
Framework for Smart City Applications Based on
Participatory Sensing

R. Szabó∗‡, K. Farkas∗‡, M. Ispány§, A.A. Benczúr§‖, N. Bátfai§, P. Jeszenszky§, S. Laki∗¶, A. Vágner§, L. Kollár§,
Cs. Sidló§‖, R. Besenczi§, M. Smajda§, G. Kövér§, T. Szincsák§, T. Kádek§, M. Kósa§, A. Adamkó§, I. Lendák∗

B. Wiandt‡, T. Tomás∗‡, A. Zs. Nagy∗‡, G. Fehér∗‡
∗Inter-University Centre for Telecommunications and Informatics, Debrecen, Hungary

‡Budapest University of Technology and Economics, Budapest, Hungary
§ University of Debrecen, Hungary

¶Eötvös Loránd University, Budapest, Hungary
‖Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary

Corresponding author: farkask@hit.bme.hu

Smart cities offer services to their inhabitants which make
everyday life easier beyond providing a feedback channel to
the city administration. For instance, a live timetable service
for public transportation or real-time traffic jam notification
can increase the efficiency of travel planning substantially.
Traditionally, the implementation of these smart city services
require the deployment of some costly sensing and tracking
infrastructure. As an alternative, the crowd of inhabitants
can be involved in data collection via their mobile devices.
This emerging paradigm is called mobile crowd-sensing or
participatory sensing. In this paper, we present our generic
framework built upon XMPP (Extensible Messaging and Pres-
ence Protocol) for mobile participatory sensing based smart
city applications. After giving a short description of this frame-
work we show three use-case smart city application scenarios,
namely a live transit feed service, a soccer intelligence agency
service and a smart campus application, which are currently
under development on top of our framework.

Keywords—Smart City, Participatory Sensing, XMPP, Public
Transport, Soccer, Smart Campus

I. INTRODUCTION

The development of cites are not any more solely depend
on the city’s basic (physical) infrastructure but more and
more correlated to the availability of information and com-
munication technologies (ICT) supporting knowledge sharing
about cities. More formally, Gartner defined smart cities as
“multiple sectors cooperating to achieve sustainable outcomes
through the analysis of contextual real-time information shared
among sector-specific information and operational technology
systems”. In this context, the real-time information is big data
and the contextual sharing system is generally believed to
be realized by the Internet of Things. Internet of Things is
visioned to become true with over 50 billion connected devices
around 2020.

In the meantime, with the proliferation of smart-phones
more and more computing and sensing power becomes avail-
able at the hands of urbanites. If the community finds incen-
tives (good services) for urbanites to participate in context

sharing, or often called crowd-sourcing1, then combined with
big data analytics we can realize a vision similar to the Internet
of Things based smart cities (see Fig. 1).

Fig. 1. Internet evolution: from user centric Internet to Internet of Things

However, a typical crowd-sourcing application today has
two application specific components: i) one at the user’s device
and ii) another one in the cloud [1]. This results in many
parallelism, unnecessary developments and slow application
innovation cycle. We envisioned a framework that separates
the application logics from the core communication and big
data analytic functions and thus results in an architecture
where innovation can be done at the end systems focusing
on the application and presentation layers. Introducing such
a framework could boost the developments similarly to the
innovation at the application front enabled by IP.

To allow independent application innovation the framework
must transparently pass extra information, by which the basic
services can be extended. This yields to a generic information
modeling approach based on some extensible messaging ser-
vice. Moreover, by the means of participatory sensing we have

1We use the terms crowd-sourcing, crowd-sensing, urban sensing and
participatory sensing interchangeably in this paper.

295

CogInfoCom 2013 • 4th IEEE International Conference on Cognitive Infocommunications • December 2–5, 2013 , Budapest, Hungary

978-1-4799-1546-0/13/$31.00 ©2013 IEEE

to aim at decoupling information producers and information
consumers in space, time and synchronization.

Due to the lack of such a unifying, open, extensible and
producer/consumer decoupled framework as an enabler for
service innovation, and the emerging popularity of considering
crowd-sensing for data collection we started to work on a
system for participatory sensing based smart city applications.
Our system, in line with the value chain of crowd-sourcing
(see Fig. 2), comprises

• a communication and extensible information modeling
and messaging framework;

• local and cloud based analytics;

• and pilot applications.

Fig. 2. Value chain: from sensing to value added services

In order to exploit available best practices, we investigated
the reuse of the basic Extensible Messaging and Presence Pro-
tocol (XMPP) [2] and its publish-subscribe (pubsub) service
[3], and built our system upon them. This approach provides an
absolutely generic information and communication framework,
which extended by analytics can offer a unifying solution for
developing participatory sensing based applications.

The rest of the paper is structured as follows. In Sec. II,
we describe our framework. In Sec. III, we show some appli-
cation examples, such as a live transit feed service, a soccer
intelligence agency service and a smart campus application, we
have been developing as use-cases and proof of our concept.
Finally, in Sec. IV we summarize our work with a short insight
to our future plans.

II. FRAMEWORK FOR PARTICIPATORY SENSING BASED
SMART CITY APPLICATIONS

In this section, we describe shortly our XMPP-based
publish-subscribe architecture to aid the development of par-
ticipatory sensing based smart city applications. Moreover, we
discuss the analitics related issues of such applications.

A. XMPP-based Publish-Subscribe Architecture

The basic communication principle of the most crowd-
sensing based applications fits well with the publish-subscribe

communication scheme, as users participate in data collection
(publish) and consume the services updated on the basis of
the collected data (subscribe). Thus, in our architecture we
use a generic publish-subscribe communication model for
implementing interactions. In this model, we define three roles,
like Producers, Service Providers and Consumers (see Fig. 3).
These entities interact with each other via the core service,
which consists of event based pubsub nodes.

Producers: In our model, the Producers act as the original
information sources and play a central role in data collection.
They are users who contribute their mobiles’ sensor data, thus
producing raw data streams.

Consumers: The Consumers are the beneficiaries of the
provided services. They enjoy the value of the collected,
analized, extended and disseminated information in the service.
Sometimes the users participating in the service can also act
as Producers. In this case, we call them as Prosumers.

Service Providers: The Service Providers introduce added
value to the raw data collected by the crowd. Hence, they
intercept and extend the information flow between Producers
and Consumers. Service Providers can play several roles at the
same time, as they collect (Consumer role), store and analyze
Producers’ data to offer (Service Provider role) value added
service.

Fig. 3. A publish-subscribe scheme based crowd-sourcing model

In our model, depicted in Fig. 3, Producers are the source
of original data by sensing their environment. They publish
(marked with empty arrowheads) the collected information to
event nodes (raw information nodes marked with blue). On
the other hand, Service Providers intercept the collected data
by subscribing (black arrowheads) to raw event nodes and
receiving information in an asynchronous manner. They extend
the crowd sensed data with their own information or extract
cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service to
different content nodes. Consumers who are interested in the
reception of the added value/service just subscribe to the ap-
propriate content node(s) and collect the published information
in an asynchronous manner.

We can directly map this model to the XMPP publish-
subscribe service according to the following (see Fig. 4):

• To gather Producers’ data Service Providers establish
raw pubsub data nodes for their offered services.

• Also Consumers, with appropriate node access rights,
can freely publish their collected data to the corre-

296

R. Szabó et al. • Framework for Smart City Applications Based on Participatory Sensing

sponding nodes, but only the owner or other affiliated
Consumers can retrieve this information.

• Producers can publish the collected data or their
annotations to the raw data nodes at the XMPP server
if they have appropriate access rights.

• Using the pubsub subscription service, Service
Providers collect the published data and introduce
such a service structure for their added value which
makes appropriate content filtering possible for their
Consumers.

• Prosumers publish their sensor data or annotations into
and retrieve events from XMPP pubsub nodes.

• Service Providers subscribed to raw pubsub nodes
collect, store, clean-up and analyze data and ex-
tract/derive new information introducing added value.
This new information is published into pubsub nodes
following a suitable structure.

The pubsub service node structure can benefit from the
XMPP’s aggregation feature via using collection nodes, where
a collection node will see all the information received by its
child nodes. Note however, that the aggregation mechanism
of the XMPP’s collection node is not appropriate to filter
events. Hence, the Service Provider role has to be applied
to implement scalable content aggregation. Fig. 4 shows the
XMPP’s aggregations as dark circles at the container node
while empty circles represent only logical containment where
intelligent aggregation is implemented through the service
logic.

Fig. 4. Mobile participatory sensing: the publish-subscribe value chain

B. Analytics Component

The goal of the analytics component of our framework
(Fig. 4) is to manage (store, clean, organize and analyze)
the raw data coming from the intelligent sensors and provide
valuable information for the services that will allow the active
users to deal with a vast variety of situations in the city on
the area, e.g., traffic, scheduling, criminality and environmental
sustainability. There are generic data mining tasks in the great
majority of smart systems planned for urban computing. Such
tasks are among others: predicting the people’s activities and

movements in space and time; discovering region of different
functions in a city; detecting anomalous rare events in a city.

The data sets arising in smart city applications usually
fall into the category of “Large-Scale Data” or “Big Data”,
referring to datasets whose size, velocity or variety is well
beyond the ability of typical software tools to capture, store,
manage, and analyze. This situation pushes towards new
algorithms which are typically approximated and/or distributed
improvement of the standard machine learning and data mining
algorithms.

1) The Real-time Distributed Smart City Analytics Layer:
Real time analytics for traffic and mobility, as opposed to
offline tasks such as city planning, requires processing the
incoming data stream without first storing, cleaning and orga-
nizing it in any sense. Scalability and low latency are crucial
factors that require new algorithms (typically, approximated or
distributed) and new computational frameworks (e.g., MapRe-
duce [4], NoSQL and streaming data).

Fig. 5. Layers of our mobility prediction architecture: the streaming
framework (bottom left), persistence components (bottom right), and the
custom analytics (top)

We implemented a distributed streaming smart city ana-
lytics environment that reaches remarkably high throughput
with low latency using a properly designed streaming architec-
ture. Fig. 5 depicts the layered architecture that enables easy
model implementation while relying on the scalability, low
latency and fault tolerance of the underlying distributed data
processing software. In this architecture, we are free to choose
from existing frameworks such as Storm [5] or S4 [6]. Since
these frameworks may loose history information when their
processing modules restart after failures, we built a generic
persistence module (bottom right side of Fig. 5). We deploy
Cassandra [7] due to its high throughput writing capabilities
and memcached [8] for its efficiency.

When a node fails, a new node is initialized with the stored
states of the affected processing components. According to
the guarantees of Storm, the lost packets are processed again.
Fig. 6 shows how node failures affect the overall performance.
We can observe rapid recoveries, despite of the large number
of failing nodes, the overall performance remains predictable.

2) Anomaly Detection for Smart City Applications:
Anomaly detection refers to detecting patterns in a given data
set that do not conform to an established normal behavior.
The detected patterns are called anomalies (outlier, surprise

297

CogInfoCom 2013 • 4th IEEE International Conference on Cognitive Infocommunications • December 2–5, 2013 , Budapest, Hungary

Fig. 6. Throughput (number of records per second) as the function of the
time passed (absolute times), with six nodes, each with a spout. One node
works continuously, while the others occasionally stop

deviation etc.) and translate to actionable information in smart
city applications. For example, detecting a possible traffic jam,
finding forthcoming fault in the pattern of players in soccer that
results in penalty, or recognition of rare significant departure
of class scheduling in daily routine of students at the campus
are all subject to anomaly detection. If we could predict
such events in advance it would also be possible for people
to avoid them. We investigated the capabilities of various
machine learning algorithms to predict anomalous events in
Smart City. These algorithms, namely Recursive Partitioning
(Decision Tree), Naive Bayes (NB), Support Vector Machines
Classifiers (SVM-C), k-Nearest Neighbors (kNN), Random
Forest (RF) and LDA/QDA, have been succesfully applied
for predicting anomalies in complex softwares (see [9]) which
are comparable to our framework. These techniques have also
been studied in the analyses of traffic streams using GPS traces
(see [10] and [11]).

3) Social Networks for Smart City Applications: Various
social media sites (Twitter, Facebook, Google+, etc.) have
emerged in the past decade, bringing a radically new way
of communication. These platforms enable users to share and
exchange information on real-world events from local to world
scale. These events can vary on a wide range: popular concerts,
festivals, demonstrations, accidents, traffic jams, disasters, etc.
They differ from each other in many aspects, but they have in
common that they affect the life of a great mass of people.

These information sources could be exploited by smart
city applications, providing their user with useful information
on popular events, festivals, pop concerts, etc. Furthermore,
the posted messages (e.g. on Twitter) can be used to detect
unpredicted events [12] like earthquakes, fires, or other disas-
ters in real-time. In this model, the users of social networks
are considered as sensors. However, real-time processing of
the unstructured data available in social networks poses many
challenges which have to be addressed during the design of
smart city applications.

III. USE-CASE SMART CITY APPLICATION EXAMPLES

In this section, we shortly present three use-case smart city
application examples, we have been developing currently, to

demonstrate the usage of our framework.

A. Extended Transit Feed Service

Public transportation is an application domain which has
great potentials to introduce crowd-sourcing based services.
As an example, in many cities arrival information of public
transportation lines is expected to be provided and updated
in real-time. However, if an appropriate infrastructure, which
is usually expensive, is not in place participatory sensing can
come into remedy.

A crowd-sourcing based smart public transport application
can offer a service which combines static transit informa-
tion with live data collected by the crowd. For example, a
smart transit application can provide, beyond the static sched-
ule information based on General Transit Feed Specification
(GTFS) [13] data, an enhanced timetable service with real-time
refinements as people start using it.

Such crowd-sourcing based transport application can also
be applied by its users to annotate trips or to outsource some
of the data collection tasks of the transit operator to support its
operations. For instance, crowdedness of the public transport
lines could be measured by participatory sensing for different
sections of the route and times of the day, week, month and
season.

Fig. 7. User Interface of our extended transit feed service

For validation purposes and get more insight into crowd-
sourced transport services we have been developing, on top
of our framework, a participatory sensing based smart public
transport application for Android platform using the aSmack
API [14]. The Android client can receive the transit feeds,
GTFS data and its refinements, from the XMPP server and
visualize them on a map as shown in Fig. 7. Additionally, the

298

R. Szabó et al. • Framework for Smart City Applications Based on Participatory Sensing

user is able to report incidents (e.g., delayed arrival/departure)
or annotate the crowdedness status of any vehicle, which
is sent in real-time to the appropriate pubsub node at the
XMPP server. Clients subscribed to these nodes receive real-
time crowdedness data besides arrivals information. In Fig. 7,
vehicles are colored in red, orange and green according to high,
medium and low crowdedness, while no color indicates that
no participatory data is available. In this scenario, the users’
quality of experience increases as more and more people start
contributing to sensing the crowdedness status.

B. Soccer Intelligence Agency

The project, called SIA (Soccer Intelligence Agency, or
its former name, Distributed Supporter Avatar), is designed to
support distributed data collection in sport events, particularly
in the context of soccer. The major novelty of this initiative is
that data is gathered by supporters and fans of football. The
SIA System is available in two editions: SIA Mobile and SIA
Desktop Player. SIA Mobile focuses on the online (real-time)
supporters watching the match in the stadium. SIA Desktop
Player is a media player program that enables offline users to
annotate matches more specifically than a normal media player
can do. The functional icons and the splash screen of the SIA
Desktop Player can be seen in Fig 8.

Fig. 8. SIA Desktop Player: the functional icons and the splash screen

The main design feature of the SIA applications was
that the annotation process does not require too much effort
from the users, because they would like to principally enjoy
watching football matches. SIA users can collect data about
actions of players, coaches and referees. For example, in the
“favourite player’s passes” part of the SIA Mobile, only the
fire soft-button must be pressed if the ball is forwarded or
received by the observed player.

Both of the SIA applications use the Smack API [15]
(aSmack [14] in case of the mobile client) for XMPP based
communication. Every user connects to our XMPP server, and
by firing one of the softkeys an XML (Extensible Markup
Language) message is sent to our Master Client (this client
stores every message). On the other hand, if a user connects to
our server, the Master Client sends information about matches,
also in XML format. These XML messages are called SIA
Messages.

SIA is under active development by a team of teachers
and students at University of Debrecen. Developers who
contributed to the SIA but are not authors are named in the

Acknowledgement section. The implementation details of SIA
can be found in the manuscript [16].

C. Smart Campus

A university campus is a good candidate to apply partici-
patory sensing since its thousands of students are very active
on social networks. Our aim was to build services that can
be used to draw conclusions regarding the operation of the
community, and the derived information can appear as a new
service in the community (by using appropriate analytics), thus
having a beneficial feedback to its operation.

An application that aggregates useful information from
several sources has been developed and published as a Web
service. Such information include timetable, various deadlines
defined in the academic calendar, open hours of the faculty
administration and staff, etc. Based on the provided data of
the aggregator service, users can subscribe to events they are
interested in. These interests are recorded by an Android based
application and are subject to various data mining operations
that can result in new services (like suggesting a practical order
or activities to be done) which can be offered to the crowd. A
prototype Web application working as a consumer of the Web
service has also been developed (available only in Hungarian
at the moment, see Fig. 9) that can be used to find the current
courses held at the Campus.

Fig. 9. Web application showing the current courses at the Campus

Another mobile application, suitable for recording data
provided by the various sensors of a mobile device, have also
been developed. Users get full control over data recording: they
can switch it on or off whenever they want. When switched
on, the application running as a background process collects
data (e.g., fine-grained or coarse-grained position, temperature,
gyroscope and other built-in sensors) in XML format which are
then automatically sent to an XMPP server where the collected
data can be processed using data mining techniques. The XML
document contains the recorded data with a timestamp along
with a header used for identifying the mobile device. Data
sampling is 1 ms by default.

299

CogInfoCom 2013 • 4th IEEE International Conference on Cognitive Infocommunications • December 2–5, 2013 , Budapest, Hungary

This application is working on Android 2.2+ which means
that 99% of Android users can use it. Permanent Internet
connection is not required, data gathered off-line will be sent
to the XMPP server upon connection. The application consists
of two services and an activity. One service is responsible for
the recording (see Fig. 10), the other is for the uploading, and
the activity handles the interaction with the user. The analytics
module deployed at the server-side can be used for analyzing
the traffic in the campus (or a city), finding frequent routes,
suggesting faster routes, etc.

Fig. 10. Data collector application for Android

IV. SUMMARY

In this paper, we presented our framework, based on the
publish-subscribe communication model and the use of XMPP,
as the core of a unifying open architecture for crowd-sourcing
based smart city applications. XMPP is already established,
standardized, freely available, extendible, supports the publish-
subscribe communication model. Moreover, we discussed the
analitics related issues of such smart city applications and
showed three use-case smart city application scenarios which
are currently under development on top of our framework.

As future work, we plan to evaluate the performance and
scalability properties of our framework and stress test our
XMPP based architecture. Moreover, we intend to implement
some further application scenarios, such as smart parking,
pothole detection or indoor/outdoor navigation and collect real
crowd data via our pilot applications.

ACKNOWLEDGMENT

The authors would like to thank the former and actual
members of the working group “Intelligent supporter” es-
pecially Balázs Kóti, József Zákány, Roland Dóczi and the
students of the course of “Java casestudies” at the University of

Debrecen for participation in the development of SIA. Special
thanks to Balázs Kóti for creating the SIA logo and icons.

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. The project has been sup-
ported by the European Union, co-financed by the European
Social Fund. This work has been partially supported by the
KIC ICTLabs under the activity 13064 CityCrowdSource of
the action line Digital Cities. The publication was supported
by the KTIA AIK 12-1-2013-0037 project. The project is
supported by Hungarian Government, managed by the Na-
tional Development Agency, and financed by the Research and
Technology Innovation Fund. Károly Farkas has been partially
supported by the Hungarian Academy of Sciences through the
Bolyai János Research Fellowship.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[3] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.
html

[4] T. White, Hadoop: The Definitive Guide. Yahoo Press, 2010.
[5] J. Leibiusky, G. Eisbruch, and D. Simonassi, Getting Started With

Storm. Oreilly & Associates Incorporated, 2012.
[6] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed

stream computing platform,” in Data Mining Workshops (ICDMW),
2010 IEEE International Conference on. IEEE, 2010, pp. 170–177.

[7] A. Lakshman and P. Malik, “Cassandra: A structured storage system on
a p2p network,” in Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures. ACM, 2009, pp. 47–47.

[8] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal,
vol. 2004, no. 124, p. 5, 2004.

[9] J. Alonso, L. Belanche, and D. Avresky, “Predicting Software Anoma-
lies Using Machine Learning Techniques,” in 10th IEEE International
Symposium on Network Computing and Applications, 2011, pp. 163–
170.

[10] L. Pang, S. Chawla, W. Liu, and Y. Zheng, “On Mining Anomalous
Patterns in Road Traffic Streams,” in 7th International Conference
on Advanced Data Mining and Applications, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, pp. 237–251.

[11] D. Zhang, N. Li, Z.-H. Zhou, C. Chen, and S. L. L. Sun, “iBAT: De-
tecting Anomalous Taxi Trajectories from GPS Traces,” in Proceedings
of the 13th international conference on Ubiquitous computing. ACM,
2011, pp. 99–108.

[12] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
real-time event detection by social sensors,” in Proceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 851–
860.

[13] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[14] “aSmack API.” [Online]. Available: https://github.com/Flowdalic/
asmack/

[15] “Smack library.” [Online]. Available: http://www.igniterealtime.org/
projects/smack/

[16] N. Bátfai, R. Szabó, P. Jeszenszky, J. Komzsik, A. Mamenyák, R. Bes-
enczi, J. Zákány, R. Dóczi, C. Székelyhı́di, M. Smajda, B. Kóti,
G. Kövér, E. Bátfai, K. Farkas, M. Ispány, and G. Terdik, “Crowd,
Cloud and Public Resource Computing Models in Soccer with Case
Studies (work in progress),” 2013.

300

R. Szabó et al. • Framework for Smart City Applications Based on Participatory Sensing

