segments that look the same. To do
so, we first define a diversity measure, and then we moderate

https://github.com/amidos2006/Mario-AI-Framework


diversity as determined from human-designed levels.
When a player plays through a level, the upcoming level

segment is compared with previous ones for diversity. We thus
define the diversity of a segment through its dissimilarity to
previous segments. While there have been several studies fo-
cusing on quantifying content similarity (e.g., [36]), we adopt
the tile-based KL-divergence [37] as a simple and efficient
measure of similarity between segments. More specifically
diversity, D, is formulated as follows:

D(S) =
1

n+ 1

n∑
i=0

KL(S, SWi
), (1)

where S is a generated level segment with height h and width
w; KL(a, b) is the tile-based KL-divergence that considers
the standard KL-Divergence between the distributions over
occurrences of tile patterns in two given level segments, a
and b [37]. We define a window W with the same size as
S. SW represents the segment contained in the window W . A
sliding window moves from the position of S (SW0

= S) to the
previous segment n times with stride d. The parameter n limits
the number of times that the window moves. According to (1),
larger n values consider more level segments in the past. After
preliminary hyper-parameter tuning, we use a 2 × 2 window
and ε = 0.001 for calculating tile-based KL-divergence [37].
n and d are set as 3 and 7 in this work.

Once we have diversity defined, we attempt to moderate
diversity by considering the fifteen human-authored SMB
levels used for training our GAN. We thus calculate the
average and standard deviation of D for all segments across the
three different level types of our dataset. Unsurprisingly, Table
I shows that different level types yield significantly different
degrees of diversity. It thus appears that by varying the degree
of diversity we could potentially vary the design style of our
RL agent. Randomly concatenating level segments, however,
cannot guarantee moderated diversity as its value depends
highly on the expressive range of the generator. On that end,
we moderate the diversity of each segment in predetermined
ranges—thereby defining our fun (F ) reward function—as
follows.

F (S) =


−(D(S)− u)2, if D(S) > u

−(D(S)− l)2, if D(S) < l

0, otherwise,
(2)

where l and u denote the lower and upper bounds of diversity,
respectively. According to the analysis on human-authored
SMB levels (Table I), we assume that the diversity of over-
world levels is moderate and arbitrarily set l = 0.60− 0.34 =
0.26 and u = 0.60+0.34 = 0.94, based on the diversity values
obtained for this type of levels.

2) Historical Deviation: Inspired by the notion of novelty
score [38], we consider historical deviation, H , as a measure
that encourages our agent to generate segments that deviate
from earlier creations. In particular, we define H of a segment
as the average similarity of the k most similar segments among
the m > k previous segments, as formalised in (3).

TABLE I: Average diversity values and corresponding standard
deviations of segments across the three types of SMB levels.

Type #Level
∑

#Segment D [Eq. (1)]

Overworld 9 1, 784 0.60± 0.34
Athletic 4 534 0.32± 0.25

Underground 2 305 1.11± 0.59

Total 15 2, 623 0.60± 0.42

H(S) =
1

k

k∑
j=1

KL(S, SIj ), (3)

where Ij is the index of the jth most similar segment among
previous m segments compared to S; m represents the number
of segments that our RL agent holds in its memory. This
parameter is conceptually similar to the sparseness parameter
in novelty search [39]. After preliminary hyper-parameter
tuning, m and k are set as 20 and 10, respectively, in the
experiments of this paper.

3) Playablility: The playablility of a newly generated
segment is tested by an A∗ agent. The generated segment,
however, is not played on its own; its concatenation to the
three previous segments is played as a whole instead, to ensure
that the concatenation will not yield unplayable levels. When
testing, Mario starts playing from its ending position in the
previous level segment. A segment S is determined as playable
only if Mario succeeds in reaching the right-most end of S.

Playability is essential in online level generation. Therefore,
when an unplayable segment is generated, the current episode
of game design ends—see Algorithm 1—and the reward
returned, P (S), is set as the number of segments that the
A∗ Mario managed to complete. With such a reward function
the agent is encouraged to generate the longest playable levels
possible.

V. DESIGN EXPERIMENTS ACROSS REWARD FUNCTIONS

In this section, we test the effectiveness of the metrics
detailed in Section IV-D through empirical experimentation.
We use each of the fun and historical deviation metrics as
independent reward functions and observe their impact on
generated segments. Then, we use combinations of these
metrics and playability to form new reward functions.

A. Experimental Details and Results

When calculating F , the size of the sliding window and the
segment are both 14× 14 and the control parameters n and d
of Eq. (1) are set as 3 and 7, respectively. When calculating
H , the control parameters m and k of Eq. (3) are set as 20 and
10, respectively. For each RL agent presented in this paper, a
PPO algorithm is used and trained for 106 epochs.

In all results and illustrations presented in this paper, F , H
and P refer to independent metrics that consider, respectively,
the fun (2), historical deviation (3) and playability (cf. Section
IV-D3) of a level. The notation πF refers to the PPO agent
trained solely through the F reward function. Similarly, πFH



TABLE II: Evaluation metrics of levels generated across different RL agents over 300 levels each. The Table presents average
values and corresponding standard deviations across the 300 levels. π∗ refers to the trained policy using the ∗ reward function.
πR refers to a random agent that designs SMB levels. F , H and P are respectively the F , H and P values averaged over
playable segments by the A∗ agent; in addition to F , the F b value appearing in square brackets refers to the average percentage
of playable segments within the bounds of moderate diversity (cf. Section IV-D1). In addition to the three evaluation metrics,
the Table presents the number of gaps, pipes, enemies, bullet blocks, coins, and question-mark blocks that exist in the generated
playable segments. Values in bold indicate the highest value in the column.

Agent Evaluation metrics Number of level elements in generated segments
F [F b] H P Gaps Pipes Enemies Bullets Coins Question-marks

πF -0.005±0.044 [87.1±14.1] 0.86±0.28 29.6±28.3 0.60±0.40 0.43±0.17 2.11±0.63 0.05±0.13 0.64±0.52 1.00±0.59
πH -0.092±0.092 [57.0±18.8] 1.43±0.32 24.2±21.8 0.73±0.34 0.40±0.31 1.48±0.58 0.09±0.10 1.10±0.62 0.68±0.55
πFH -0.065±0.086 [63.4±21.8] 1.38±0.38 16.4±16.2 0.74±0.37 0.49±0.33 1.69±0.74 0.11±0.19 1.06±0.79 0.53±0.59

πP -0.023±0.013 [76.7±5.1] 0.72±0.07 97.3±11.8 0.12±0.04 0.15±0.04 1.58±0.15 0.10±0.03 2.37±0.25 0.29±0.09
πFP -0.032±0.017 [75.2±5.2] 0.83±0.09 96.6±14.4 0.18±0.05 0.17±0.04 1.28±0.17 0.10±0.04 2.51±0.25 0.46±0.11
πHP -0.037±0.020 [74.2±5.7] 0.84±0.09 97.0±13.9 0.18±0.07 0.22±0.05 1.40±0.20 0.10±0.04 2.48±0.29 0.46±0.18
πFHP -0.034±0.018 [74.0±6.0] 0.84±0.09 97.4±13.7 0.23±0.17 0.18±0.09 1.19±0.40 0.12±0.04 2.43±0.36 0.55±0.13

πR -0.064±0.098 [64.3±21.9] 1.35±0.37 16.0±14.3 0.82±0.44 0.45±0.36 1.53±0.75 0.10±0.18 0.94±0.71 0.52±0.55

refers to the agent trained with the sum of F and H as a
reward, while πFHP refers to the one trained with the sum of
F , H and P as a reward. When a reward function is composed
by multiple metrics, each of the metrics included is normalised
within [0, 1] based on the range determined by the maximum
and minimum of its 1, 000 most recent values.

For testing the trained agents, 30 different level segments are
used as initial states. Given an initial state, an agent is tested
independently 10 times for a maximum of 100 segments—or
until an unplayable segment is reached if P is a component of
the reward function. As a result, each agent designs 300 levels
of potentially different number of segments when P is con-
sidered; otherwise, the generation of an unplayable segment
will not terminate the design process, thus 100 segments will
be generated. For comparison, a random agent, referred to as
πR, is used to generate levels by randomly sampling up to
100 segments from the latent space or till an unplayable one
is generated.

The degrees of fun, historical deviation, and playability
of these generated levels are evaluated and summarised in
Table II. Table II also showcases average numbers of core
level elements in generated levels, including pipes, enemies
and question-mark blocks. Figure 3 illustrates a number of
arbitrarily chosen segments clipped from levels generated by
each RL agent.

B. Analysis of Findings
The key findings presented in Table II suggest that the eval-

uation functions of F and H across all generated levels reach
their highest value when the corresponding reward functions
are used. In particular, the πF policy yields appropriate levels
of diversity in 87.1 out of 100 segments, on average; higher
than any other policy (see F b values in Table II). Similarly H
reaches its highest value on average (1.43) when policy πH
is used. Finally, playabilty is boosted when P is used as a
reward function but it reaches its peak value of 97.4 out of
100 segments on average when it is combined with both F
and H .

(a) πF : surprisingly uninteresting levels when designing sorely for fun

(b) πH : highly diverse levels when designing historical deviation

(c) πFH : levels balancing between fun and historical deviation

(d) πP : levels with more ground tiles in assistance of A∗

(e) πFP : playable levels with clearly repeated patterns

(f) πHP : playable and diverse levels with limited gaps

(g) πFHP : fun, diverse and playable levels

Fig. 3: Example segments clipped from levels generated by
RL agents trained with different reward functions. The key
characteristics of each EDRL policy are outlined in the corre-
sponding captions.

πF focuses primarily on enemy and question-mark block
placement, but the levels it generates are far from looking
diverse (see Fig. 3a). πH does not yield any distinct level



element and results in rather diverse yet unplayable levels (see
Fig. 3b). The combination of F and H without playability
(πFH ) augments the number of pipes existent in the level and
offers interesting but largely unplayable levels (see Table II
and Fig. 3c).

When P is considered by the reward function, the outcome
is a series of playable levels (i.e., the average P value is
over 96 out of 100 segments per level). The most interesting
agent from all the combinations of P with the other two
reward functions, however, seems to be the policy that is
trained on all three (πFHP ; see Fig. 3g). That policy yields
highly playable levels that maintain high levels of fun—i.e.
on average, 74 out of 100 segments reach appropriate levels
of diversity—and historical deviation (0.84 on average). The
πFHP agent appears to design more playable levels, but at
the same time, the generated levels yield interesting patterns
and have more gaps, coins and bullet blocks that increase the
challenge and augment the exploration paths available for the
player (see Table II and Fig. 3g). Based on the performance
of πFHP —compared against all other SMB level design
agents explored—the next section puts this agent under the
magnifying glass and analyses its online generation capacities.

VI. ONLINE ENDLESS-LEVEL GENERATION

To test the performance of the trained πFHP agent for
online level generation, we let it generate 300 levels (10 trials
from 30 initial segments) composed of 100 playable segments
each; although, in principle, the agent can generate endless
levels online. The results obtained are shown in Table III and
are discussed in this section. As a baseline we compare the
performance of πFHP against πFH , i.e., an agent that does
not consider playability during training.

When generating a level, it is necessary to repair the defects
and test its playability. The faulty tiles of the generated
segments before and after repairing are detected by CNet [13]
(see column 6 in Table III). Clearly, the levels generated by
policy πFH feature more faulty tiles than levels generated
by πFHP . After visualising the generated levels, we observe
that the pipes in the levels generated by πFH have diverse
locations. Most of the pipes in levels generated by πFHP ,
instead, are located in similar positions (i.e., near the middle
bottom of the segment). We assume that the segments with
this pattern are more likely to be chosen by the πFHP agent
as they are easier to complete by the testing agent.

The repairer operation by the CNet-assisted Evolutionary
Algorithm only satisfies the logical constraints but does not
guarantee the playability of the level. If a generated segment
is unplayable, the RL agent will re-sample a new segment
with one of the two methods: either by (i) sampling a new
action according to its policy (ii) sampling a new action
randomly from a normal distribution, and then clipping it into
[−1, 1]32. This resampling process repeats until a playable
segment is obtained or a sampling counter reaches 20. Note
that this resampling technique is only used in this online level
generation test to ensure the generation of levels composed
by playable segments only. Resampling is not enabled during

training as an RL agent trained with playability as part of its
reward is expected to learn to generate playable segments.

To evaluate the real-time generation efficiency of MarioP-
uzzle we record the number of times resampling is required
(see column 3 in Table III), the total number of resamplings
(see column 4 in Table III), and the time taken for generating
a level of 100 playable segments (see column 5 in Table
III). Unsurprisingly, the πFH agent—which is trained without
playability as part of its reward—appears to generate more
unplayable segments and is required to resample more.

As a baseline of real-time performance we asked three
human players (students in our research group) to play 8 levels
that are randomly selected from the level creations of πFHP .
Their average playing time for one segment was 2.7s, 3.1s
and 7.6s. It thus appears that the average segment generation
time (see column 5 in Table III) of πFHP is acceptable for
online generation when compared to the time needed for a
human player to complete one segment.

According to Table III, πFHP with random resampling
never fails in generating playable 100-segment long levels.
Comparing πFHP with πFH , it is obvious that integrating
playability into the reward function can reduce the probability
of generating unplayable segments and resampling times, and,
in turn, make the online generation of playable levels easier
and faster.

Figure 4 displays examples from the levels generated by
πFHP . The EDRL designer resolves the playability issues by
placing more ground tiles while maintaining appropriate levels
of F and H . It is important to remember that EDRL in this
work operates and designs fun, diverse and playable levels for
an A∗ playing agent. The outcome of Fig. 4 reflects on the
attempt of the algorithm to maximise all three reward func-
tions for this particular and rather predictable player, thereby
offering largely linear levels without dead-ends, with limited
gaps (ensuring playability) and limited degrees of exploration
for the player. The resulting levels for agents that depict more
varied gameplay are expected to vary substantially.

VII. DISCUSSION AND FUTURE WORK

In this paper we introduced EDRL as a framework, and
instantiated it in SMB as MarioPuzzle. We observed the ca-
pacity of MarioPuzzle to generate endless SMB levels that are
playable and attempt to maximise certain experience metrics.
As this is the first instance of EDRL in a game, there is
a number of limitations that need to be explored in future
studies; we discuss these limitations in this section.

By integrating playability in the reward function we aimed
to generate playable levels that are endless in principle [40].
As a result, the RL agent generates more ground tiles to
make it easier for the A∗ to pass though. The generated levels
highly depend both on the reward function and the behaviour
of the test agent. Various human-like agents and reward
functions will need to be studied in future work to encourage
the RL agent to learn to select suitable level segments for
different types of players. Moreover, the behaviour of human-
like agents when playing earlier segments can be used to



TABLE III: Generating 100-segment long levels. All values—expect from the number of failed generations—are averaged
across 300 levels (10 trails each from 30 different initial level segments). In the “Generation Time“ column, “Sample” refers
to the time averaged over the total number of generated segments, including unplayable and playable ones, while “Segment”
refers to the time averaged over successful level generations.

Column index 1 2 3 4 5 6

Agent Resampling method Failed generations Unplayable segments Resamples Generation Time (s) Faulty tiles
Max Total Segment Sample Original Repaired

πFH
Random 205/300 6.15 1.97 7.24 1.09 1.02 50.2 8.4
Policy 196/300 6.36 2.18 7.61 1.11 1.03 54.1 10.2

πFHP
Random 0/300 0.10 0.11 0.11 0.79 0.79 6.1 0.3
Policy 5/300 0.12 0.11 0.12 0.79 0.79 6.1 0.3

Fig. 4: Example of partial game levels generated online by the πFHP agent.

continuously train the RL agent. In that way our RL designer
may continually (online) learn through the behaviour of a
human-like agent and adapt to the player’s skill, preferences
and even annotated experiences.

In this initial implementation of EDRL, we used a number
of metrics to directly represent player experience in a theory-
driven manner [2]. In particular, we tested expressions of
fun and historical deviation for generating segments of game
levels. As future work, we intend to generate levels with
adaptive levels of diversity, surprise [41], [42], and/or novelty
and investigate additional proxies of player experience includ-
ing difficulty-related functions stemming from the theory of
flow [43]. Similarly to [44], [45], we are also interested in
applying multi-objective optimisation procedures to consider
simultaneously the quality and diversity of levels, instead of
their linear aggregation with fixed weights. Viewing the EDRL
framework from an intrinsic motivation [46] or an artificial
curiosity [47] perspective is another research direction we
consider. All above reward functions, current and future ones,
will need to be cross-verified and tested against human players
as in [48].

While EDRL builds on two general frameworks and it is
expected to operate in games with dissimilar characteristics,
our plan is to test the degrees to which EDRL is viable and
scalable to more complex games that feature large game and
action space representations. We argue that given a learned
game content representation—such as latent vector of a GAN
or an autoencoder—and a function that is able to segment
the level, EDRL is directly applicable. Level design was our
test-bed in this study; as both EDPCG and PCGRL (to a
lesser degree) have explored their application to other forms
of content beyond levels, EDRL also needs to be tested to
other types of content independently or even in an orchestrated
manner [49].

VIII. CONCLUSION

In this paper, we introduced a novel framework that realises
personalised online content generation by interweaving the
EDPCG [7] and the PCGRL [8] frameworks. We test the
ED(PRCG)RL framework, EDRL in short, in Super Mario
Bros and train RL agents to design endless and playable levels
that maximise notions of fun [12] and historical deviation.
To realise endless generation in real-time, we employ a pre-
trained GAN generator that designs level segments; the RL
agent selects suitable segments (as represented by their latent
vectors) to be concatenated to the existing level. The applica-
tion of EDRL in SMB makes online level generation possible
while ensuring certain degree of fun and deviation across
level segments. The generated segments are automatically
repaired by a CNet-assisted Evolutionary Algorithm [13] and
tested by an A∗ agent that guarantees playability. This initial
study showcases the potential of EDRL in fast-paced games
like SMB and opens new research horizons for realising
experience-driven PCG though the RL paradigm.
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