
Efficient Ground Vehicle
Path Following in Game AI

Rodrigue de Schaetzen1,2, Alessandro Sestini3
1University of Waterloo, Canada, 2Electronic Arts (EA), 3SEED - Electronic Arts (EA)

rdeschae@uwaterloo.ca, asestini@ea.com

Abstract—This short paper presents an efficient path following
solution for ground vehicles tailored to game AI. Our focus is
on adapting established techniques to design simple solutions
with parameters that are easily tunable for an efficient bench-
mark path follower. Our solution pays particular attention to
computing a target speed which uses quadratic Bézier curves to
estimate the path curvature. The performance of the proposed
path follower is evaluated through a variety of test scenarios in
a first-person shooter game, demonstrating its effectiveness and
robustness in handling different types of paths and vehicles. We
achieved a 70% decrease in the total number of stuck events
compared to an existing path following solution.

Index Terms—Game AI, Path Following, Ground Vehicle

I. INTRODUCTION AND RELATED WORK

An important component of game AI is driving vehicles
along predefined paths in an effective and efficient manner.
The task of computing control actions that keep a vehicle
along a path while tracking a target speed is referred to as the
path following problem. This problem has been extensively
explored in robotics and control literature, particularly for
applications in unmanned ground and aerial vehicles [1, 2].
In the context of game AI, path following presents particular
challenges, including navigation in a wide range of environ-
ments, adhering to limited computational requirements, and
achieving good performance across a range of vehicles for
games that contain a wide selection of vehicle types.

While many of the works from robotics and control lit-
erature can be applied to game AI, few papers discuss the
various adaptations necessary to make use of these established
techniques. Most of the works that consider path following
for AI controlled vehicles are for car racing games [3, 4, 5].
Onieva et al. [3] offer a comprehensive overview of their 7-
part driving architecture, which utilizes several vehicle sensors
to gather information about the vehicle’s position relative to
the track. The sensor readings along with a learned mod-
ule determine the optimal parameter values in the different
modules. Another notable related work is the fuzzy logic
based self-driving racing car control system by Etlik et al.
[4]. The authors use a vision based lane detection system for
online lane detection and fuzzy logic for generating position
and velocity references. The work by Melder and Tomlinson
[5] provide an introduction to Proportional-Integral-Derivative

Figure 1: Ground vehicle (blue) following path (black) with
corridor (grey) and waypoints (red).

(PID) controllers for game AI, as well as brief descriptions of
some of the PID variants.

In this work, we consider the path following problem for
controlling ground vehicles in game AI. We propose a general
framework which may serve as a benchmark solution offering
reasonable path following accuracy and efficiency for a wide
range of vehicles and environments. We leverage established,
effective, and computationally cheap techniques for speed and
steering control and use an analytical result for computing the
maximum curvature of a quadratic Bézier curve in a novel
algorithm for computing the target speed. The performance of
our approach is evaluated by running experiments in a first-
person shooter game containing a suite of different vehicles.

II. PROPOSED METHOD

Problem Formulation. We consider the path following prob-
lem of commanding a ground vehicle with arbitrary kinematics
to move along a given path. The objective is to minimize
the cross track error (CTE) between the vehicle’s position
r ∈ R3 (often defined at the centre of mass) and the path
while maintaining a target speed vtarget and following a moving
target point ptarget on the path. As a secondary objective, we
wish to keep the vehicle within the safe boundaries of the
path, commonly referred to as the path corridor. The path P
is represented as a list of waypoints (p1,p2, ...,pn), pi ∈ R3

and may change significantly across frames. A sample path
is shown in Figure 1. We denote vehicle speed along the
axis of the vehicle’s forward vector as v ∈ R. The sign of
v denotes the direction of the vehicle’s motion, i.e., v < 0
indicates the vehicle is going in reverse and vice versa.
We assume there are two inputs to the game for changing
the vehicle’s motion: steering and throttle for lateral and
longitudinal motion, respectively.
Method Overview. The path follower technique used in this
work consists of five core modules: target speed generation,979-8-3503-2277-4/23/$31.00 ©2023 IEEE

ar
X

iv
:2

30
7.

03
37

9v
1

 [
cs

.A
I]

 7
 J

ul
 2

02
3

Figure 2: Core modules of the proposed path follower.

target point generation, speed control, steering control, and
stuck manager as shown in Figure 2. Our core contribution
is the target speed generation module which uses a novel
algorithm for efficiently calculating a desired vehicle speed.
For the remaining modules, we provide brief descriptions of
the established approaches we apply.

The speed controller leverages a Proportional-Integral (PI)
controller which regulates vehicle speed via throttle commands
using the difference between the target speed and the vehicle’s
current speed, referred to as the error signal [6]. The PI
controller uses both the proportional and integral terms of the
error signal to generate a vehicle command. However, certain
strategies must be implemented to mitigate common issues
associated with the integral term including integral windup [6].
To generate a steering command, our first step is to compute
a target position on the path some lookahead distance in front
of the vehicle. From here, we use the geometric steering
controller pure pursuit [7] which is based on a steering angle
control law that minimizes the cross track error characterized
by the target position. This algorithm effectively computes a
gain at each time step for a proportional feedback controller
using geometric properties of the path tracking problem in
the case of a bicycle kinematic model. In case of a stuck
event being triggered, which we define as a situation where the
vehicle fails to make sufficient progress along the path within
a certain time frame, the commands outputted from the speed
and steering controllers are overridden by the stuck manager
module. For instance, we invert the sign of the throttle input
during several frames in the hopes that we recover to a position
where the vehicle is no longer stuck. Another potential strategy
is to simply teleport the vehicle to a new position. For further
strategies, we refer readers to existing works [3].

Target Speed Generation. The high-level idea of our pro-
posed method is to limit vehicle speed based on the estimated
maximum curvature of the part of the path that extends from
the vehicle position to a user-defined lookahead distance. The
cheap computational cost of our approach is underpinned
by an analytical expression for computing the maximum
curvature of a quadratic Bézier curve. We first describe the
inversely proportional relationship between target speed and
path curvature.

A commonly used method for computing a target speed is
to determine the optimal speed for a vehicle to travel through
a turn of a given radius while maintaining tire traction. Often
referred as critical speed, the following equation relates a
vehicle’s safe turning speed to the balance between centripetal

force and maximum lateral force that the tires can handle [8]:

vtarget =

√
alat · g
κ

, (1)

where alat > 0 is a tuning parameter, g is gravitational
acceleration, and κ is curvature. The parameter alat allows us
to effectively tune vehicle speed around corners based on the
handling of a particular vehicle. As a point of reference, the
maximum lateral acceleration found in human normal driving
is 0.4g [9]. Once a suitable value has been specified for alat,
the problem of computing target speed reduces to finding
curvature κ. In a typical path following setting, this refers
to the curvature at a particular point in the path. However,
this assumes that curvature information of the path is readily
available, e.g. the case of a path described by a function
that is twice differentiable. If the path is defined by a list
of waypoints, then the approach used here is to use curve-
fitting functions to estimate the path curvature, which provides
a candidate representation of the path curvature profile.

In our approach, we use a series of quadratic Bézier curves
to efficiently capture an estimated curvature profile of the
path P . The following is the parametric equation B(t) which
defines a quadratic Bézier curve with control points p1,p2,p3:

B(t) = (1− t)2p1 + 2(1− t)tp2 + t2p3, 0 ≤ t ≤ 1. (2)

The first and third control points p1,p3 are the endpoints
(at t = 0 and t = 1, respectively) while p2 generally
does not lie on the curve. To compute curvature along the
curve, we may use the standard curvature equation κ(t) =
|B(t)′ × B(t)′′|∥B(t)′∥−3, and a sampling strategy to sample
curvature of points along the curve. However, a more efficient
approach is to leverage the particular geometric constraints of
quadratic Bézier curves. Specifically, the maximum curvature
can be computed analytically, allowing us to determine an
upper bound for the curvature profile without the need for
sampling. This is the core motivation for employing quadratic
Bézier curves over higher order curves which may provide
better estimates of the curvature profile though at a much
higher computation cost.

Figure 3(a) shows a sample quadratic Bézier curve and
we highlight the two equally sized spheres drawn along the
segment p1p3 which meet at the midpoint m. The radius of
these spheres is equal to half the euclidean distance between
the endpoint and the midpoint m, i.e. r = 1

2∥p1 − m∥. There
are two possible cases that characterize the curvature profile
of B(t) based on where the control point p2 lies in relation to
these two spheres. If p2 lies outside of the two spheres, i.e.
∥p2 − 1

2 (p1 +m)∥ > r and ∥p2 − 1
2 (p3 +m)∥ > r, then from

the work by Deddi et al. [10] the maximum curvature of B(t)
is given by the expression:

κmax =
∥p2 − m∥3(

1
2∥(p1 − p2)× (p1 − p3

)
∥)2

. (3)

Note, the denominator is the squared area A of the triangle
characterized by the three control points. In the second case, p2

lies inside one of the two spheres which means the curvature

Figure 3: Sample quadratic Bézier curves (blue) demonstrating
the two cases for the curvature profile. In the first case (a), the
middle control point p2 lies outside the spheres, producing a
unimodal curvature function (b). In the second case (c), p2 is
inside one of the spheres, resulting in a curvature function that
is monotone (d).

of B(t) is monotone [11]. This implies the maximum curvature
occurs at either of the two endpoints B(0) = p1, B(1) = p3

and therefore maximum curvature is the expression [10]:

κmax =max(κ1, κ2),

κ1 =
A

∥p1 − p2∥3
, κ2 =

A

∥p3 − p2∥3
.

(4)

With these two results, we can efficiently compute the
maximum curvature of an arbitrary quadratic Bézier curve
without having to sample points along the curve like in the
case of more complex parametric curves.

Algorithm 1 summarizes our approach to computing a target
speed vtarget given inputs vehicle position r, the path to be
followed P , and parameters maximum lateral acceleration
alat, waypoint spacing ∆h, waypoint count N , and speed
limits vmin, vmax. The first major step involves constructing
a new path P̃ by sampling points from the original path P
at regular intervals of size ∆h (Lines 1-4). By capturing the
salient features of the original path structure up to a lookahead
distance ∆h ·N from the vehicle’s current position r, we are
able to determine appropriate target speeds in advance. This
is particularly useful in areas where the vehicle needs to slow
down, such as sharp corners. The purpose of initializing P̃
with r (Line 1) is made more clear in the steps to follow. In
the next step, we iterate through the waypoints of our new
path P̃ , and calculate the maximum curvature κmax among
all the quadratic Bézier curves that can be created from three
sequential waypoints in P̃ (Lines 5-9). We use Equation (3)
and (4) to compute the maximum curvature of each curve.
Since the first Bézier curve is always defined by the vehicle
position and two points on the path P , we ensure the target
speed is decreased whenever the vehicle is too far away from
the path. In the final step of our algorithm, we use Equation

(1) to compute target speed given κmax and alat followed by
clamping on vtarget given limits vmin, vmax.

Algorithm 1 Compute Target Speed
Input: r, P , alat, ∆h, N , vmin, vmax

1: Initialize empty array P̃ with r
2: for i = 2, 3, ..., N do
3: Compute next point pi on path P a distance ∆h away from P̃ [i− 1]
4: Append pi to P̃

5: κmax ← 0
6: for i = 1, 2, ..., N − 2 do
7: ci ← P̃ [i], P̃ [i + 1], P̃ [i + 2]
8: Compute max curvature κi for Bézier curve with control points ci
9: κmax ← max(κmax, κi)

10: vtarget ←
√

(alatg)(κmax)−1

11: vtarget ← clamp(vtarget, vmin, vmax)
12: return vtarget

III. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used for
collecting results for validating our proposed path follower.
We used a first-person shooter game (Battlefield 2042) as the
platform for running experiments and used a machine with
an NVIDIA Tesla T4 GPU with a 16-core CPU and 110
GB of RAM. The game contains a wide selection of ground
vehicles with varying driving characteristics. We integrated
the proposed path follower with the test automation system
which deploys AI bots for testing large multiplayer games,
referred to as AutoPlayers [12]. To compare our approach, we
used as a baseline the original path following logic present
in AutoPlayers. Briefly, the path following logic leverages a
series of heuristics that fail to generalize well across certain
vehicles and environments. For instance, the target speed
module computes a target inversely proportional to the largest
angle between the vehicle forward vector and a segment on the
path in front of the vehicle up until a lookahead distance. Such
an approach can lead to noisy target speed outputs when the
path is complex or contains sharp turns. In addition, the speed
controller employs the simpler P-controller (i.e. no integral
term) meaning no history of previous errors is kept to influence
the throttle command.

Several metrics were used to assess the performance of
the proposed path following solutions. During each frame,
we recorded the cross track error, and indicators whether the
vehicle is inside the path corridor and whether the vehicle
is stuck. We consider the total number of stuck events to be
the core metric of interest since its result has the widest set
of implications. In the context of bots for testing, we would
like to minimize the number of times vehicles get stuck to
ensure good quality performance tests and effective soak tests.
If vehicles get stuck too often, then the resulting test data may
provide a poor representation of real gameplay and may not
reflect realistic game scenarios. We note that it is very difficult
to completely avoid vehicles getting stuck since the generated
paths do not account for the vehicle kinematics and dynamics.

The following parameters were set for the target speed
generation module: alat = 0.4, ∆h = 6 m, N = 5,
vmin = 1 m/s, vmax = 10 m/s. For the parameters that

are the same across the two approaches (e.g. min/max target
speed), the same values were set to ensure fair comparisons.

IV. RESULTS

In our first set of experiments, we assessed the ability of
different vehicles to follow a set of predefined test paths. For
each test path, a particular vehicle is spawned at the first
waypoint and then commanded to follow the path until the
final waypoint. We generated 10 test paths capturing a wide
range of challenging environments such as steep hills, narrow
corridors, and sharp turns. Further, six different vehicles, each
with a distinct set of driving characteristics, were considered
for evaluation. These vehicles include Storm, Bolte, Panhard
Crab, Zaha, Armata, and Hovercraft. The first three vehicles
were deemed easily maneuverable, while the latter three
presented greater challenges due to slower turning rate, larger
turning radius, poor traction, etc. We performed a total of 60
tests, 10 for each one of the 6 vehicles.

Table I summarizes the performance of three path followers:
the baseline, our proposed solution with parameters from
Section III, and our proposed solution with per-vehicle-tuned
parameters including maximum lateral acceleration parameter
alat from the target speed generation module. The reported
metrics include the number of trials with at least one stuck
event, the total number of stuck events as well as a breakdown
per vehicle, mean cross track error, percentage of time spent
inside the path corridor, total time taken to complete the path,
and mean vehicle speed. The first major result is the 70%
decrease in the total number of stucks events when comparing
our approach to the baseline. In the case of the hovercraft, the
addition of the integral term in the speed controller helped
resolve the issue of getting stuck while driving up steep
hills. We see similar path following improvements across the
other vehicles and the smaller range of stuck events suggests
our proposed solution generalizes better to different vehicle
types. Our approach with fixed parameters maintained similar
performance as the baseline for tracking error and inside
corridor percentage while driving vehicles at faster speeds.
We improve in these two metrics when we use our approach
with per-vehicle tuned parameters. With faster average vehicle
speeds and a further decrease in number of stuck events, we
achieved a 39% decrease in mean total time when comparing
with the baseline.

Baseline Ours Ours (vehicle-tuned)
Total stuck trials (/60) ↓ 33 15 8
Total stuck events ↓ 56 17 11
Cross track error mean (m) ↓ 1.46 1.48 1.32
Total time mean (s) ↓ 59.6 40.9 36.1
Inside corridor mean (%) ↑ 91 91 93
Speed mean (m/s) ↑ 4.55 5.82 6.84

Breakdown of stuck events by vehicle ↓
Storm 3 1 1
Bolte 9 2 0
Panhard Crab 8 4 2
Zaha 5 3 2
Armata 11 5 5
Hovercraft 20 2 1

Table I: Summary of the results. The up arrow means higher is
better. The down arrow means lower is better. Increased mean
vehicle speed is better unless other metrics degrade.

To assess the performance of our proposed method in a
more realistic game scenario, we performed soak tests. These
tests consisted of 5-minute game sessions in conquest mode
and a specific map with 64 AI-controlled bots divided into
two teams. A total of 5 randomized trials were ran for
both the baseline and proposed path follower. We normalized
the number of stuck events by the total number of seconds
spent driving a ground vehicle across all 64 players. For the
proposed approach, a ground vehicle was stuck on average
every 131s (σ = 36) of driving time and every 60s (σ = 7)
with the baseline. This means, we were more than twice as
likely to get stuck with the baseline path follower compared
to our proposed solution.

V. CONCLUSIONS AND FUTURE WORK

In this short paper we tackled the path following problem
in the context of game AI. Our focus was on developing
a simple and efficient framework that achieves reasonable
performance across ground vehicles and game environments.
Such a framework is particularly beneficial for bots that
test games in development or for developing a benchmark
solution. The main contribution of this work is the novel
target speed generation algorithm which uses quadratic Bézier
curves to efficiently estimate the curvature profile of a path.
In future work, we plan to expand our framework to include
aerial vehicles and to test the performance of our approach
with a larger collection of ground vehicle types and game
environments. Additionally, we intend to explore the use of
automatic tuning methods such as black box optimization
which may significantly increase path following performance
and eliminate manual parameter tuning.

REFERENCES

[1] M. Terlizzi, G. Silano, L. Russo et al., “A vision-based algorithm
for a path following problem,” in 2021 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE, 2021, pp. 1630–1635.

[2] S. Bacha, R. Saadi, M. Y. Ayad, A. Aboubou, and M. Bahri, “A review
on vehicle modeling and control technics used for autonomous vehicle
path following,” in 2017 International Conference on Green Energy
Conversion Systems (GECS), 2017, pp. 1–6.

[3] E. Onieva, D. A. Pelta, J. Godoy, V. Milanés, and J. Pérez, “An
evolutionary tuned driving system for virtual car racing games: The
autopia driver,” International Journal of Intelligent Systems, 2012.

[4] U. B. Etlik, B. Korkmaz, A. Beke, and T. Kumbasar, “A fuzzy logic-
based autonomous car control system for the javascript racer game,”
Transactions of the Institute of Measurement and Control, 2021.

[5] N. Melder and S. Tomlinson, “Racing vehicle control systems using pid
controllers,” Game AI Pro, pp. 491–500, 2014.

[6] K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design,
and technology,” Transactions on Control Systems Technology, 2005.

[7] R. S. Wallace, A. Stentz et al., “First results in robot road-following.”
in International Joint Conference on Artificial Intelligence, 1985.

[8] T. Gillespie, Fundamentals of vehicle dynamics. SAE international,
2021.

[9] P. Bosetti, M. Da Lio, and A. Saroldi, “On the human control of vehicles:
an experimental study of acceleration,” European Transport Research
Review, vol. 6, pp. 157–170, 2014.

[10] H. Deddi, H. Everett, and S. Lazard, “Interpolation problem with
curvature constraints,” 2000.

[11] N. S. Sapidis and W. H. Frey, “Controlling the curvature of a quadratic
bézier curve,” Computer Aided Geometric Design, 1992.

[12] J. Gillberg, “AI for testing: The development of bots that
play Battlefield V,” https://www.gdcvault.com/play/1025905/
AI-for-Testing-The-Development, accessed: 2019.

https://www.gdcvault.com/play/1025905/AI-for-Testing-The-Development
https://www.gdcvault.com/play/1025905/AI-for-Testing-The-Development

	Introduction and Related Work
	Proposed Method
	Experimental Setup
	Results
	Conclusions and Future Work

