
DanZero: Mastering GuanDan Game with
Reinforcement Learning

Yudong Lu, Jian Zhao, Youpeng Zhao, Wengang Zhou, Houqiang Li

Abstract—Card game AI has always been a hot topic in the
research of artificial intelligence. In recent years, complex card
games such as Mahjong, DouDizhu and Texas Hold’em have been
solved and the corresponding AI programs have reached the level
of human experts. In this paper, we are devoted to developing
an AI program for a more complex card game, GuanDan, whose
rules are similar to DouDizhu but much more complicated. To
be specific, the characteristics of large state and action space,
long length of one episode and the unsure number of players
in the GuanDan pose great challenges for the development of
the AI program. To address these issues, we propose the first
AI program DanZero for GuanDan using reinforcement learning
technique. Specifically, we utilize a distributed framework to train
our AI system. In the actor processes, we carefully design the state
features and agents generate samples by self-play. In the learner
process, the model is updated by Deep Monte-Carlo Method.
After training for 30 days using 160 CPUs and 1 GPU, we get
our DanZero bot. We compare it with 8 baseline AI programs
which are based on heuristic rules and the results reveal the
outstanding performance of DanZero. We also test DanZero with
human players and demonstrate its human-level performance.

I. INTRODUCTION

As a good benchmark for measuring the strength of ar-
tificial intelligence (AI), games have been attracting lots of
research efforts in the field of machine learning, especially
reinforcement learning. Thanks to the rapid development of
reinforcement learning, recent years have witnessed significant
progress of AI in various games, including board games such
as Go and chess [1]–[3], card games such as Texas Hold’em
and Mahjong [4]–[7] and video games such as StarCraft and
DOTA [8], [9]. However, games with imperfect information
and large state and action space still pose a challenging issue
for reinforcement learning.

In this work, we are dedicated to developing an AI program
for another card game, which is called GuanDan and still
under-explored. This game is similar to another complex
imperfect-information game, DouDizhu, in some characteris-
tics in that both of them involve cooperation and competition
simultaneously under a partially observable environment and
possess large state and action space. However, GuanDan is
much more complicated than DouDizhu and has larger state
and action space, which is shown in Figure 1. It can be
observed that among several common imperfect-information
games, the information set size and count of GuanDan are
comparatively equivalent to those of 4-player Mahjong and
much higher than other games in comprehensive consideration.
Whereas, the size of action and legal action space of GuanDan
is up to 106 and 104, respectively, much larger than that of
other games listed in the Figure. Although DouDizhu has been

studied a lot recently and some progress has been achieved
[10]–[13], developing an AI program for GuanDan is very
challenging and remains unsolved.

Compared to DouDizhu, GuanDan is much more challeng-
ing in several aspects:

• The state and action space of GuanDan is much
larger: In a GuanDan game, there are two decks of
pokers used while DouDizhu only uses one deck of
cards. What’s more, the suits of cards are important in
GuanDan as the combinations of cards are affected by
this factor while suits of cards are usually ignored in
DouDizhu. In addition, there exist “wild card” and “level
card” in GuanDan, making it much more difficult to play
compared with DouDizhu.

• The length of one episode of GuanDan game is long:
GuanDan involves a concept of “leveling up”, and the
game ends only when a team of players have upgraded
over level A so that one episode of game contains several
rounds. In fact, each agent in GuanDan has to make
over 100 decisions in each episode while one agent in
DouDizhu only needs to make about 10 decisions in one
episode.

• The number of players in GuanDan game may change
as the game progresses: There are four players in
GuanDan, two of whom make up a team against the team
of the remaining two players. One round of GuanDan
game terminates only when both players of any team
have emptied their hand cards, making this game very
complex. For example, if one player has emptied his hand
cards, the following game will be turned into an unequal
situation, i.e two players cooperate against the rest one.
In contrast, a DouDizhu game ends as long as any player
empties his hand cards so that this game pattern is fixed.

Almost all of the existing AI programs for GuanDan
are based on heuristic rules and many carefully designed
techniques are applied to deal with different situations. For
example, a player may give priority to playing cards that are
small or can not form special card types when leading the first
trick. When a player plays cards passively to cover cards of
other players, using cards of the same card type is prior to
playing bombs. There’s one work [14] that tried to develop
an AI program for GuanDan which adopts Upper Confidence
Bound Apply to Tree (UCT) algorithm but it performs only
slightly better than random agents, i.e., agents choose actions
randomly from legal action set .

In this work, we propose an AI system for GuanDan called

ar
X

iv
:2

21
0.

17
08

7v
1

 [
cs

.A
I]

 3
1

O
ct

 2
02

2

(a) The information set size and count of different games

(b) The size of action space in different games

Fig. 1: Game complexity of some imperfect-information
games, including Heads-Up Limit Texas Hold’em (HULH),
Heads-Up No-Limit Texas Hold’em, 1v1 Mahjong, 4-Player
Mahjong, DouDizhu and GuanDan.

DanZero using reinforcement learning techniques. Consider-
ing the large state and action space, classical value-based
reinforcement learning algorithms such as Deep Q-Learning
(DQN) [15] will probably suffer from overestimating issue
[16]. Similarly, policy gradient methods such as A3C [17] also
perform unsatisfactorily in issues with large action space as
they fail to leverage action features. In this way, we choose
to adopt Monte Carlo method enhanced by neural networks,
which can utilize the action features and approximate true
values without bias [18]. What’s more, we adopt feature
encoding techniques to process the state and action features
and implement a distributed self-play reinforcement learning
framework to facilitate training. Integrating these techniques,
our AI system for GuanDan is able to beat all other existing
algorithms, proving the effectiveness of our methods.

II. RELATED WORK

In this section, we describe some background on imperfect-
information games and the application of reinforcement learn-
ing for developing the corresponding game AI.

Compared to perfect-information games, the agent of
imperfect-information games need to handle hidden informa-
tion and randomness, which is more close to real world as
there always exist stochasticity and unknowns. In this way,
imperfect-information games always provide more challenging

and important research questions. In the classical imperfect-
information games, poker games, Counterfactual Regret Min-
imization (CFR) [19] and its variants where a model of game
is required to traverse the game tree during computation are
often adopted. To handle a large-scale imperfect-information
game, learning an abstraction of state or action space to reduce
the game to a manageable size is often applied [6], [20],
[21]. However, as GuanDan involves both cooperation and
competition at the same time and the number of players may
change as the game goes on, such a complex setting poses
great challenges to these classical algorithms in poker games.
Although utilizing deep neural networks to generalize across
states helps CFR methods obviate the need for abstractions
[22], [23], this family of algorithms still have difficulty dealing
with games with large state and action space.

Different from CFR methods which rely on game-tree
traversals, reinforcement learning can help models learn skills
through interactions with the environment so that this tech-
nique is very suitable for large-scale games. In fact, thanks to
the development of reinforcement learning, there is recently a
growing trend in utilizing this technique to solve imperfect-
information games. For instance, AI programs for famous
large-scale games such as DOTA, StarCraft and Honor of
King have been developed and achieved amazing performance
[8], [9], [24]. As for card games, reinforcement learning has
also been successfully adopted in Mahjong, Texas Hold’em,
DouDizhu and so on [4], [5], [7], [10], [12]. What’s more,
reinforcement learning can be combined with many other
techniques such as search [25] and opponent modeling [26],
[27] and shows satisfactory performance. Considering the ad-
vantages of this powerful technique, we choose reinforcement
learning to develop an AI program for the unsolved GuanDan
game.

III. BASIC RULES OF GUANDAN

In this section, we give a brief introduction to the basic
rules of GuanDan. The card types of this game are listed in
Figure 2 .

There are four suits in the cards used in GuanDan game,
including Hearts (H), Spades (S), Diamonds (D) and Clubs
(C). The basic rank of single cards is, from high to low,
Red Joker (RJ), Black Joker (BJ), Level cards, A, K, Q,
J, 10, 9, 8, 7, 6, 5, 4, 3, 2. When forming Tubes, Plates,
Straights or Flushes, Aces can be seen as 1, just below 2. For
Solos, Pairs, Triples, Tubes, Plates, Full Houses and Straights,
cards can only cover the same type. For Full Houses, they
are ranked by the points of Triple part. Bombs can cover
these mentioned combinations and Bombs with more cards
can cover Bombs with fewer cards. If the numbers of cards
are the same between two Bombs, they are also ranked by
their points. Flush Straights can cover Bombs with less than
six cards and the relationship between this kind of card type is
determined by the points. Finally, Joker Bombs can beat any
card types.

In a GuanDan game, there are two decks of standard pokers
used, including Jokers, and four players sitting around a square

Fig. 2: A list of all card types in GuanDan.

table, each of whom has 27 cards in hand. The players sitting
opposite each other belong to the same camp. What’s more,
there exists the concept of “leveling up”, “level cards” and
“wild cards”. To be specific, both camps of this game own
their own level which starts from 2 to A. The first round of
a GuanDan game is always played at Level 2 and the levels
of the subsequent rounds are determined by the level of the
camp who have won in the previous round. Cards of the same
rank as the level of current round are called “level cards” and
they rank just below Jokers when being played singly. This
kind of cards can also be used at their ranks in natural order
when making up other combinations. In addition, level cards
in Heart are “wild cards” and they can be utilized in place
of any cards needed to make up a combination except for
Jokers. The camp which first levels up over level ‘A’ will win
the game. To this end, one GuanDan game usually contains
several rounds.

Players play cards in counterclockwise order and the player
leading the first trick can play any type of cards from his
hand. The other players can play cards of the same type or

bombs, which are larger than cards played by the previous
player, or they can choose to pass. A trick continues until three
players pass in succession and the player who played the last
cards leads in the next trick. Such procedures repeat until three
players have no card left or players of the same camp have
emptied their cards and this round ends. The first one emptying
the cards is called the Banker, and other players are called the
Follower, the Third and the Dweller according to the order of
their emptying the cards, respectively. Only the team of the
Banker can promote the level and the promoted number can
be three or two or one according to the partner of the Banker.
If the winning team manages to promote three levels, their
opponents are called the Double-Dweller. In addition, if one
trick ends after the Banker or the Follower finishes the cards,
his partner will lead the next trick. From the second round on,
before the first trick begins, the Dweller of the previous round
has to pay Tribute to the Banker by giving his biggest single
card other than the wild card. In return, the Banker needs
to give a single card back with a point not higher than 10.
Then the Dweller will lead the first trick. If there is Double-
Dweller in the previous, both of this camp have to pay the
Tribute and the Banker accepts the higher ranked Tribute. The
winners of the last round also need to return cards as discussed
above. However, when the player or the team that need to pay
Tribute have two Red Jokers in hand, the Tribute phase can
be canceled and the Banker will lead the first trick.

Last but not least, when the level of current round is Q or K
and the winner can promote 3 or 2 levels, the level of A can
not be skipped. At the round with level A, a camp can only
win when the Banker’s partner is the Follower or the Third.
This section just introduces brief rules of GuanDan and more
detailed rules can be found in Wiki. 1

IV. METHOD

In this section, our DanZero will be described in two as-
pects: the model architecture design and the training algorithm.

A. Model Architecture Design

The key in our model architecture design is taking all rele-
vant information and candidate action as input and outputting
the state-action value. We encode each card combination with
a 54-dimensional vector, corresponding to the 54 cards in
poker. There are 3 possible values for each element in the
vector, i.e. {0, 1, 2}, indicating the number of cards of the
corresponding suits and points. An example is shown in
Figure 3. In this way, the feature encodes the suit information,
and the dimension size is acceptable

The feature of the state is composed of a vector with 513
dimensions, and their physical meanings are listed as follows
(from the view of one player):

• [0− 53]: our current hand.
• [54− 107]: the remaining cards, i.e.all the cards except

our current hand and all played cards.

1https://en.wikipedia.org/wiki/Guandan#Playing

Fig. 3: An example to show the encoding of one hand. ‘H’
is the abbreviation of Heart. ‘C’ is the abbreviation of Club.
‘S’ is the abbreviation of Spade and ‘D’ is the abbreviation of
Diamond. ‘BJ’ is the abbreviation of Black Joker and ‘RJ’ is
the abbreviation of Red Joker. 0, 1, 2 represents the number
of such cards.

• [108− 161]: the last move and the cards that we are going
to play must be able to cover this combinations of cards.
If we have to lead the trick, these dimensions are set to
be zero.

• [162− 215]: the last move of partner. If the last move of
a teammate is “pass”, this vector is set to be zero. If the
partner has finished his hand cards, these dimensions are
set to be -1.

• [216− 299]: the number of remaining cards of other three
players which is recorded in the order of playing cards.

• [300− 461]: the played cards of other three players which
is recorded in the order of playing cards.

• [462− 501]: the level of our team and opponent team.
• [501− 513]: flag for wild cards, namely, whether we have

wild cards in hand and whether these cards can make up
Bombs, Straight Flushes, Straights, or other card types
except Single and Joker Bomb.

As for the action features, they are also represented with a
54-dimensional vector. The network that we adopt consists of
several layers of Multi-Layer Perception (MLP) and the input
is the concatenation of the state and action features, which is
a 567-dimensional vector. The output of the network is the
Q-value for one state-action pair. Figure 4 demonstrates how
we divide different regions to form the state vector and the
architectures of the network that we adopt.

B. Distributed Q-learning

In this subsection, we introduce the training process of
our method. Our DanZero is trained with deep Monte Carlo
method and self-play procedure. The overall framework con-
sists of two parts: actor and learner.

1) Actor: The actor is responsible for the game simula-
tion and information collection. In each iteration, each actor
receives the latest model parameter from the learner. Then,
the environment initializes a new episode. At each time step,
each agent i receives the last moves of other three players

a−i and updates the feature τi. According to the current
state, we first calculate the legal actions set A. The model
takes τ and each legal action a as input and outputs the
state-action value Q(τi, a). Then action is selected by ε-
greedy policy. Specifically, an action is randomly selected
from the legal action set with the probability of ε, and there
is also a probability of 1 − ε to choose the action with the
largest Q(τi, a). Each agent takes turns according to the above
operation until an episode ends.

After the end of one round in a GuanDan game, we assign a
value for every sample according to the result of this round. To
be specific, for the winning team, samples of their trajectory
will be assigned +3, +2 and +1 when the partner of the Banker
is the Follower, the Third and the Dweller, respectively. And
the samples of losing camp will be assigned corresponding
negative value. When the level of the last round of one game is
A, the reward changes to 0 when the Banker’s partner is not the
Dweller as they can not win the game in this case. The agent
trajectory data tuple (τ, a,Q(τ, a), r) is sent to the learner to
train the model after one episode terminates. Considering the
self-play procedure, each episode will produce 4 trajectories.

Need to add that, in the second and subsequent round of
one episode, there exists a Tribute phase. Because the logic
of Tribute is quite different from playing cards, we utilize
heuristic rules to make decisions in this phase. What’s more,
data in this phase will not be saved. Detailed rules are available
in supplement materials.

2) Learner: The learner is responsible for network update.
In each iteration, the learner receives the collected episode data
from the actors and the data is stored in a buffer. The learner
samples a batch of data from the buffer to update the network
with Deep Monte Carlo. Deep Monte Carlo is an effective
value-based algorithm especially in such episodic and reward-
sparse tasks which has a very large state and action space.
However, considering the transportation delay in distributed
reinforcement learning, it is necessary to preprocess the state-
action value sent by the actor as the following equation shows.

Qp(τ, a) = clip(
Q(τ, a; θl)

Q(τ, a; θa)
, 1− λ, 1 + λ) ∗Q(τ, a; θa), (1)

where Q(τ, a; θa) refers to the state-action value predicted by
the θ parameter on the actor side, and Q(τ, a; θl) refers to
the state-action value predicted on the learner side. λ is a
hyperparameter and the definition of clip function is shown as
follows:

clip(x, xmin, xmax) =

 xmax, x > xmax

x, xmin ≤ x ≤ xmax

xmin, x < xmin

. (2)

Using the above preprocessing formula can remove the sam-
ples with a large distribution difference against the model on
the learner side, so that the given target value is time-sensitive.
Then we construct an optimization function as follows:

Loss =
1

N

N∑
i=i

[Qp(τ, a)− r)]2, (3)

Fig. 4: An example to show different regions in the GuanDan game for better understanding of state features. The right part
indicates the architecture of the network, which takes state features and legal actions as input and outputs the Q-value of a
state-action pair.

where N represents the batch size.
By adopting the Distributed Q-Learning, we can parallelize

multiple actor processes so that the training process of our
AI system is efficient. The overall algorithm framework is
summarized in Algorithm 1 and 2.

Algorithm 1: Process of Actor
1: Initialize environment ENV;
2: Initialize model M with random parameters;
3: for Episodes=1,2,3,... do
4: Initial state s0 = ENV.reset();
5: Set t = 0;
6: while not done do
7: for Agent=1,2,3,4 do
8: τ it = f(τ it−1, a

−i);
9: calculate the legal actions set A;

10: choose action ai by ε-greedy;
11: end for
12: t = t+ 1;
13: end while
14: Assign a value r for every sample;
15: For each trajectory (τt, at, Q(τt, at), rt), save it to

replay buffer B;
16: Update model M with period I;
17: end for

V. EXPERIMENT

In this section, we compare the performance of DanZero
with state-of-the-art rule-based methods on the GuanDan

Algorithm 2: Process of Learner
1: Initialize the network parameters and replay buffer B;
2: for Iteration=1,2,3,... do
3: Sample a batch of trajectory data

D = {(τ, a,Q(τ, a), r)} from B;
4: Calculate loss L(θ) as Eq. (1) and Eq. (3),
5: Update state-action value network parameters θ with

L(θ);
6: Send network parameters to Actor;
7: end for

benchmark. Also, in order to more intuitively demonstrate the
strength of our AI, we test DanZero against human players.
Our AI system is trained on a server with 4 Intel(R) Xeon(R)
Gold 6252 CPU @ 2.10GHz and GeForce RTX 3070 GPU
in Ubuntu 16.04 operating system. The code is available at
supplement.

A. Experimental Setup

In order to evaluate the performance of our AI program, we
launch tournaments between our model and different baseline
algorithms. To be specific, two agents of one team in GuanDan
game utilize our model and another team adopts baseline
algorithm. By initializing different games and executing the
test for many times, we can achieve objective evaluation
results.

We perform a mild hyper-parameter search on Q-learning
and use the best setting for the shared hyper-parameters for all
methods. An overview of hyper-parameters for each method

Win Rate (%) baseline8 baseline7 baseline6 baseline5 baseline4 baseline3 baseline2 baseline1 Ours- Ours
baseline8 - 26.72 1.14 100.00 0.00 13.10 0.00 0.00 0.00 0.00
baseline7 73.28 - 42.52 100.00 6.93 15.31 0.00 0.00 0.00 0.00
baseline6 98.86 57.48 - 97.67 18.40 47.96 28.19 15.64 0.00 0.00
baseline5 0.00 0.00 2.33 - 0.00 0.00 0.00 0.00 0.00 0.00
baseline4 100.00 93.07 81.60 100.00 - 83.15 36.42 55.71 17.32 12.55
baseline3 86.90 84.69 52.04 100.00 16.85 - 12.89 14.28 0.00 0.00
baseline2 100.00 100.00 71.81 100.00 63.58 88.19 - 54.44 25.33 17.39
baseline1 100.00 100.00 86.36 100.00 54.29 86.78 45.56 - 12.77 9.82

Ours- 100.00 100.00 100.00 100.00 82.68 100.00 74.67 87.23 - 46.55
Ours 100.00 100.00 100.00 100.00 87.45 100.00 82.61 90.12 53.45 -

TABLE I: The average performance of the compared algorithms by playing 1000 episodes of GuanDan. The win rate of each
row is achieved by test between the bot in the first column against other algorithms. “Our-” represents the abrasive model that
removes the flag for wild cards. The results of “Our” and “Our-” are achieved after training for 30 days.

is listed in the appendix. What’s more, we adopt 80 actors for
training.

B. Performance against 8 Rule-based Bots and Each Other

To show how our model performs in the training process,
we save a checkpoint every 24 hours. We evaluate these
checkpoints by playing 1000 games with 8 rule-based bots.
Considering that one GuanDan game contains several rounds,
playing 1000 games is enough to reveal the performance of an
AI program objectively. To be mentioned, the baseline rule-
based bots that we compare are the top 8 agents in the first
Chinese Artificial Intelligence for GuanDan Competition so
that their strengths can be guaranteed. Their implementations
are available at this website 2.

The average win rate of our model against different base-
lines is shown in Figure 5 and the indexes of baselines
represent their ranks in the competition. It can be observed
that our AI system DanZero is able to achieve significantly
better performance than those rule-based agents. Specifically,
DanZero has absolute superiority over the rule-based bots
except for baseline 1, baseline 2 and baseline 4 after enough
training. What’s more, considering that the nature of high
variance of this game, achieving the win rate of 80% is an
obvious preponderance so that our DanZero also performs
much better than the other three baseline algorithms.

It’s interesting that baseline 2 achieves the best result against
our model instead of baseline 1 and baseline 3 seems to
perform worse than baseline 4 and baseline 6. To figure out
this phenomenon, we also conduct evaluations between all the
AI programs and the results are shown in Table I. It can be
observed that the performance of different baselines does not
quite correspond to their ranks after enough evaluation, which
can account for the above phenomenon partly. However, the
overall performance of baseline 1, baseline 2 and baseline 4
is equivalent but baseline 2 obviously performs better than the
other two against DanZero. We assume that this is because
there exists a restraint relationship between different policies.

2http://gameai.njupt.edu.cn/gameaicompetition/guandan machi
ne code/index.html

0 200 400 600 800 1000
Train Time(h)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

Our Method vs Baseline Algorithms

baseline1
baseline2
baseline3
baseline4
baseline5
baseline6
baseline7
baseline8

Fig. 5: Winning rate for our algorithm against 8 rule-based
methods. The horizontal axis represents training time of mod-
els and the vertical axis indicates the win rate of our model
against rule-based bots. Evaluation against each baseline is
executed with 1000 games every 24 hours.

In other words, a weak bot is also possible to beat a strong bot
if its policy is just suitable to target the opponent’s weakness.
This phenomenon is very common in AI programs using
heuristic rules in fact. However, our DanZero can still deal
with these agents which have different styles and achieve
obvious superiority, proving the effectiveness of our methods.

In addition, we also test the effectiveness of flag for “wild
cards” in the state feature. We conduct abrasive experiment
that removes these dimensions in state features and Table I
reports the results, which is represented by “Our-”. It can
be observed that removing these information degrades the
performance of our model, proving that adding this feature
helps the model better grasp the use of “wild cards”.

C. Human Evaluation

Apart from comparisons with strong rule-based bots, we
also evaluate The real performance of DanZero against human

players. After training for 30 days, DanZero plays over 100
games against 10 GuanDan players and achieves an average
win rate of 60%. Among games with human players, we find
that DanZero makes good decisions in some cases. In order
to better illustrate the performance of our AI system, we list
some case studies below in Figure 6.

In the first case of Figure 6, it is player4’s turn to play cards
and the legal action set consists of Single, Pair and Straight.
Player1 and player2 has only one card in hand and Player3
has two cards left. As the state feature contains the remaining
cards so that Player4 knows that there are one 10, Q and two
K left. In this case, playing Single 4, Pair 8 and Straight is all
highly possible to result in failure so that the agent chooses to
dismantle the Straight and play Single 10 to help the winning
of partner.

In the second case, it’s player2’s turn to play cards and the
legal action set is composed of Pair, Full House and so on.
Even if the teammate only has three cards in hand, player2
does not sacrifice himself to obtain the winning of his partner.
Meanwhile, player3 still has many cards in hand and the agent
knows that there are quite a few 7 and 8 left, indicating that
player3 is likely to have bombs in hand so player2 also does
not play Red Joker. At this time, player2 chooses to play Full
House and keep Red Joker in hand. As there are also a few
Single cards left, it’s relatively easy to play the Red Joker out
and win the game.

From the above discussed cases, it can be observed that
DanZero learns when to cooperate and when to play “selfishly”
for the winning, which is a high-level skill in this game,
proving the strength of our model.

VI. CONCLUSION

In this paper, we propose an AI system for GuanDan,
which is a very challenging imperfect-information game. In
order to deal with the challenges such as large state and
action space and unsure number of players, we adopt Deep
Monte-Carlo Methods as the main algorithm, characterize the
state information and utilize distributed self-play paradigm,
leading to a strong RL bot, named DanZero. We compare
our AI program with the state-of-the-art rule-based baselines
and the outstanding performance reveals the effectiveness of
our method. In addition, we execute human evaluation and
DanZero manages to reach human level. We hope this work
can be a benchmark for future research of GuanDan game.

For future work, we will try to enhance our AI system.
Currently, our model takes a lot of time to train and we hope to
find a method to accelerate the training process. What’s more,
the policy of DanZero in Tribute phase is based on heuristic
rules and we will try reinforcement learning technique so that
we can get a pure RL solution in this game.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

Fig. 6: Case study to show skills of DanZero. The player 1
and player 3 are human players and player 2 and player 4 are
controlled by our DanZero. The bold font indicates that it is
the player’s turn to play cards. The row of Rand indicates the
levels of both teams and current round. The current greatest
card means the last move in this trick and the cards that current
player is going to play must cover it. The table also reports
the last move of partner and legal action set. The row of AI
Action is the actual action that the bot decides to take.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[4] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in
imperfect-information games,” arXiv preprint arXiv:1603.01121, 2016.

[5] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, 2018.

[6] M. Moravčı́k, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker,” Science, vol. 356,
no. 6337, pp. 508–513, 2017.

[7] J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao,
T. Qin, T.-Y. Liu, and H.-W. Hon, “Suphx: Mastering mahjong with
deep reinforcement learning,” arXiv preprint arXiv:2003.13590, 2020.

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft II using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[9] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[10] Y. You, L. Li, B. Guo, W. Wang, and C. Lu, “Combinatorial q-learning
for dou di zhu,” in AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, 2020, pp. 301–307.

[11] Q. Jiang, K. Li, B. Du, H. Chen, and H. Fang, “Deltadou: Expert-level
doudizhu ai through self-play.” in International Joint Conferences on
Artificial Intelligence (IJCAI), 2019, pp. 1265–1271.

[12] D. Zha, J. Xie, W. Ma, S. Zhang, X. Lian, X. Hu, and J. Liu, “Douzero:
Mastering doudizhu with self-play deep reinforcement learning,” in
International Conference on Machine Learning (ICML). PMLR, 2021,
pp. 12 333–12 344.

[13] Y. Zhao, J. Zhao, X. Hu, W. Zhou, and H. Li, “Douzero+: Improving
doudizhu ai by opponent modeling and coach-guided learning,” arXiv
preprint arXiv:2204.02558, 2022.

[14] H. Shen, L. Wu, Y. Li, and X. Li, “Imperfect and cooperative guandan
game system,” in 2020 Chinese Control And Decision Conference
(CCDC). IEEE, 2020, pp. 226–230.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor,
“Learn what not to learn: Action elimination with deep reinforcement
learning,” arXiv preprint arXiv:1809.02121, 2018.

[17] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning
(ICML), 2016, pp. 1928–1937.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[19] T. W. Neller and M. Lanctot, “An introduction to counterfactual regret
minimization,” in Educational Advances in Artificial Intelligence (EAAI),
vol. 11, 2013.

[20] M. Bowling, N. Burch, M. Johanson, and O. Tammelin, “Heads-up limit
hold’em poker is solved,” Science, vol. 347, no. 6218, pp. 145–149,
2015.

[21] N. Brown, A. Lerer, S. Gross, and T. Sandholm, “Deep counterfactual
regret minimization,” in International Conference on Machine Learning
(ICML). PMLR, 2019, pp. 793–802.

[22] H. Li, K. Hu, Z. Ge, T. Jiang, Y. Qi, and L. Song, “Double neural
counterfactual regret minimization,” arXiv preprint arXiv:1812.10607,
2018.

[23] E. Steinberger, “Single deep counterfactual regret minimization,” arXiv
preprint arXiv:1901.07621, 2019.

[24] D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang, X. Wu,
Q. Guo et al., “Mastering complex control in moba games with deep
reinforcement learning.” in AAAI Conference on Artificial Intelligence
(AAAI), 2020.

[25] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong, “Combining deep
reinforcement learning and search for imperfect-information games,”
Advances in Neural Information Processing Systems (NeurIPS), vol. 33,
pp. 17 057–17 069, 2020.

[26] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III, “Opponent
modeling in deep reinforcement learning,” in International Conference
on Machine Learning (ICML), 2016, pp. 1804–1813.

[27] S. J. Knegt, M. M. Drugan, and M. A. Wiering, “Opponent modelling
in the game of tron using reinforcement learning.” in International
Conference on Agents and Artificial Intelligence (ICAART), 2018, pp.
29–40.

	I Introduction
	II Related Work
	III Basic Rules of GuanDan
	IV Method
	IV-A Model Architecture Design
	IV-B Distributed Q-learning
	IV-B1 Actor
	IV-B2 Learner

	V Experiment
	V-A Experimental Setup
	V-B Performance against 8 Rule-based Bots and Each Other
	V-C Human Evaluation

	VI Conclusion
	References

