
Achieving Fairness in DareFightingICE Agents
Evaluation Through a Delay Mechanism

Chollakorn Nimpattanavong, Thai Van Nguyen, Ibrahim Khan
Graduate School of Information Science and Engineering

Ritsumeikan University, Japan
{gr0608sp, gr0557fv, gr0556vx}@ed.ritsumei.ac.jp

Ruck Thawonmas
College of Information Science and Engineering

Ritsumeikan University, Japan
ruck@is.ritsumei.ac.jp

Worawat Choensawat, Kingkarn Sookhanaphibarn
School of Information Technology and Innovation

Bangkok University, Thailand
{worawat.c, kingkarn.s}@bu.ac.th

Abstract—This paper proposes a delay mechanism to mitigate
the impact of latency differences in the gRPC framework—a
high-performance, open-source universal remote procedure call
(RPC) framework—between different programming languages
on the performance of agents in DareFightingICE, a fighting-
game research platform. The study finds that gRPC latency
differences between Java and Python can significantly impact
real-time decision-making. Without a delay mechanism, Java-
based agents outperform Python-based ones due to lower gRPC
latency on the Java platform. However, with the proposed delay
mechanism, both Java-based and Python-based agents exhibit
similar performance, leading to a fair comparison between agents
developed using different programming languages. Thus, this
work underscores the crucial importance of considering gRPC
latency when developing and evaluating agents in DareFighting-
ICE, and the insights gained could potentially extend to other
gRPC-based applications.

Index Terms—Fighting Game, DareFightingICE, Delay mech-
anism, Agent evaluation, Fair comparison

I. INTRODUCTION

DareFightingICE [1] is a Java-based game artificial intelli-
gence (AI) research platform that aims to create a generalized
fighting game agents. It builds upon the FightingICE [2]
framework and seeks to develop an agent that can learn and
perform well against different opponents. One of DareFight-
ingICE’s objectives is to include the integration of audio
data into the decision-making process during gameplay. By
utilizing audio data, the project aims to provide an agent with
the useful information that can be used to make more informed
decisions. The successful integration of audio data into an
agent’s decision-making process could represent a significant
breakthrough in game AI research.

gRPC Remote Procedure Call (gRPC) [3] has recently been
integrated into DareFightingICE [4] as the communication
framework between an agent and the platform itself. This
decision was made due to the strict 16.66 millisecond time
limit within which an agent must process. gRPC was chosen
for its high performance in efficiently transmitting a constant

stream of data. Additionally, gRPC’s support for multiple
programming languages opens up opportunities to develop an
agent in languages other than Java. By leveraging gRPC, the
project aims to improve the performance and flexibility of
the agent development process. This integration is expected
to provide faster and more efficient communication between
an agent and the platform, ultimately leading to higher agent
performance in game playing scenarios.

DareFightingICE offers an interface for developing agents in
Java and Python, which are the primary languages supported
by the team. However, the latency of the gRPC framework
differs between the two languages, with Java exhibiting lower
latency in gRPC calls to the platform compared to Python’s
gRPC that is not good at streaming RPC calls [5]. This
difference in latency can have a significant impact on the
agent performance since the time pool available for processing
on Java and Python is different. According to the game’s
specification, if the overall processing time exceeds 16.66
ms [2], an agent will not be able to process the next frame
data due to frame skipping, which can lead to a drop in
performance.

To ensure fairness between Java-based and Python-based
agents, we propose a delay mechanism that can mitigate the
effects of the latency differences between the two languages.
The proposed mechanism is designed to provide a consistent
processing time for both Java and Python, ultimately leading
to a fair comparison between agents developed using different
programming languages.

The contributions of this work are as follows: first, we
conduct an investigation into gRPC latency across multiple
programming languages, with a particular focus on Java and
Python, and identify an appropriate delay to minimize any
differences; second, we investigate the effects of latency
variations on the performance of agents created for Dare-
FightingICE by utilizing BlackMamba, the 2021 competition
winner, as a test-bed.979-8-3503-2277-4/23/$31.00 ©2023 IEEE

ar
X

iv
:2

31
2.

16
01

0v
1

 [
cs

.N
I]

 2
6

D
ec

 2
02

3

II. RELATED WORK

A. Recent Studies on FightingICE and DareFightingICE
Agents

Moon et al. [6] used a machine learning algorithm to
dynamically adjust the behavior of FightingICE agents in
response to players’ affective states. This approach facilitated
adaptive interaction between the agent and player, significantly
enhancing the overall gaming experience by creating a more
immersive and responsive environment. In the same year,
Waris et al. [7] utilized CATNeuro, a neural-network model
based on the graph evolution concept propelled by Cultural
Algorithms, to engineer real-time industrial controllers. CAT-
Neuro was tested on FightingICE and a trailer motion system,
with it consistently outperforming other methods. The superior
performance of CATNeuro can be attributed to its design
which fosters increased diversity in the model, a result of the
interplay between cooperative and competitive knowledge.

In a separate study, Thai et al. [8] presented a deep rein-
forcement learning agent for DareFightingICE. Uniquely, this
agent uses sound exclusively as an input, marking a significant
deviation from traditional decision-making processes used
by FightingICE agents, which typically rely on game states
provided by the game system, as done in the above two studies.

B. Improving Data Transfer Efficiency for Agents in the Dare-
FightingICE using gRPC

One of the challenges faced by agent developers in Dare-
FightingICE as well as FightingICE was the high overhead as-
sociated with the previous communication interface used until
the 2022 competition, Py4J, when transmitting large amounts
of data. This often resulted in an agent’s overall processing
time exceeding the 16.66 ms time limit, which is crucial
for timely and accurate decision-making in the competition.
To address this issue, the competition has recently integrated
gRPC as a communication framework between agents and
DareFightingICE. The use of gRPC has several advantages,
including its high performance, which reduces latency by up
to 65% [4], and increased stability. Moreover, gRPC has been
found to mitigate the issue of missed frames, which can occur
when using Py4J. The adoption of gRPC as the communication
framework in DareFightingICE has significantly improved
the agent performance, allowing developers to create more
complex agents that can better utilize audio data in their
decision-making processes.

III. METHODOLOGY

In this section, we elaborate on the methodology adopted to
identify the optimal delay mechanism for mitigating the impact
of latency differences between Java’s gRPC and Python’s
gRPC by implementing an agent called Sandbox in both
Java and Python. This involves discussing the objectives and
implementation of the agent, the experimental setup to ensure
accuracy and reliability, and the evaluation of latency for data
transmission between the agent and the platform in both Java
and Python.

A. Objectives and Implementation

Our primary objective was to pinpoint the most efficient
delay mechanism for mitigating the impact of latency differ-
ences between Java’s gRPC and Python’s gRPC. To achieve
this goal, we implemented agents both in Java and Python,
named SandBox, in such a way that it would measure only
the overhead on the round-trip latency of transmitting data
between the agent and the platform, without processing any
data. By doing so, we could isolate the delay caused exclu-
sively by data transmission, allowing us to assess and identify
the most effective delay mechanism. This approach ensures
that we focus on the optimization of data transmission and
communication between an agent and the platform.

B. Experimental Setup

To conduct our experiments, we employed a computer with
specifications closely matching those of the official compe-
tition PC used in the DareFightingICE Competition. This
similarity was crucial to ensure the accuracy and reliability of
our results, given that the agent performance would be eval-
uated under similar conditions. The computer was equipped
with an Intel(R) Xeon(R) W-2125 @ 3.70GHz CPU, 16 GB
DDR4 RAM, and an NVIDIA Quadro P1000 graphics card,
running on the Windows 10 Pro for Workstations operating
system. Utilizing the same PC for all experiments allowed
us to maintain consistent conditions and effectively eliminate
other factors, which in turn facilitated an accurate comparison
of the performance of the different delay mechanisms and
programming languages.

C. Evaluation of Latency

To evaluate latency, we deployed Sandbox for 32 games
(96 rounds) in both Java and Python, measuring the average
latency of each round and illustrating our findings in Fig. 1.
During the experiment, we observed that Java-based Sandbox’s
latency stabilized after 6 rounds, while the Python-based one’s
stabilized after just 3 rounds. To maintain consistency and
ensure a fair comparison, we only considered the latency

Fig. 1: Sandbox’s Overall Latency Comparison

values after 6 rounds, at which point both agents’ latency had
stabilized.

The average latency for the Java-based agent after round 6
was 0.465 ms, while for Python-based Sandbox, it was 0.807
ms. We rounded the difference in latency between the two
agents up to 0.35 ms. This comparison enabled us to identify
the most efficient delay mechanism for Java-based agents, and
ensure that this delay mechanism operates efficiently within
the competition context.

IV. EVALUATION

In this section, we discuss the evaluation process designed
to investigate the impact of the delay mechanism on the
agent performance in the context of the DareFightingICE
Competition. We outline our experimental approach, the use
of BlackMamba as a test-bed, and the implementation of
four variants. Furthermore, we introduce a novel evaluation
method for the agent performance and present our findings,
which highlight the effectiveness of the delay mechanism in
mitigating performance differences between Java-based and
Python-based agents.

A. Experimental Approach

Our experiments aim to investigate the impact of gRPC
latency on the agent performance in DareFightingICE and
the effectiveness of the delay mechanism in mitigating per-
formance differences between Java-based and Python-based
agents. To examine the impact of the delay mechanism on
the agent performance, we selected BlackMamba, the winner
of the 2021 FightingICE Competition, as our test-bed. We
reimplemented BlackMamba in both Java and Python to enable
a comparison of the performance of Java-based and Python-
based agents.

The motivation behind the reimplementation is due to the
fact that the initial implementation of BlackMamba in Java
involved creating a new Java object in every frame, without
reusing the available object. This led to frequent execution
of Java Garbage Collection, resulting in unstable latency.
Furthermore, since the initial implementation of BlackMamba
is in Java, it is necessary to re-implement the same algorithm
in Python as well. Our experiments involve four variants: the
reimplemented BlackMamba (baseline) and three versions of
the baseline, in both Java and Python, with processing times
adjusted to 15.15 ms, 15.5 ms, and 15.85ms, respectively, as
shown in Table I in order from top to bottom.

To ensure a fair comparison, we conducted 96 rounds for
each variant, where they fought against MctsAi [9], a sample
agent in the competition using Monte-Carlo tree search. The
first six rounds were disregarded to ensure consistent gRPC
latency, as mentioned in Sec. III-C. Our hypothesis is that
Java-based BlackMamba would outperform the Python-based
one without an introduced delay in cases where the overall
processing time exceeds 16.66 ms, but with a 0.35 ms delay
introduced to the Java-based agents, both Java-based and
Python-based agents would exhibit similar performance.

TABLE I: Implemented variants

Programming gRPC Processing Total (ms)
Language Latency (ms) Time (ms)

Java 0.5

1.1 1.60
15.15 15.65
15.50 16.00
15.85 16.35

Python 0.85

1.3 2.15
15.15 16.00
15.50 16.35
15.85 16.70

B. Evaluation Method

We introduce the method for evaluating the agent perfor-
mance, taking into account both the remaining Health Points
(HP) and elapsed time. The evaluation method used in existing
work [1] solely focused on the remaining HP of both players,
which is insufficient in effectively assessing performance.
The elapsed time is also crucial as it reflects how fast an
agent defeats the opponent, a factor that cannot be accurately
determined by HP alone. Therefore, the elapsed time together
with a boolean flag representing win or loss is also included.
The reason for the introduction of this boolean flag is that if
the elapsed time is the same and the fight is highly competitive
with tiny HP difference, ignoring the fight result would lead to
a similar assessment of performance. This new method allows
for more precise and efficient evaluations.

To implement this evaluation method, the result data from
each round are used, which provide information on the re-
maining HP for each agent and the elapsed time measured in
frames, with a maximum of 3600 frames per round. These
values are then normalized using a set of equations (Eqns.
(1), (2), (3), and (4)). In these equations, HPBlackMamba

and HPMcts denote the remaining HP of BlackMamba and
MctsAi, respectively, while TimeElapsed denotes the elapsed
time of the round. In addition, HPTotal and TimeTotal denote
the maximum possible HP (set at 400 HP) and the total time
per round (set at 3600 frames), respectively. The average of the
values from these four equations is then calculated to evaluate
the performance score of BlackMamba (Eqn. (5)).

HP1 =
HPBlackMamba

HPTotal
(1)

HP2 = 1− HPMctsAi

HPTotal
(2)

w =

{
1, if HPBlackMamba > HPMctsAi

0, otherwise
(3)

t = w(1− TimeElapsed

TimeTotal
) + (1− w)

TimeElapsed

TimeTotal
(4)

Score =
HP1 +HP2 + w + t

4
(5)

(a) Without the Delay Mechanism (b) With the Delay Mechanism

Fig. 2: Agent performance comparison between with/without the delay mechanism

C. Results

In Fig. 2, we observed that without the delay mechanism,
Java-based BlackMamba consistently outperformed the Python
version if the processing time is above 15.5 ms due to the
lower gRPC latency on the Java platform. However, by adding
a delay of 0.35 ms to the Java version, the performance gap
was effectively reduced, with both languages showing similar
performance. These results support our hypothesis that the
delay mechanism can mitigate the impact of gRPC latency
differences and ensure a fair and accurate evaluation of the
agent performance in DareFightingICE.

V. DISCUSSIONS

The findings indicate that both Java-based and Python-
based agents demonstrate comparable performance when the
processing time is under 15.15 ms, even without the introduced
delay mechanism. The processing time limit that triggers the
difference in the agent performance was discovered to be 15.5
ms, not 16.66 ms as mentioned in [2]. This is because our
results based on average processing time, which may overlook
occasional delays, resulting in the overall processing time on
the game system greater than 16.66 ms.

While our experiments with BlackMamba provided valuable
insights, it is important to recognize that our evaluation was
limited to a single type of agent in a specific environment.
Further studies are necessary to explore the effects of gRPC
latency on other agents in various settings. Additionally, our
study focused solely on the impact of gRPC latency differences
between Java and Python, and did not consider other factors
that could affect the agent performance such as operating
system (OS) thread management and other OS features. There-
fore, future research should investigate the impact of other
variables on an agent’s performance in DareFightingICE and
similar applications.

VI. CONCLUSIONS

Our study sought to investigate the impact of gRPC latency
differences between programming languages on the agent
performance in DareFightingICE. Specifically, we compared

the performance of Java-based and Python-based agents with
and without a delay mechanism. The results showed that
the differences in gRPC latency between these programming
languages can have a significant impact on the agent perfor-
mance in DareFightingICE. However, with a delay mechanism
introduced to Java-based agents, both Java-based and Python-
based agents exhibited similar performance, indicating that this
delay mechanism can effectively mitigate the impact of gRPC
latency differences.

These findings have important implications for the develop-
ment and evaluation of agents in DareFightingICE and other
gRPC-based applications. When designing a game-playing AI
competition that supports multiple programming languages
by utilizing gRPC, it is crucial to consider the potential
latency differences between programming languages and take
measures to mitigate these variations. Introduction of the delay
mechanisms is one such measure that can help ensure a fair
and accurate evaluation of the agent performance.

APPENDIX

Source code and raw data are available at https://github.
com/Staciiaz/cog2023-darefightingice-evaluation.

REFERENCES

[1] I. Khan, T. V. Nguyen, X. Dai, R. Thawonmas, “DareFightingICE
Competition: A Fighting Game Sound Design and AI Competition,”
2022 IEEE Conference on Games (CoG), pp. 478-485, August 2022.

[2] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R.
Thawonmas, “Fighting Game Artificial Intelligence Competition Plat-
form,” Proceedings of the 2nd IEEE Global Conference on Consumer
Electronics (GCCE), pp. 320-323, October 2013.

[3] “Introduction to gRPC,” gRPC. [Online]. Available: https://grpc.io/docs/
what-is-grpc/introduction. [Accessed: May 14, 2023].

[4] C. Nimpattanavong, I. Khan, T. V. Nguyen, R. Thawonmas, W. Choen-
sawat, K. Sookhanaphibarn “Improving Data Transfer Efficiency for AIs
in the DareFightingICE using gRPC,” arXiv preprint arXiv:2303.10001,
2023 (accepted for oral representation at 2023 8th International Confer-
ence on Business and Industrial Research, May 2023).

[5] “Performance Best Practices,” gRPC. [Online]. Available: https://grpc.
io/docs/guides/performance. [Accessed: May 14, 2023].

[6] J. Moon, Y. Choi, T. Park, J. Choi, J. Hong, and K. Kim, “Diversifying
dynamic difficulty adjustment agent by integrating player state models
into Monte-Carlo tree search,” Expert Systems with Applications, Volume
205, 2022.

https://github.com/Staciiaz/cog2023-darefightingice-evaluation
https://github.com/Staciiaz/cog2023-darefightingice-evaluation
https://grpc.io/docs/what-is-grpc/introduction
https://grpc.io/docs/what-is-grpc/introduction
http://arxiv.org/abs/2303.10001
https://grpc.io/docs/guides/performance
https://grpc.io/docs/guides/performance

[7] F. Waris, R. Reynolds, and J. Lee, “Evolving Deep Neural Networks
with Cultural Algorithms for Real-Time Industrial Applications,” In-
ternational Journal of Semantic Computing, Volume 16, No. 02, pp.
281-312, 2022.

[8] T. Van Nguyen, X. Dai, I. Khan, R. Thawonmas, and H. V. Pham,
“A Deep Reinforcement Learning Blind AI in DareFightingICE,” 2022
IEEE Conference on Games (CoG), pp. 632–637, 2022.

[9] M. Ishihara, T. Miyazaki, C. Y. Chu, T. Harada, and R. Thawonmas,
“Applying and improving Monte-Carlo Tree Search in a fighting game
AI,” Proceedings of the 13th international conference on advances in
computer entertainment technology, pp. 1-6, November 2016.

	Introduction
	Related Work
	Recent Studies on FightingICE and DareFightingICE Agents
	Improving Data Transfer Efficiency for Agents in the DareFightingICE using gRPC

	Methodology
	Objectives and Implementation
	Experimental Setup
	Evaluation of Latency

	Evaluation
	Experimental Approach
	Evaluation Method
	Results

	Discussions
	Conclusions
	Appendix
	References

